Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Endothelin-3 and T-type Ca2+ channels drive enteric neural crest cell calcium activity, contractility and migration
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 January 2026

Endothelin-3 and T-type Ca2+ channels drive enteric neural crest cell calcium activity, contractility and migration

  • Nicolas R. Chevalier  ORCID: orcid.org/0000-0002-9713-15111,
  • Fanny Gayda2,
  • Nadège Bondurand2,
  • Ze Chi Chan1,
  • Thierry Savy  ORCID: orcid.org/0000-0001-5970-38171,
  • Monique Frain1,
  • Amira El Merhie  ORCID: orcid.org/0000-0001-6580-96771,
  • Lenuta Canta3,
  • Monica Dicu3,
  • Isabelle Le Parco4 &
  • …
  • Léna Zig1 

Nature Communications , Article number:  (2026) Cite this article

  • 1888 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biological physics
  • Developmental neurogenesis

Abstract

Enteric neural crest cells (ENCCs) colonize the gut during embryogenesis and migration defects give rise to Hirschsprung disease (HD). Mutations in GDNF/RET and EDN3/EDNRB are known to be causal in HD. Here, we show that migrating ENCCs in mice exhibit endogenous EDN3/EDNRB-gated calcium activity, mediated by chloride channels, T-type Ca2+ channels and inositol trisphosphate-sensitive intracellular-store release. We find that inhibiting Ca2+ activity results in ENCC migration defects, while exciting it promotes migration by increasing ENCC contractility and traction force to the extracellular matrix. Our study demonstrates that embryonic endothelin-mediated neural crest migration and adult endothelin-mediated vasoconstriction is one and the same phenomenon, taking place in different cell types. Our results suggest a functional link between rare mutations of CACNA1H (the gene encoding CaV3.2) and HD, and pave the way for understanding neurocristopathies in terms of neural crest cell bioelectric activity deficits.

Similar content being viewed by others

Clonal analysis and dynamic imaging identify multipotency of individual Gallus gallus caudal hindbrain neural crest cells toward cardiac and enteric fates

Article Open access 25 March 2021

Ca2+ homeostasis maintained by TMCO1 underlies corpus callosum development via ERK signaling

Article Open access 04 August 2022

Extracellular vesicle-mediated transfer of MIR22HG inhibits the colonization of enteric neural crest cells in the colon by decreasing MPP3 expression

Article Open access 24 November 2025

Data availability

Essential data generated or analyzed during this study are included in the manuscript and supporting files. Source data are provided with this paper. Other non-essential data are available from the corresponding author upon request. Source data are provided with this paper.

Code availability

Essential codes for calcium imaging analysis are provided as supporting files.

References

  1. Le Douarin, N. M. & Dupin, E. The Neural Crest, a Fourth Germ Layer of the Vertebrate Embryo: Significance in Chordate Evolution. Neural Crest Cells Evol. Dev. Dis. 3–26 (2014). https://doi.org/10.1016/B978-0-12-401730-6.00001-6 (2014).

  2. Bolande, R. The neurocristopathies: unifying concept of disease arising in neural crest maldevelopment. Hum. Pathol. 5, 409–429 (1974).

    Google Scholar 

  3. Vega-Lopez, G. A., Cerrizuela, S., Tribulo, C. & Aybar, M. J. Neurocristopathies: New insights 150 years after the neural crest discovery. Dev. Biol. 444, S110–S143 (2018).

    Google Scholar 

  4. Wilkins, A. S., Wrangham, R. W. & Tecumseh Fitch, W. The ‘domestication syndrome’ in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).

    Google Scholar 

  5. Librado, P. et al. Ancient genomic changes associated with domestication of the horse. Sci. (80-.) 356, 442–445 (2017).

    Google Scholar 

  6. Bailey, C. M., Morrison, J. A. & Kulesa, P. M. Melanoma revives an embryonic migration program to promote plasticity and invasion. Pigment Cell Melanoma Res. 25, 573–583 (2012).

    Google Scholar 

  7. Diener, J. & Sommer, L. Reemergence of neural crest stem cell-like states in melanoma during disease progression and treatment. Stem Cells Transl. Med. 10, 522–533 (2021).

    Google Scholar 

  8. Yu, Q. et al. Sacral neural crest-independent origin of the enteric nervous system in mouse. Gastroenterology 166, 1085–1099 (2024).

    Google Scholar 

  9. Lake, J. I. & Heuckeroth, R. O. Enteric nervous system development: Migration, differentiation, and disease. Am. J. Physiol. - Gastrointest. Liver Physiol. 305, 1–24 (2013).

    Google Scholar 

  10. Mwizerwa, O. et al. Gdnf is mitogenic, neurotrophic, and chemoattractive to enteric neural crest cells in the embryonic colon. Dev. Dyn. 240, 1402–1411 (2011).

    Google Scholar 

  11. Young, H. M. et al. GDNF is a chemoattractant for enteric neural cells. Dev. Biol. 229, 503–516 (2001).

    Google Scholar 

  12. Anderson, R. B., Newgreen, D. F. & Young, H. Neural Crest and the Development of the Enteric Nervous System. (2013).

  13. Bondurand, N., Dufour, S. & Pingault, V. News from the endothelin-3/EDNRB signaling pathway: Role during enteric nervous system development and involvement in neural crest-associated disorders. Dev. Biol. 444, S156–S169 (2018).

    Google Scholar 

  14. Kanai, S. M. & Clouthier, D. E. Endothelin signaling in development. Dev. 150, (2023).

  15. Tang, W. et al. Exome-Wide Association Study Identified New Risk Loci for Hirschsprung’s Disease. Mol. Neurobiol. 54, 1777–1785 (2017).

    Google Scholar 

  16. Sundelacruz, S., Levin, M. & Kaplan, D. L. Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev. Reports. https://doi.org/10.1007/s12015-009-9080-2 (2009).

  17. Torre, E. C., Bicer, M., Cottrell, G. S., Widera, D. & Tamagnini, F. Time-dependent reduction of calcium oscillations in adipose-derived stem cells differentiating towards adipogenic and osteogenic lineage. Biomolecules 11, 1400 (2021).

    Google Scholar 

  18. Yang, M. & Brackenbury, W. J. Membrane potential and cancer progression. Frontiers in Physiology https://doi.org/10.3389/fphys.2013.00185 (2013).

  19. Carey, M. B. & Matsumoto, S. G. Spontaneous calcium transients are required for neuronal differentiation of murine neural crest. Dev. Biol. 215, 298–313 (1999).

    Google Scholar 

  20. Morokuma, J. et al. Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells. Proc. Natl. Acad. Sci. Usa. 105, 16608–16613 (2008).

    Google Scholar 

  21. Follmer, M. L., Isner, T., Ozekin, Y. H., Levitt, C. & Bates, E. A. Depolarization induces calcium-dependent BMP4 release from mouse embryonic palate mesenchyme. bioRxiv 2024.06.11.598333 https://doi.org/10.1038/s41467-024-53642-2 (2024).

  22. Ferreira, F., Moreira, S., Zhao, M. & Barriga, E. H. Stretch-induced endogenous electric fields drive directed collective cell migration in vivo. Nat. Mater. 2025 243 24, 462–470 (2025).

    Google Scholar 

  23. Hao, M. M. et al. Spontaneous calcium waves in the developing enteric nervous system. Dev. Biol. 428, 74–87 (2017).

    Google Scholar 

  24. Chevalier, N. R. et al. How tissue mechanical properties affect enteric neural crest cell migration. Sci. Rep. 6, 20927 (2016).

    Google Scholar 

  25. Barlow, A., De Graaff, E. & Pachnis, V. Enteric Nervous System Progenitors Are Coordinately Controlled by the G Protein-Coupled Receptor EDNRB and the Receptor Tyrosine Kinase RET. Neuron 40, 905–916 (2003).

    Google Scholar 

  26. Leibl, M. A. et al. Expression of endothelin 3 by mesenchymal cells of embryonic mouse caecum. Gut 44, 246–252 (1999).

    Google Scholar 

  27. Amedzrovi Agbesi, R. J., El Merhie, A., Spencer, N. J., Hibberd, T. & Chevalier, N. R. Tetrodotoxin-resistant mechanosensitivity and L-type calcium channel-mediated spontaneous calcium activity in enteric neurons. Exp. Physiol. 109, 1545–1556 (2024).

    Google Scholar 

  28. Hirst, C. S. et al. Ion channel expression in the developing enteric nervous system. PLoS One 10, (2015).

  29. Nelson, M. T. et al. Molecular mechanisms of subtype-specific inhibition of neuronal T-type calcium channels by ascorbate. J. Neurosci. 27, 12577–12583 (2007).

    Google Scholar 

  30. Yabuki, Y. et al. Pharmacological properties of SAK3, a novel T-type voltage-gated Ca2+ channel enhancer. Neuropharmacology 117, 1–13 (2017).

    Google Scholar 

  31. Takenaka, T. et al. Attenuation of endothelin effects by a chloride channel inhibitor, indanyloxyacetic acid. Am. J. Physiol. 262, (1992).

  32. Wray, S., Prendergast, C. & Arrowsmith, S. Calcium-activated chloride channels in myometrial and vascular smooth muscle. Front. Physiol. 12, (2021).

  33. Young, H. M. et al. Colonizing while migrating: how do individual enteric neural crest cells behave? BMC Biol. 12, 23 (2014).

    Google Scholar 

  34. Woodward, M. N., Kenny, S. E., Vaillant, C., Lloyd, D. A. & Edgar, D. H. Time-dependent effects of endothelin-3 on enteric nervous system development in an organ culture model of Hirschsprung’s disease. J. Pediatr. Surg. 35, 25–29 (2000).

    Google Scholar 

  35. Franco, S. J. et al. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat. Cell Biol. 6, 977–983 (2004).

    Google Scholar 

  36. Barton, M. & Yanagisawa, M. Endothelin: 30 years from discovery to therapy. Hypertension 74, 1232–1265 (2019).

    Google Scholar 

  37. Sudjarwo, S. A., Hori, M. & Karaki, H. Effect of endothelin-3 on cytosolic calcium level in vascular endothelium and on smooth muscle contraction. Eur. J. Pharmacol. 229, 137–142 (1992).

    Google Scholar 

  38. Haynes, W. G., Strachan, F. E. & Webb, D. J. Endothelin ETA and ETB receptors cause vasoconstriction of human resistance and capacitance vessels in vivo. Circulation 92, 357–363 (1995).

    Google Scholar 

  39. Lane, P. W. Association of megacolon with two recessive spotting genes in the mouse. J. Hered. 57, 29–31 (1966).

    Google Scholar 

  40. Baynash, A. G. et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79, 1277–1285 (1994).

    Google Scholar 

  41. Gariepy, C. E., Cass, D. T. & Yanagisawa, M. Null mutation of endothelin receptor type B gene in spotting lethal rats causes aganglionic megacolon and white coat color. Proc. Natl. Acad. Sci. Usa. 93, 867–872 (1996).

    Google Scholar 

  42. Lahav, R. et al. Endothelin 3 selectively promotes survival and proliferation of neural crest-derived glial and melanocytic precursors in vitro. Proc. Natl. Acad. Sci. Usa. 95, 14214–14219 (1998).

    Google Scholar 

  43. Natarajan, D., Grigoriou, M., Marcos-Gutierrez, C. V., Atkins, C. & Pachnis, V. Multipotential progenitors of the mammalian enteric nervous system capable of colonising aganglionic bowel in organ culture. Development 126, 157–168 (1999).

    Google Scholar 

  44. Chevalier, N. Physical organogenesis of the gut. Development 149, dev200765 (2022).

    Google Scholar 

  45. Hearn, C. J., Young, H. M., Ciampoli, D., Lomax, A. E. G. & Newgreen, D. Catenary cultures of embryonic gastrointestinal tract support organ morphogenesis, motility, neural crest cell migration, and cell differentiation. Dev. Dyn. 214, 239–247 (1999).

    Google Scholar 

  46. Nagy, N. & Goldstein, A. M. Endothelin-3 regulates neural crest cell proliferation and differentiation in the hindgut enteric nervous system. Dev. Biol. 293, 203–217 (2006).

    Google Scholar 

  47. Breau, M. et al. Lack of beta1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype. Development 133, 1725–1734 (2006).

    Google Scholar 

  48. Gazquez, E. et al. Endothelin-3 stimulates cell adhesion and cooperates with β1-integrins during enteric nervous system ontogenesis. Sci. Rep. 6, 37877 (2016).

    Google Scholar 

  49. Chevalier, N. R. et al. A neural crest cell isotropic-to-nematic phase transition in the developing mammalian gut. Commun. Biol. 4, 770 (2021).

    Google Scholar 

  50. Simpson, M. J., Zhang, D. C., Mariani, M., Landman, K. A. & Newgreen, D. F. Cell proliferation drives neural crest cell invasion of the intestine. Dev. Biol. 302, 553–568 (2007).

    Google Scholar 

  51. Halaka, M. et al. Differences in endothelin B receptor isoforms expression and function in breast cancer cells. J. Cancer 11, 2688 (2020).

    Google Scholar 

  52. White, C. D. & Sacks, D. B. Regulation of MAP kinase signaling by calcium. Methods Mol. Biol. 661, 151–165 (2010).

    Google Scholar 

  53. Ghigo, A., Laffargue, M., Li, M. & Hirsch, E. PI3K and Calcium Signaling in Cardiovascular Disease. Circ. Res. 121, 282–292 (2017).

    Google Scholar 

  54. Goto, A. et al. GDNF and endothelin 3 regulate migration of enteric neural crest-derived cells via protein kinase A and Rac1. J. Neurosci. 33, 4901–4912 (2013).

    Google Scholar 

  55. Mehrke, G., Zong, X., Flockerzi, V. & Hofmann, F. The Ca(++)-channel blocker Ro 40-5967 blocks differently T-type and L-type Ca++ channels - PubMed. J. Pharm. Exp. Ther. 271, 1483–1488 (1994).

    Google Scholar 

  56. Wang, R. & Lewin, G. R. The Cav3.2 T-type calcium channel regulates temporal coding in mouse mechanoreceptors. J. Physiol. 589, 2229–2243 (2011).

    Google Scholar 

  57. Chen, C. C. et al. Abnormal coronary function in mice deficient in α1H T-type Ca2+ channels. Sci. (80-.) 302, 1416–1418 (2003).

    Google Scholar 

  58. Alpdogan, S., Clemens, R., Hescheler, J., Neumaier, F. & Schneider, T. Non-Mendelian inheritance during inbreeding of Cav3.2 and Cav2.3 deficient mice. Sci. Rep. 10, (2020).

  59. Baghdadi, M. B. et al. PIEZO-dependent mechanosensing is essential for intestinal stem cell fate decision and maintenance. Science (80-.). 386, (2024).

  60. Bergeron, K. F. et al. Male-biased aganglionic megacolon in the TashT mouse line due to perturbation of silencer elements in a large gene desert of chromosome 10. PLoS Genet. 11, (2015).

  61. Kruger, G. M. et al. Temporally distinct requirements for endothelin receptor B in the generation and migration of gut neural crest stem cells. Neuron 40, 917–929 (2003).

    Google Scholar 

  62. Shim, S. et al. Calcium dynamics at the neural cell primary cilium regulate Hedgehog signaling–dependent neurogenesis in the embryonic neural tube. Proc. Natl. Acad. Sci. USA. 120, (2023).

  63. Johnsen, J. I., Dyberg, C. & Wickström, M. Neuroblastoma—a neural crest derived embryonal malignancy. Front. Mol. Neurosci. 12, 9 (2019).

    Google Scholar 

  64. Barceló, C. et al. T-type calcium channels: a potential novel target in melanoma. Cancers (Basel) 12, 391 (2020).

    Google Scholar 

  65. Lange, I., Koster, J. & Koomoa, D. L. T. Calcium signaling regulates fundamental processes involved in Neuroblastoma progression. Cell Calcium 82, (2019).

  66. Rosanò, L., Spinella, F. & Bagnato, A. Endothelin 1 in cancer: Biological implications and therapeutic opportunities. Nat. Rev. Cancer 13, 637–651 (2013).

    Google Scholar 

  67. Chevalier, N. R. et al. Calcium wave dynamics in the embryonic mouse gut mesenchyme: impact on smooth muscle differentiation. Commun. Biol. 7, 1277 (2024).

    Google Scholar 

  68. Stanchina, L. et al. Interactions between Sox10, Edn3 and Ednrb during enteric nervous system and melanocyte development. Dev. Biol. 295, 232–249 (2006).

    Google Scholar 

  69. Rice, J. et al. Transgenic rescue of aganglionosis and piebaldism in lethal spotted mice. Dev. Dyn. 217, 120–132 (2000).

    Google Scholar 

  70. Sugawara, K. Training deep learning models for cell image segmentation with sparse annotations. bioRxiv 2023.06.13.544786 https://doi.org/10.1101/2023.06.13.544786 (2023).

Download references

Acknowledgements

This manuscript is dedicated to Jürgen Langenbach, long-time science journalist at Die Presse, and to the memory of Prudence Dulormne. This research was funded by the Agence Nationale de la Recherche ANR GASTROMOVE - ANR-19-CE30-0016-01, by the Université de Paris IDEX Emergence en Recherche CHEVA19RDX-MEUP1, by the CNRS PEPS INSIS “COXHAM” grant, by the Labex “Who AM I?” ANR-11-LABX-0071, and by the Imaging platform BioEmergences-IBiSA, ANR-10-INBS-04 and ANR-11-EQPX-0029. We thank Sylvie Dufour for providing the Ht-PA::Cre mouse line, Ko Sugarawa for help with the Segment Anything Model under QuPath, Vincent Fleury, Michael Levin, Alexandre Ayed, Nathalie Rouach, Isabelle Arnoux, Olivier Romito and Master 2 students of the Université Paris Cité Biomedical Engineering 2024-2025 program for thoughtful discussions and/or performing experiments together.

Author information

Authors and Affiliations

  1. Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, Paris, France

    Nicolas R. Chevalier, Ze Chi Chan, Thierry Savy, Monique Frain, Amira El Merhie & Léna Zig

  2. Laboratory of Genetics of Developmental Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, Paris, France

    Fanny Gayda & Nadège Bondurand

  3. UNIIVO, 1 cour du Havre, Paris, France

    Lenuta Canta & Monica Dicu

  4. Institut Jacques Monod, Université Paris Cité, CNRS, Paris, France

    Isabelle Le Parco

Authors
  1. Nicolas R. Chevalier
    View author publications

    Search author on:PubMed Google Scholar

  2. Fanny Gayda
    View author publications

    Search author on:PubMed Google Scholar

  3. Nadège Bondurand
    View author publications

    Search author on:PubMed Google Scholar

  4. Ze Chi Chan
    View author publications

    Search author on:PubMed Google Scholar

  5. Thierry Savy
    View author publications

    Search author on:PubMed Google Scholar

  6. Monique Frain
    View author publications

    Search author on:PubMed Google Scholar

  7. Amira El Merhie
    View author publications

    Search author on:PubMed Google Scholar

  8. Lenuta Canta
    View author publications

    Search author on:PubMed Google Scholar

  9. Monica Dicu
    View author publications

    Search author on:PubMed Google Scholar

  10. Isabelle Le Parco
    View author publications

    Search author on:PubMed Google Scholar

  11. Léna Zig
    View author publications

    Search author on:PubMed Google Scholar

Contributions

NRC led the project, obtained funding, performed experiments, analyzed data, synthesized data, wrote the draft and revised the paper; TS implemented new analysis methods and analyzed data; ZC performed experiments and analyzed data; NB, FG, MF, AEM, LC, MD, ILP, LZ performed experiments; LZ critically discussed the data; NB revised the draft.

Corresponding author

Correspondence to Nicolas R. Chevalier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Nandor Nagy and the other anonymous reviewer for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Supplementary Movie 2

Supplementary Movie 3

Supplementary Movie 4

Supplementary Movie 5

Supplementary Movie 6

Supplementary Movie 7

Supplementary Movie 8

Supplementary Movie 9

Supplementary Movie 10

Supplementary Movie 11

Supplementary Movie 12

Supplementary Code 1

Supplementary Code 2

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chevalier, N.R., Gayda, F., Bondurand, N. et al. Endothelin-3 and T-type Ca2+ channels drive enteric neural crest cell calcium activity, contractility and migration. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68121-5

Download citation

  • Received: 03 July 2025

  • Accepted: 16 December 2025

  • Published: 20 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68121-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Forces in Cell Biology

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing