Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Interactions with bacteria shape diatom adaptation to carbon concentration changes
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 27 December 2025

Interactions with bacteria shape diatom adaptation to carbon concentration changes

  • Chenjie Li1,
  • Wenxiu Yin1,
  • Yufang Pan1 &
  • …
  • Hanhua Hu  ORCID: orcid.org/0000-0002-8485-75911 

Nature Communications , Article number:  (2025) Cite this article

  • 2643 Accesses

  • 1 Citations

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Marine microbiology
  • Symbiosis

Abstract

Diatoms are key contributors to global primary production, and have developed intricate partnerships with bacteria through long-term co-evolution. Here, we uncover a syntrophic relationship between the model obligate photoautotroph diatom Phaeodactylum tricornutum and the rod-shaped bacterium Loktanella vestfoldensis, which enables the diatom to indirectly utilize glucose. To be specific, growth of the diatom depends on the support of L. vestfoldensis for the supply of necessary carbon source when glucose serves as the sole carbon source, while L. vestfoldensis shows dependence on P. tricornutum when CO2 is the sole carbon source. Reanalysis of Tara Oceans metagenomic data shows frequent co-occurrence of Loktanella with diatoms including Chaetoceros and Thalassiosira, indicating the ecological relevance of this partnership. Co-culture with L. vestfoldensis supports robust growth of Chaetoceros muelleri and Thalassiosira pseudonana in the presence of glucose as the sole carbon source. Transcriptomic and metabolomic analyses reveal that P. tricornutum maintains a photoautotrophic metabolism in co-culture, as indicated by the up-regulation of genes involved in inorganic carbon concentration and photosynthesis, while the co-cultured bacterium likely supplies CO2 and growth-stimulating metabolites such as indole-3-acetic acid. Our findings demonstrate that bacterial-algal interactions may shape diatom adaptation to carbon changes and contribute to marine carbon cycling.

Similar content being viewed by others

Flavobacterial exudates disrupt cell cycle progression and metabolism of the diatom Thalassiosira pseudonana

Article Open access 14 September 2022

A tripartite model system for Southern Ocean diatom-bacterial interactions reveals the coexistence of competing symbiotic strategies

Article Open access 03 October 2022

Diel investments in metabolite production and consumption in a model microbial system

Article Open access 17 December 2021

Data availability

The raw data of RNA-Seq and 16S rRNA amplicon sequencing have been deposited in the Sequence Read Archive database under accession numbers PRJNA1276728 and PRJNA1330494. The Sanger sequencing data of 16S rRNA have been deposited in the Genbank database under accession numbers PX410800 (Janibacter anophelis) [https://www.ncbi.nlm.nih.gov/nuccore/PX410800] and PX410801 (Loktanella vestfoldensis) [https://www.ncbi.nlm.nih.gov/nuccore/PX410801]. The metabolomic data have been deposited on Metabolomics Workbench under Study ID ST004351 [https://doi.org/10.21228/M8WR9Z]. Source data are provided with this paper.

Code availability

The code used to produce the results is available at Figshare (https://doi.org/10.6084/m9.figshare.30178000).

References

  1. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Google Scholar 

  2. Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).

    Google Scholar 

  3. Bowler, C., Vardi, A. & Allen, A. E. Oceanographic and biogeochemical insights from diatom genomes. Ann. Rev. Mar. Sci. 2, 333–365 (2010).

    Google Scholar 

  4. Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–37 (2018).

    Google Scholar 

  5. Reinfelder, J. R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Ann. Rev. Mar. Sci. 3, 291–315 (2011).

    Google Scholar 

  6. Nakajima, K., Tanaka, A. & Matsuda, Y. SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proc. Natl. Acad. Sci. USA 110, 1767–1772 (2013).

    Google Scholar 

  7. Kikutani, S. et al. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc. Natl. Acad. Sci. USA 113, 9828–9833 (2016).

    Google Scholar 

  8. Cohen, N. R. Mixotrophic plankton foraging behaviour linked to carbon export. Nat. Commun. 13, 1302 (2022).

    Google Scholar 

  9. Ward, B. A. & Follows, M. J. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc. Natl. Acad. Sci. USA 113, 2958–2963 (2016).

    Google Scholar 

  10. Kumar, M. et al. Mixotrophic growth of a ubiquitous marine diatom. Sci. Adv. 10, eado2623 (2024).

    Google Scholar 

  11. Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684 (2012).

    Google Scholar 

  12. Ryther, J. H. & Guillard, R. R. L. Studies of marine planktonic diatoms: II. Use of Cyclotella nana Hustedt for assays of vitamin B12 in sea water. Can. J. Microbiol. 8, 437–445 (1962).

    Google Scholar 

  13. Foster, R. A. et al. Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J. 5, 1484–1493 (2011).

    Google Scholar 

  14. Desbois, A. P., Mearns-Spragg, A. & Smith, V. J. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria, including multi-resistant Staphylococcus aureus (MRSA). Mar. Biotechnol. 11, 45–52 (2009).

    Google Scholar 

  15. Paul, C. & Pohnert, G. Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis. PLoS ONE 6, e21032 (2011).

    Google Scholar 

  16. Yu, G. et al. Mitochondrial phosphoenolpyruvate carboxylase contributes to carbon fixation in the diatom Phaeodactylum tricornutum at low inorganic carbon concentrations. N. Phytol. 235, 1379–1393 (2022).

    Google Scholar 

  17. Cerón Garcı́a, M. C. et al. Mixotrophic growth of the microalga Phaeodactylum tricornutum: influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem. 40, 297–305 (2005).

    Google Scholar 

  18. Vuong, T. T., Kwon, B. R., Eom, J. I., Shin, B. K. & Kim, S. M. Interaction between marine bacterium Stappia sp. K01 and diatom Phaeodactylum tricornutum through extracellular fatty acids. J. Appl. Phycol. 32, 71–82 (2020).

    Google Scholar 

  19. Zhang, W. et al. Heterotrophic modification of Phaeodactylum tricornutum Bohlin. Algal Res. 72, 103137 (2023).

    Google Scholar 

  20. Zheng, Y., Quinn, A. H. & Sriram, G. Experimental evidence and isotopomer analysis of mixotrophic glucose metabolism in the marine diatom Phaeodactylum tricornutum. Microb. Cell Factor. 12, 1–17 (2013).

    Google Scholar 

  21. Schreiber, V. et al. The central vacuole of the diatom Phaeodactylum tricornutum: identification of new vacuolar membrane proteins and of a functional di-leucine-based targeting motif. Protist 168, 271–282 (2017).

    Google Scholar 

  22. Ødum, M. T. et al. DeepLoc 2.1: multi-label membrane protein type prediction using protein language models. Nucleic Acids Res. 52, W215–W220 (2024).

    Google Scholar 

  23. Di Costanzo, F., Di Dato, V. & Romano, G. Diatom-bacteria interactions in the marine environment: complexity, heterogeneity, and potential for biotechnological applications. Microorganisms 11, 2967 (2023).

    Google Scholar 

  24. Sittmann, J. et al. Bacterial diketopiperazines stimulate diatom growth and lipid accumulation. Plant Physiol. 186, 1159–1170 (2021).

    Google Scholar 

  25. Andrew, S., Wilson, T., Smith, S., Marchetti, A. & Septer, A. N. A tripartite model system for Southern Ocean diatom-bacterial interactions reveals the coexistence of competing symbiotic strategies. ISME Commun. 2, 97 (2022).

    Google Scholar 

  26. Abd-El-Aziz, A. et al. Bacteria-microalgae interactions from an evolutionary perspective and their biotechnological significance. Biotechnol. Adv. 82, 108591 (2025).

    Google Scholar 

  27. Le Chevanton, M. et al. Screening and selection of growth-promoting bacteria for Dunaliella cultures. Algal Res. 2, 212–222 (2013).

    Google Scholar 

  28. Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    Google Scholar 

  29. Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl. Acad. Sci. USA 112, 453–457 (2015).

    Google Scholar 

  30. Schäfer, H., Abbas, B., Witte, H. & Muyzer, G. Genetic diversity of ‘satellite’ bacteria present in cultures of marine diatoms. FEMS Microbiol. Ecol. 42, 25–35 (2002).

    Google Scholar 

  31. Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).

    Google Scholar 

  32. Deng, Y. et al. Dynamic diatom-bacteria consortia in synthetic plankton communities. Appl. Environ. Microbiol. 88, e01619–22 (2022).

    Google Scholar 

  33. Töpel, M. et al. Complete genome sequence of Loktanella vestfoldensis strain SMR4r, a novel strain isolated from a culture of the chain-forming diatom Skeletonema marinoi. Genome Announc. 6, e01558–17 (2018).

    Google Scholar 

  34. Johansson, O. N. et al. Friends with benefits: exploring the phycosphere of the marine diatom Skeletonema marinoi. Front. Microbiol. 10, 1828 (2019).

    Google Scholar 

  35. Roth, M. S. et al. Regulation of oxygenic photosynthesis during trophic transitions in the green alga Chromochloris zofingiensis. Plant Cell 31, 579–601 (2019).

    Google Scholar 

  36. Mazur, H., Konop, A. & Synak, R. Indole-3-acetic acid in the culture medium of two axenic green microalgae. J. Appl. Phycol. 13, 35–42 (2001).

    Google Scholar 

  37. Barbosa-Filho, J. M. et al. Botanical study, phytochemistry and antimicrobial activity of Tabebuia aurea:(with 1 table & 1 figure). Phyton 73, 221–228 (2004).

    Google Scholar 

  38. Judge, V. et al. Isonicotinic acid hydrazide derivatives: synthesis, antimicrobial activity, and QSAR studies. Med. Chem. Res. 21, 1451–1470 (2012).

    Google Scholar 

  39. Murata, M. et al. Loliolide, a carotenoid metabolite, is a potential endogenous inducer of herbivore resistance. Plant Physiol. 179, 1822–1833 (2019).

    Google Scholar 

  40. Castañeda, I. S., Werne, J. P., Johnson, T. C. & Powers, L. A. Organic geochemical records from Lake Malawi (East Africa) of the last 700 years, part II: Biomarker evidence for recent changes in primary productivity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 303, 140–154 (2011).

    Google Scholar 

  41. Van Tol, H. M., Amin, S. A. & Armbrust, E. V. Ubiquitous marine bacterium inhibits diatom cell division. ISME J. 11, 31–42 (2017).

    Google Scholar 

  42. Skoog, A. & Benner, R. Aldoses in various size fractions of marine organic matter: Implications for carbon cycling. Limnol. Oceanogr. 42, 1803–1813 (1997).

    Google Scholar 

  43. Benner, R. Chemical composition and reactivity. Biogeochemistry of Marine Dissolved Organic Matter 59–90 (2002). https://doi.org/10.1016/B978-012323841-2/50005-1

  44. De Martino, A., Meichenin, A., Shi, J., Pan, K. & Bowler, C. Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions. J. Phycol. 43, 992–1009 (2007).

    Google Scholar 

  45. Guillard, R. R. Culture of phytoplankton for feeding marine invertebrates. in Culture of Marine Invertebrate Animals (eds Smith, W.L., Chanley, M.H.) 29–60 (Springer, 1975).

  46. DeLong, E. F. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89, 5685–5689 (1992).

    Google Scholar 

  47. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

  48. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

  49. Callahan, B. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Google Scholar 

  50. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    Google Scholar 

  51. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Google Scholar 

  52. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    Google Scholar 

  53. Wickham, H. Data Analysis. In: ggplot2. https://doi.org/10.1007/978-3-319-24277-4_9 (Use R! Springer, Cham, 2016).

  54. Becker, R. A. & Wilks, A. R. Constructing a Geographical Database.AT&T Bell Laboratories Statistics Research Report (1997). https://www.researchgate.net/publication/2444672_Constructing_a_Geographical_Database

  55. Tackmann, J., Matias Rodrigues, J. F. & von Mering, C. Rapid inference of direct interactions in large-scale ecological networks from heterogeneous microbial sequencing data. Cell Syst. 9, 286–296 (2019).

    Google Scholar 

  56. Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. Imeta 2, e107 (2023).

    Google Scholar 

  57. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Google Scholar 

  58. Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239–244 (2008).

    Google Scholar 

  59. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Google Scholar 

  60. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Google Scholar 

  61. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Google Scholar 

  62. Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015).

    Google Scholar 

  63. Xia, J., Psychogios, N., Young, N. & Wishart, D. S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 37, W652–W660 (2009).

    Google Scholar 

  64. Sud, M. et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 44, D463–D470 (2016).

    Google Scholar 

  65. Van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K. & Van der Werf, M. J. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genom. 7, 1–15 (2006).

    Google Scholar 

  66. Rohart, F., Gautier, B., Singh, A. & Lê Cao, K. A. MixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017).

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key Research and Development Program of China with No. 2023YFA0914400 (2023YFA0914402 to H.H.) and National Natural Science Foundation of China with No. 42376131 (to H.H.). We acknowledge the Metabolomics Workbench (https://www.metabolomicsworkbench.org, supported by NIH grants U2C-DK119886 and OT2-OD030544) for hosting the data and metadata for this study (Study ID: ST004351).

Author information

Authors and Affiliations

  1. Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China

    Chenjie Li, Wenxiu Yin, Yufang Pan & Hanhua Hu

Authors
  1. Chenjie Li
    View author publications

    Search author on:PubMed Google Scholar

  2. Wenxiu Yin
    View author publications

    Search author on:PubMed Google Scholar

  3. Yufang Pan
    View author publications

    Search author on:PubMed Google Scholar

  4. Hanhua Hu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

H.H. designed the research. C.L., W.Y., and Y.P. performed experiments and data analysis. C.L. and H.H. drafted the manuscript. H.H. revised the manuscript. H.H. acquired the financial support. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hanhua Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Sean Anderson, Xin Lin, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Information

Supplementary Data 1-6

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Yin, W., Pan, Y. et al. Interactions with bacteria shape diatom adaptation to carbon concentration changes. Nat Commun (2025). https://doi.org/10.1038/s41467-025-68050-3

Download citation

  • Received: 24 June 2025

  • Accepted: 16 December 2025

  • Published: 27 December 2025

  • DOI: https://doi.org/10.1038/s41467-025-68050-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing