Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Reduction of bacterial colonization on buckling-induced wrinkled surfaces under fluid shear
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 07 January 2026

Reduction of bacterial colonization on buckling-induced wrinkled surfaces under fluid shear

  • Luca Pellegrino  ORCID: orcid.org/0000-0002-2529-37811,2,
  • Giovanni Savorana3,
  • Valeria Cassina  ORCID: orcid.org/0000-0002-0254-82434,
  • Riccardo Campanile  ORCID: orcid.org/0000-0002-9069-82324,
  • Martin Centola  ORCID: orcid.org/0000-0003-0956-57052,5,
  • Cristina Belgiovine6,
  • Valeriano Vinci1,2,
  • Marco Klinger2,7,
  • Sigolène Lecuyer8,
  • Edoardo D’Imprima  ORCID: orcid.org/0000-0002-9830-79292,5,
  • Francesco Mantegazza  ORCID: orcid.org/0000-0003-4257-21654,
  • Eleonora Secchi  ORCID: orcid.org/0000-0002-0949-90853 &
  • …
  • Roberto Rusconi  ORCID: orcid.org/0000-0002-8385-92961,2 

Nature Communications , Article number:  (2026) Cite this article

  • 1694 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biofilms
  • Bioinspired materials
  • Biological physics
  • Fluid dynamics

Abstract

Microbial colonization and biofilm formation drive infection persistence and the spread of antimicrobial resistance, particularly under flow conditions typical of medical and natural environments. Here, we combine spontaneously buckled wrinkled topographies with microfluidic platforms to investigate the adhesion of Pseudomonas aeruginosa and Staphylococcus aureus across shear rates of 0.4-200 s−1. Wrinkled surfaces with tunable wavelengths (0.5-20 μm) are fabricated and characterized using optical, atomic force, and scanning electron microscopy. Sinusoidal wrinkles with a 2 μm wavelength reduce bacterial colonization by over 70% when oriented perpendicular to flow, while folded wrinkles of 5 μm achieve more than 90% reduction across broader shear regimes and suppress biofilm formation by over 85% relative to flat controls. These topographies retain antifouling performance under pulsatile flow. This work demonstrates a scalable, chemical-free strategy for passive biofilm control through geometric surface design, enabling durable antimicrobial materials for biomedical and industrial applications.

Similar content being viewed by others

Investigation of shockwave treatment for disruption of bacterial biofilm on tubular structure

Article Open access 15 October 2025

The biofilm life cycle: expanding the conceptual model of biofilm formation

Article 03 August 2022

Real-time monitoring of the dynamics and interactions of bacteria and the early-stage formation of biofilms

Article Open access 28 October 2022

Data availability

Additional data supporting this study are available in the Supplementary Information. A Source data file containing all data displayed in the figures and reported in the tables is provided with this paper and is accessible at https://doi.org/10.5281/zenodo.17303681. Any remaining data underlying this study are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Krajewski, S. et al. Bacterial interactions with proteins and cells relevant to the development of life-threatening endocarditis studied by use of a quartz-crystal microbalance. Anal. Bioanal. Chem. 406, 3395–3406 (2014).

    Google Scholar 

  2. Cheng, Y., Feng, G. & Moraru, C. I. Micro-and nanotopography sensitive bacterial attachment mechanisms: a review. Front. Microbiol. 10, 191 (2019).

    Google Scholar 

  3. Caldara, M., Belgiovine, C., Secchi, E. & Rusconi, R. Environmental, microbiological, and immunological features of bacterial biofilms associated with implanted medical devices. Clin. Microbiol. Rev. 35, e00221–20 (2022).

    Google Scholar 

  4. Hsu, L. C., Fang, J., Borca-Tasciuc, D. A., Worobo, R. W. & Moraru, C. I. Effect of micro-and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Appl. Environ. Microbiol. 79, 2703–2712 (2013).

    Google Scholar 

  5. Tripathy, A., Sen, P., Su, B. & Briscoe, W. H. Natural and bioinspired nanostructured bactericidal surfaces. Adv. Colloid Interface Sci. 248, 85–104 (2017).

    Google Scholar 

  6. Skoog, S. A., Kumar, G., Narayan, R. J. & Goering, P. L. Biological responses to immobilized microscale and nanoscale surface topographies. Pharmacol. Ther. 182, 33–55 (2018).

    Google Scholar 

  7. Luan, Y. et al. Bacterial interactions with nanostructured surfaces. Curr. Opinion Colloid Interface Sci. 38, 170–189 (2018).

    Google Scholar 

  8. Lee, S. W., Phillips, K. S., Gu, H., Kazemzadeh-Narbat, M. & Ren, D. How microbes read the map: effects of implant topography on bacterial adhesion and biofilm formation. Biomaterials 268, 120595 (2020).

  9. Ivanova, E. P. et al. Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir 26, 1973–1982 (2010).

    Google Scholar 

  10. Mainwaring, D. E. et al. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly. Nanoscale 8, 6527–6534 (2016).

    Google Scholar 

  11. Elbourne, A., Crawford, R. J. & Ivanova, E. P. Nano-structured antimicrobial surfaces: from nature to synthetic analogues. J. Colloid Interface Sci. 508, 603–616 (2017).

    Google Scholar 

  12. Tuson, H. H. & Weibel, D. B. Bacteria–surface interactions. Soft Matter 9, 4368–4380 (2013).

    Google Scholar 

  13. Vasudevan, R., Kennedy, A. J., Merritt, M., Crocker, F. H. & Baney, R. H. Microscale patterned surfaces reduce bacterial fouling-microscopic and theoretical analysis. Colloids Surf. B Biointerfaces 117, 225–232 (2014).

    Google Scholar 

  14. Hong, S.-H. et al. Surface waves control bacterial attachment and formation of biofilms in thin layers. Sci. Adv. 6, eaaz9386 (2020).

    Google Scholar 

  15. Pellegrino, L., Kriem, L. S., Robles, E. S. & Cabral, J. T. Microbial response to micrometer-scale multiaxial wrinkled surfaces. ACS Appl. Mater. Interfaces 14, 31463–31473 (2022).

    Google Scholar 

  16. Hizal, F. et al. Impact of 3D hierarchical nanostructures on the antibacterial efficacy of a bacteria-triggered self-defensive antibiotic coating. ACS Appl. Mater. Interfaces 7, 20304–20313 (2015).

    Google Scholar 

  17. Chang, Y.-R., Weeks, E. R. & Ducker, W. A. Surface topography hinders bacterial surface motility. ACS Appl. Mater. Interfaces 10, 9225–9234 (2018).

    Google Scholar 

  18. Mok, R., Dunkel, J. & Kantsler, V. Geometric control of bacterial surface accumulation. Phys. Rev. E 99, 052607 (2019).

    Google Scholar 

  19. Zheng, S. et al. Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front. Bioeng. Biotechnol. 9, 643722 (2021).

    Google Scholar 

  20. Surapaneni, V. A. et al. Groovy and gnarly: surface wrinkles as a multifunctional motif for terrestrial and marine environments. Integr. Comp. Biol. 62, 749–761 (2022).

    Google Scholar 

  21. Demenego, G. et al. Neurodevelopmental origins of structural and psychomotor defects in CXCR4-linked primary immunodeficiency. Neuron 113, 2636–2655 (2025).

    Google Scholar 

  22. Rusconi, R., Guasto, J. S. & Stocker, R. Bacterial transport suppressed by fluid shear. Nat. Phys. 10, 212–217 (2014).

    Google Scholar 

  23. Secchi, E. et al. The effect of flow on swimming bacteria controls the initial colonization of curved surfaces. Nat. Commun. 11, 2851 (2020).

    Google Scholar 

  24. Lee, Y. K., Won, Y.-J., Yoo, J. H., Ahn, K. H. & Lee, C.-H. Flow analysis and fouling on the patterned membrane surface. J. Membr. Sci. 427, 320–325 (2013).

    Google Scholar 

  25. Wang, Q. & Zhao, X. A three-dimensional phase diagram of growth-induced surface instabilities. Sci. Rep. 5, 8887 (2015).

    Google Scholar 

  26. Allen, J. The classification of cross-stratified units. with notes on their origin. Sedimentology 2, 93–114 (1963).

    Google Scholar 

  27. Efimenko, K. et al. Nested self-similar wrinkling patterns in skins. Nat. Mater. 4, 293–297 (2005).

    Google Scholar 

  28. Genzer, J. & Groenewold, J. Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter 2, 310–323 (2006).

    Google Scholar 

  29. Bayley, F. A., Liao, J. L., Stavrinou, P. N., Chiche, A. & Cabral, J. T. Wavefront kinetics of plasma oxidation of polydimethylsiloxane: limits for sub-μm wrinkling. Soft Matter 10, 1155–1166 (2014).

    Google Scholar 

  30. Nania, M., Foglia, F., Matar, O. K. & Cabral, J. T. Sub-100 nm wrinkling of polydimethylsiloxane by double frontal oxidation. Nanoscale 9, 2030–2037 (2017).

    Google Scholar 

  31. Pellegrino, L., Khodaparast, S. & Cabral, J. T. Orthogonal wave superposition of wrinkled, plasma-oxidised, polydimethylsiloxane surfaces. Soft Matter 16, 595–603 (2020).

    Google Scholar 

  32. Pellegrino, L., Tan, A. & Cabral, J. T. Ripple patterns spontaneously emerge through sequential wrinkling interference in polymer bilayers. Phys. Rev. Lett. 128, 058001 (2022).

    Google Scholar 

  33. Nakazawa, K. et al. A human septin octamer complex sensitive to membrane curvature drives membrane deformation with a specific mesh-like organization. J. Cell Sci. 136, jcs260813 (2023).

    Google Scholar 

  34. Li, B., Cao, Y.-P., Feng, X.-Q. & Gao, H. Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter 8, 5728–5745 (2012).

    Google Scholar 

  35. Stroock, A. D. et al. Chaotic mixer for microchannels. Science 295, 647–651 (2002).

    Google Scholar 

  36. Pyke, K. E., Dwyer, E. M. & Tschakovsky, M. E. Impact of controlling shear rate on flow-mediated dilation responses in the brachial artery of humans. J. Appl. Physiol. 97, 499–508 (2004).

    Google Scholar 

  37. Zöttl, A. et al. Dynamics of individual Brownian rods in a microchannel flow. Soft Matter 15, 5810–5814 (2019).

    Google Scholar 

  38. Shen, Y., Siryaporn, A., Lecuyer, S., Gitai, Z. & Stone, H. A. Flow directs surface-attached bacteria to twitch upstream. Biophys. J. 103, 146–151 (2012).

    Google Scholar 

  39. Leighton, T. L., Buensuceso, R. N., Howell, P. L. & Burrows, L. L. Biogenesis of Pseudomonas aeruginosa type IV pili and regulation of their function. Environ. Microbiol. 17, 4148–4163 (2015).

    Google Scholar 

  40. Duvernoy, M.-C. et al. Asymmetric adhesion of rod-shaped bacteria controls microcolony morphogenesis. Nat. Commun. 9, 1120 (2018).

    Google Scholar 

  41. Roberge, N. A. & Burrows, L. L. Building permits-control of type IV pilus assembly by pilB and its cofactors. J. Bacteriol. 206, e00359–24 (2024).

    Google Scholar 

  42. Lecuyer, S. et al. Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa. Biophys. J. 100, 341–350 (2011).

    Google Scholar 

  43. Parente, R. et al. A multilayered imaging and microfluidics approach for evaluating the effect of fibrinolysis in Staphylococcus aureus biofilm formation. Pathogens 12, 1141 (2023).

    Google Scholar 

  44. Baba, T., Bae, T., Schneewind, O., Takeuchi, F. & Hiramatsu, K. Genome sequence of Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J. Bacteriol. 190, 300–310 (2008).

    Google Scholar 

  45. Forson, A. M., van der Mei, H. C. & Sjollema, J. Impact of solid surface hydrophobicity and micrococcal nuclease production on Staphylococcus aureus newman biofilms. Sci. Rep. 10, 12093 (2020).

    Google Scholar 

  46. Parsons, J. B., Westgeest, A. C., Conlon, B. P. & Fowler Jr, V. G. Persistent methicillin-resistant Staphylococcus aureus bacteremia: host, pathogen, and treatment. Antibiotics 12, 455 (2023).

    Google Scholar 

  47. Liesenborghs, L., Verhamme, P. & Vanassche, T. Staphylococcus aureus, master manipulator of the human hemostatic system. J. Thromb. Haemost. 16, 441–454 (2018).

    Google Scholar 

  48. McAdow, M. et al. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog. 7, e1002307 (2011).

    Google Scholar 

  49. Belgiovine, C. et al. Interaction of bacteria, immune cells, and surface topography in periprosthetic joint infections. Int. J. Mol. Sci. 24, 9028 (2023).

    Google Scholar 

  50. Gammie, A. et al. International continence society guidelines on urodynamic equipment performance. Neurourol. Urodyn. 33, 370–379 (2014).

    Google Scholar 

  51. Secchi, E. et al. The structural role of bacterial eDNA in the formation of biofilm streamers. Proc. Natl. Acad. Sci. USA 119, e2113723119 (2022).

  52. Savorana, G., Słomka, J., Stocker, R., Rusconi, R. & Secchi, E. A microfluidic platform for characterizing the structure and rheology of biofilm streamers. Soft Matter 18, 3878 - 3890 (2022).

    Google Scholar 

  53. Lee, S. W., Phillips, K. S., Gu, H., Kazemzadeh-Narbat, M. & Ren, D. How microbes read the map: effects of implant topography on bacterial adhesion and biofilm formation. Biomaterials 268, 120595 (2021).

    Google Scholar 

  54. Nicolle, L. E. Catheter associated urinary tract infections. Antimicrob. Resist. Infect. Control 3, 1–8 (2014).

    Google Scholar 

  55. Werneburg, G. T. Catheter-associated urinary tract infections: current challenges and future prospects. Res. Rep. Urol. 14, 109–133 (2022).

  56. Marschall, J., Carpenter, C. R., Fowler, S. & Trautner, B. W. Antibiotic prophylaxis for urinary tract infections after removal of urinary catheter: meta-analysis. Bmj 346, f3147 (2013).

  57. Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187 (2016).

    Google Scholar 

  58. Dean, B. & Bhushan, B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 4775 - 4806 (2010).

    Google Scholar 

  59. Gomez, S. et al. Substrate stiffness impacts early biofilm formation by modulating Pseudomonas aeruginosa twitching motility. eLife 12, e81112 (2023).

    Google Scholar 

  60. Ariel, G. et al. Swarming bacteria migrate by Lévy Walk. Nat. Commun. 6, 8396 (2015).

    Google Scholar 

  61. Lauta, F. C., Pellegrino, L. & Rusconi, R. Macrophages on the wrinkle: exploring microscale interactions with substrate topography. Biophys. Rev. 5, 022001 (2024).

  62. Vinci, V. et al. Breast implant surface topography triggers a chronic-like inflammatory response. Life Sci. Alliance 7, e202302132 (2024).

  63. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Google Scholar 

  64. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    Google Scholar 

Download references

Acknowledgements

This work was supported by EU funding within the Italian Ministry of University and Research (MUR) PNRR Extended Partnership initiative on Emerging Infectious Diseases (project no. PE00000007, INF-ACT) to R.R., EU HORIZON-TMA-MSCA-PF-EF investigating microbial colonization and removal on dynamic patterned surfaces (grant no. 101110029, MOBILE) to L.P., and by a grant from the Italian Ministry of University and Research (MUR), Dipartimenti di Eccellenza 2023-2027 (I.232/2016, art. 1, commi 314-337) to V.C., R.C., and F.M.. E.D.I. and M.C. are grateful to Humanitas University Office of Information Technology for the computing resources maintenance. L.P., V.C., R.C., and F.M. gratefully acknowledge the support of the ISIS@MACH ITALIA Research Infrastructure, the hub of ISIS Neutron and Muon Source (UK), [MUR official registry U. 0008642.28-05-2020-16th April 2020]. IM@IT is listed in the Italian Ministry of University and Research’s Piano Nazionale delle Infrastrutture di Ricerca (PNIR 2021–2027) “in the broader notion of ISIS”, and ISIS Facility and IM@IT are jointly listed in high-priority RI’s (see Table 6, page 30, note 38, PNIR in 2021–2027).

Author information

Authors and Affiliations

  1. Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy

    Luca Pellegrino, Valeriano Vinci & Roberto Rusconi

  2. IRCCS Humanitas Research Hospital, Rozzano, Italy

    Luca Pellegrino, Martin Centola, Valeriano Vinci, Marco Klinger, Edoardo D’Imprima & Roberto Rusconi

  3. Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland

    Giovanni Savorana & Eleonora Secchi

  4. School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy

    Valeria Cassina, Riccardo Campanile & Francesco Mantegazza

  5. Correlative Light and Electron Microscopy Core, Humanitas University, Pieve Emanuele, Italy

    Martin Centola & Edoardo D’Imprima

  6. Department of Biology and Biotechnology, University of Pavia, Pavia, Italy

    Cristina Belgiovine

  7. Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy

    Marco Klinger

  8. Laboratoire de Physique (LPENSL UMR 5672), CNRS, ENS de Lyon, Lyon Cedex 07, France

    Sigolène Lecuyer

Authors
  1. Luca Pellegrino
    View author publications

    Search author on:PubMed Google Scholar

  2. Giovanni Savorana
    View author publications

    Search author on:PubMed Google Scholar

  3. Valeria Cassina
    View author publications

    Search author on:PubMed Google Scholar

  4. Riccardo Campanile
    View author publications

    Search author on:PubMed Google Scholar

  5. Martin Centola
    View author publications

    Search author on:PubMed Google Scholar

  6. Cristina Belgiovine
    View author publications

    Search author on:PubMed Google Scholar

  7. Valeriano Vinci
    View author publications

    Search author on:PubMed Google Scholar

  8. Marco Klinger
    View author publications

    Search author on:PubMed Google Scholar

  9. Sigolène Lecuyer
    View author publications

    Search author on:PubMed Google Scholar

  10. Edoardo D’Imprima
    View author publications

    Search author on:PubMed Google Scholar

  11. Francesco Mantegazza
    View author publications

    Search author on:PubMed Google Scholar

  12. Eleonora Secchi
    View author publications

    Search author on:PubMed Google Scholar

  13. Roberto Rusconi
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.P. and R.R. conceived and designed the project. L.P. conducted the microfluidic experiments and performed data analysis. L.P., G.S., and E.S. carried out numerical simulations and interpreted the results. L.P., V.C., R.C., and F.M. performed and analyzed AFM measurements. M.C. and E.D.I. conducted and analyzed SEM measurements. S.L. and C.B. contributed to data analysis and interpretation. V.V., M.K., and R.R. acquired funding and supervised the research. L.P. and R.R. wrote the original draft, and all authors contributed to reviewing and editing the manuscript.

Corresponding authors

Correspondence to Luca Pellegrino or Roberto Rusconi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks James Henderson and the other anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review File

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellegrino, L., Savorana, G., Cassina, V. et al. Reduction of bacterial colonization on buckling-induced wrinkled surfaces under fluid shear. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68078-5

Download citation

  • Received: 18 May 2025

  • Accepted: 16 December 2025

  • Published: 07 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68078-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology