Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Ionic glass formers show an inverted relation between fragility and non-exponential alpha-relaxation
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 January 2026

Ionic glass formers show an inverted relation between fragility and non-exponential alpha-relaxation

  • Sophie G. M. van Lange  ORCID: orcid.org/0009-0007-5826-32241,
  • Diane W. te Brake1,
  • Eline F. Brink  ORCID: orcid.org/0000-0002-3345-42231,
  • Jochem Pees1,
  • Mathilde M. van Nieuwenhuijzen1,
  • Nayan Vengallur2,
  • Alessio Zaccone  ORCID: orcid.org/0000-0002-6673-70433,
  • Andrea Giuntoli  ORCID: orcid.org/0000-0002-5676-56142,
  • Joris Sprakel  ORCID: orcid.org/0000-0001-6532-45144 &
  • …
  • Jasper van der Gucht  ORCID: orcid.org/0000-0001-5525-83221 

Nature Communications , Article number:  (2026) Cite this article

  • 3661 Accesses

  • 1 Citations

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Glasses
  • Mechanical properties
  • Polymers
  • Rheology

Abstract

Supercooled liquids undergo a rapid change in dynamics as they are cooled to their glass transition temperature and turn from a flowing liquid into an amorphous solid. Depending on how steeply the viscosity changes with temperature around the glass transition, glass formers are classified as strong or fragile. An empirical relation exists between the fragility of the liquid and the non-exponentiality of its α-relaxation. However, the microscopic origins of this correlation remain unclear and its generality has been debated. Here, we demonstrate that this relationship is inverted in organic materials with ionic interactions. We introduce a class of materials consisting of highly charged hydrophobic polymers cross-linked via moderated ionic interactions, and show that these combine a strong glass transition with an unusually stretched mechanical relaxation spectrum. By surveying a large variety of ionic liquids, polymerized ionic liquids, and ionomers, we show that all these charged materials follow a trend between fragility and non-exponential relaxation that is opposite to that of non-charged materials. This finding suggests a special role of long-ranged ionic interactions in vitrification and opens up a route toward developing new materials that combine the processability of strong glass formers with the mechanical dissipation of polymers.

Similar content being viewed by others

Glassy gels toughened by solvent

Article 19 June 2024

Modern computational studies of the glass transition

Article 11 January 2023

Real-time microscopy of the relaxation of a glass

Article Open access 13 July 2023

Data availability

All relevant data are included in this article and its Supplementary Information files. Source data are provided with this paper.

Code availability

Scripts for the simulations are available on https://github.com/giuntoli-group/ionic-glass-formers94

References

  1. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Google Scholar 

  2. Angell, C. A. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J. Non-Cryst. Solids 131-133, 13–31 (1991).

    Google Scholar 

  3. Montarnal, D., Capelot, M., Tournilhac, F. & Leibler, L. Silica-like malleable materials from permanent organic networks. Science 334, 965–968 (2011).

    Google Scholar 

  4. Denissen, W., Winne, J. M. & Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 7, 30–38 (2016).

    Google Scholar 

  5. Ciarella, S., Biezemans, R. A. & Janssen, L. M. C. Understanding, predicting, and tuning the fragility of vitrimeric polymers. Proc. Natl. Acad. Sci. USA 116, 25013–25022 (2019).

    Google Scholar 

  6. Dalle-Ferrier, C. et al. Why many polymers are so fragile: a new perspective. J. Chem. Phys. 145, 154901 (2016).

    Google Scholar 

  7. Saika-Voivod, I., Poole, P. H. & Sciortino, F. Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica. Nature 412, 514–517 (2001).

    Google Scholar 

  8. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Google Scholar 

  9. Sastry, S., Debenedetti, P. G. & Stillinger, F. H. Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554–557 (1998).

    Google Scholar 

  10. Hall, R. W. & Wolynes, P. G. Microscopic theory of network glasses. Phys. Rev. Lett. 90, 085505 (2003).

    Google Scholar 

  11. Ikeda, M. & Aniya, M. Correlation between fragility and cooperativity in bulk metallic glass-forming liquids. Intermetallics 18, 1796–1799 (2010).

    Google Scholar 

  12. Ruocco, G., Sciortino, F., Zamponi, F., De Michele, C. & Scopigno, T. Landscapes and fragilities. J. Chem. Phys. 120, 10666–10680 (2004).

    Google Scholar 

  13. Betancourt, P. B. A., Starr, F. W. & Douglas, J. F. String-like collective motion in the α-and β-relaxation of a coarse-grained polymer melt. J. Chem. Phys. 148, 104508 (2018).

    Google Scholar 

  14. Furukawa, A. & Tanaka, H. Significant difference in the dynamics between strong and fragile glass formers. Phys. Rev. E 94, 052607 (2016).

    Google Scholar 

  15. Betancourt, B. A. P., Douglas, J. F. & Starr, F. W. Fragility and cooperative motion in a glass-forming polymer–nanoparticle composite. Soft Matter 9, 241–254 (2013).

    Google Scholar 

  16. Vilgis, T. A. Strong and fragile glasses: a powerful classification and its consequences. Phys. Rev. B 47, 2882 (1993).

    Google Scholar 

  17. Krausser, J., Samwer, K. H. & Zaccone, A. Interatomic repulsion softness directly controls the fragility of supercooled metallic melts. Proc. Natl. Acad. Sci. USA 112, 13762–13767 (2015).

    Google Scholar 

  18. Kohlrausch, R. Theorie des elektrischen Rückstandes in der Leidener Flasche. Ann. Phys. 167, 179–214 (1854).

    Google Scholar 

  19. Williams, G. & Watts, D. C. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970).

    Google Scholar 

  20. Boehmer, R., Ngai, K. L., Angell, C. A. & Plazek, D. J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201 (1993).

    Google Scholar 

  21. Plazek, D. J. & Ngai, K. L. Correlation of polymer segmental chain dynamics with temperature-dependent time-scale shifts. Macromolecules 24, 1222–1224 (1991).

    Google Scholar 

  22. Zhang, D., Sun, D. & Gong, X. Angell plot from the potential energy landscape perspective. Phys. Rev. E 106, 064129 (2022).

    Google Scholar 

  23. Gupta, P. K. & Mauro, J. C. Two factors governing fragility: stretching exponent and configurational entropy. Phys. Rev. E—Stat., Nonlinear, Soft Matter Phys. 78, 062501 (2008).

    Google Scholar 

  24. Xia, X. & Wolynes, P. G. Microscopic theory of heterogeneity and nonexponential relaxations in supercooled liquids. Phys. Rev. Lett. 86, 5526 (2001).

    Google Scholar 

  25. Hong, L., Novikov, V. & Sokolov, A. P. Is there a connection between fragility of glass forming systems and dynamic heterogeneity/cooperativity? J. Non-Cryst. Solids 357, 351–356 (2011).

    Google Scholar 

  26. Heuer, A. Exploring the potential energy landscape of glass-forming systems: from inherent structures via metabasins to macroscopic transport. J. Phys.: Condens. Matter 20, 373101 (2008).

    Google Scholar 

  27. Dyre, J. C. Ten themes of viscous liquid dynamics. J. Phys.: Condens. Matter 19, 205105 (2007).

    Google Scholar 

  28. Ojovan, M. I. & Tournier, R. F. On structural rearrangements near the glass transition temperature in amorphous silica. Materials (Basel) 14, 5235 (2021).

    Google Scholar 

  29. Yang, Y. et al. Detecting topology freezing transition temperature of vitrimers by AIE luminogens. Nat. Commun. 10, 3165 (2019).

    Google Scholar 

  30. Nakamura, K., Fukao, K. & Inoue, T. Viscoelastic behavior of polymerized ionic liquids with various charge densities. Nihon Reoroji Gakkaishi 41, 21–27 (2013).

    Google Scholar 

  31. Ueno, K., Zhao, Z., Watanabe, M. & Angell, C. A. Protic ionic liquids based on decahydroisoquinoline: lost superfragility and ionicity-fragility correlation. J. Phys. Chem. B 116, 63–70 (2012).

    Google Scholar 

  32. Michaels, A. S. Polyelectrolyte complexes. Ind. Eng. Chem. 57, 32–40 (1965).

    Google Scholar 

  33. Wang, Q. & Schlenoff, J. B. The polyelectrolyte complex/coacervate continuum. Macromolecules 47, 3108–3116 (2014).

    Google Scholar 

  34. Zhang, Y., Li, F., Valenzuela, L. D., Sammalkorpi, M. & Lutkenhaus, J. L. Effect of water on the thermal transition observed in poly(allylamine hydrochloride)-poly(acrylic acid) complexes. Macromolecules 49, 7563–7570 (2016).

    Google Scholar 

  35. van Lange, S. G. M. et al. Moderated ionic bonding for water-free recyclable polyelectrolyte complex materials. Sci. Adv. 10, 3606 (2024).

    Google Scholar 

  36. Gebbie, M. A. et al. Long range electrostatic forces in ionic liquids. Chem. Commun. 53, 1214–1224 (2017).

    Google Scholar 

  37. van Lange, S. G. M. et al. Unraveling the temperature-dependent relaxation dynamics of ionic liquid-plasticized compleximers. Macromolecules 58, 7522 (2025).

    Google Scholar 

  38. Wu, J., Huang, G., Qu, L. & Zheng, J. Correlations between dynamic fragility and dynamic mechanical properties of several amorphous polymers. J. Non-Cryst. Solids 355, 1755–1759 (2009).

    Google Scholar 

  39. Spruijt, E., Cohen Stuart, M. A. & van der Gucht, J. Linear viscoelasticity of polyelectrolyte complex coacervates. Macromolecules 46, 1633–1641 (2013).

    Google Scholar 

  40. Ferry, J. D. Viscoelastic Properties of Polymers (John Wiley and Sons, New York, 1980).

  41. Zaccone, A., Winter, H., Siebenbürger, M. & Ballauff, M. Linking self-assembly, rheology, and gel transition in attractive colloids. J. Rheol. 58, 1219–1244 (2014).

    Google Scholar 

  42. Urbain, G., Bottinga, Y. & Richet, P. Viscosity of liquid silica, silicates and alumino-silicates. Geochim. Cosmochim. Acta 46, 1061–1072 (1982).

    Google Scholar 

  43. Huang, D. & McKenna, G. B. New insights into the fragility dilemma in liquids. J. Chem. Phys. 114, 5621–5630 (2001).

    Google Scholar 

  44. Ljubić, D., Stamenović, M., Smithson, C., Nujkić, M., Medo, B. & Putić, S. Time-temperature superposition principle: application of WLF equation in polymer analysis and composites. Zaštita Mater. 55, 395–400 (2014).

    Google Scholar 

  45. Shi, R., Russo, J. & Tanaka, H. Origin of the emergent fragile-to-strong transition in supercooled water. Proc. Natl. Acad. Sci. USA 115, 9949 (2018).

    Google Scholar 

  46. Zhang, H., Wang, X., Yu, H.-B. & Douglas, J. F. Dynamic heterogeneity, cooperative motion, and Johari-Goldstein β-relaxation in a metallic glass-forming material exhibiting a fragile-to-strong transition. Eur. Phys. J. E 44, 56 (2021).

    Google Scholar 

  47. Dixon, P. K. Specific-heat spectroscopy and dielectric susceptibility measurements of salol at the glass transition. Phys. Rev. B 42, 8179–8186 (1990).

    Google Scholar 

  48. Meng, F., Saed, M. O. & Terentjev, E. M. Rheology of vitrimers. Nat. Commun. 13, 5753 (2022).

    Google Scholar 

  49. Elling, B. R. & Dichtel, W. R. Reprocessable cross-linked polymer networks: are associative exchange mechanisms desirable? ACS Cent. Sci. 6, 1488 (2020).

    Google Scholar 

  50. Roig, A., Agizza, M., Serra, A. & Flor, S. Disulfide vitrimeric materials based on cystamine and diepoxy eugenol as bio-based monomers. Eur. Polym. J. 194, 112185 (2023).

    Google Scholar 

  51. Zhu, Y. et al. Catalyst-free cardanol-based epoxy vitrimers for self-healing, shape memory, and recyclable materials. Polymers 16, 307 (2024).

    Google Scholar 

  52. Hong, Y. & Goh, M. Vitrimer nanocomposites for highly thermal conducting materials with sustainability. Polym. (Basel) 16, 365 (2024).

    Google Scholar 

  53. Cywar, R. M. et al. Elastomeric vitrimers from designer polyhydroxyalkanoates with recyclability and biodegradability. Sci. Adv. 9, 1735 (2023).

    Google Scholar 

  54. Denissen, W., Rivero, G., Nicolaÿ, R., Leibler, L., Winne, J. M. & Du Prez, F. E. Vinylogous urethane vitrimers. Adv. Funct. Mater. 25, 2451–2457 (2015).

    Google Scholar 

  55. Bin Rusayyis, M. A. & Torkelson, J. M. Reprocessable covalent adaptable networks with excellent elevated-temperature creep resistance: facilitation by dynamic, dissociative bis(hindered amino) disulfide bonds. Polym. Chem. 12, 2760–2771 (2021).

    Google Scholar 

  56. Qiao, J., Casalini, R., Pelletier, J.-M. & Yao, Y. Dynamics of the strong metallic glass Zn38Mg12Ca32Yb18. J. Non-Cryst. Solids 447, 85–90 (2016).

    Google Scholar 

  57. Chen, Q., Tudryn, G. J. & Colby, R. H. Ionomer dynamics and the sticky Rouse model. J. Rheol. 57, 1441–1462 (2013).

    Google Scholar 

  58. Weiss, R., Fitzgerald, J. & Kim, D. Viscoelastic behavior of lightly sulfonated polystyrene ionomers. Macromolecules 24, 1071–1076 (1991).

    Google Scholar 

  59. Tao, R. & Simon, S. L. Rheology of imidazolium-based ionic liquids with aromatic functionality. J. Phys. Chem. B 119, 11953–11959 (2015).

    Google Scholar 

  60. Shamim, N. & McKenna, G. B. Glass dynamics and anomalous aging in a family of ionic liquids above the glass transition temperature. J. Phys. Chem. B 114, 15742–15752 (2010).

    Google Scholar 

  61. Pogodina, N. et al. Molecular dynamics of ionic liquids as probed by rheology. J. Rheol. 55, 241–256 (2011).

    Google Scholar 

  62. Yokokoji, A. et al. Viscoelastic relaxation of polymerized ionic liquid and lithium salt mixtures: effect of salt concentration. Polymers 13, 1772 (2021).

    Google Scholar 

  63. Shi, G., Zheng, X. & Liu, Y. Unusual nonlinearity and nonexponentiality in glass-forming polymers governed by ionic interactions. J. Phys. Chem. B 129, 9537–9550 (2025).

    Google Scholar 

  64. Lunkenheimer, P., Loidl, A., Riechers, B., Zaccone, A. & Samwer, K. Thermal expansion and the glass transition. Nat. Phys. 19, 694–699 (2023).

    Google Scholar 

  65. MacDonald, D. & Roy, S. Vibrational anharmonicity and lattice thermal properties. ii. Phys. Rev. 97, 673 (1955).

    Google Scholar 

  66. Dyre, J. C. Source of non-Arrhenius average relaxation time in glass-forming liquids. J. Non-Cryst. Solids 235, 142–149 (1998).

    Google Scholar 

  67. Hecksher, T. & Dyre, J. C. A review of experiments testing the shoving model. J. Non-Cryst. Solids 407, 14–22 (2015).

    Google Scholar 

  68. Dyre, J. C. & Wang, W. H. The instantaneous shear modulus in the shoving model. J. Chem. Phys. 136, 224108 (2012).

    Google Scholar 

  69. Puosi, F. & Leporini, D. Communication: correlation of the instantaneous and the intermediate-time elasticity with the structural relaxation in glassforming systems. J. Chem. Phys. 136, 041104 (2012).

    Google Scholar 

  70. Yuan, Q.-L., Xu, X., Douglas, J. F. & Xu, W.-S. Understanding relaxation in the Kob-Andersen liquid based on entropy, string, shoving, localization, and parabolic models. J. Phys. Chem. B 128, 10999 (2024).

    Google Scholar 

  71. Dudowicz, J., Freed, K. F. & Douglas, J. F. Generalized entropy theory of polymer glass formation. Adv. Chem. Phys. 137, 125 (2008).

    Google Scholar 

  72. Xu, W.-S., Douglas, J. F. & Freed, K. F. Entropy theory of polymer glass-formation in variable spatial dimension. Adv. Chem. Phys. 161, 443 (2016).

    Google Scholar 

  73. Stukalin, E. B., Douglas, J. F. & Freed, K. F. Application of the entropy theory of glass formation to poly(α-olefins). J. Chem. Phys. 131, 114905 (2009).

    Google Scholar 

  74. Xu X., Douglas, J. F. & Xu, W.-S. Generalized entropy theory investigation of the relatively high segmental fragility of many glass-forming polymers. Soft Matter 21, 2664 (2025).

    Google Scholar 

  75. Yuan, Q.-L., Xu, X., Douglas, J. F. & Xu, W.-S. Physical origin of the mass dependence of glass transition temperature and fragility of polymer liquids. Macromolecules 58, 9528 (2025).

    Google Scholar 

  76. Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).

    Google Scholar 

  77. Berthier, L. Dynamic heterogeneity in amorphous materials. Physics 4, 42 (2011).

    Google Scholar 

  78. Arbe, A., Colmenero, J., Monkenbusch, D. M. & Richter, D. Dynamics of glass-forming polymers: “homogeneous” versus “heterogeneous” scenario. Phys. Rev. Lett. 81, 590 (1998).

    Google Scholar 

  79. Russell, E. V. & Israeloff, N. E. Direct observation of molecular cooperativity near the glass transition. Nature 408, 695 (2000).

    Google Scholar 

  80. Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).

    Google Scholar 

  81. Kob, W., Donati, C., Plimpton, S. J., Poole, P. H. & Glotzer, S. S. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett. 79, 2827 (1997).

    Google Scholar 

  82. Starr, F. W., Douglas, J. F. & Sastry, S. The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation. J. Chem. Phys. 138, 12–541 (2013).

    Google Scholar 

  83. Milkus, R., Ness, C., Palyulin, V. V., Weber, J., Lapkin, A. & Zaccone, A. Interpretation of the vibrational spectra of glassy polymers using coarse-grained simulations. Macromolecules 51, 1559–1572 (2018).

    Google Scholar 

  84. Giuntoli, A. & Leporini, D. Boson peak decouples from elasticity in glasses with low connectivity. Phys. Rev. Lett. 121, 185502 (2018).

    Google Scholar 

  85. Zaccone, A. Relaxation and vibrational properties in metal alloys and other disordered systems. J. Phys.: Condens. Matter 32, 203001 (2020).

    Google Scholar 

  86. Cui, B., Milkus, R. & Zaccone, A. The relation between stretched-exponential relaxation and the vibrational density of states in glassy disordered systems. Phys. Lett. A 381, 446–451 (2017).

    Google Scholar 

  87. Wrede, M., Ganza, V., Bucher, J. & Straub, B. F. Polyelectrolyte gels comprising a lipophilic, cost-effective aluminate as fluorine-free absorbents for chlorinated hydrocarbons and diesel fuel. ACS Appl. Mater. Interfaces 4, 3453–3458 (2012).

    Google Scholar 

  88. Kammakakam, I. et al. Tailored CO2-philic anionic poly (ionic liquid) composite membranes: synthesis, characterization, and gas transport properties. ACS Sustain. Chem. Eng. 8, 5954–5965 (2020).

    Google Scholar 

  89. Ghostine, R. A., Shamoun, R. F. & Schlenoff, J. B. Doping and diffusion in an extruded saloplastic polyelectrolyte complex. Macromolecules 46, 4089–4094 (2013).

    Google Scholar 

  90. Yang, Z., Xu, X. & Xu, W.-S. Influence of ionic interaction strength on glass formation of an ion-containing polymer melt. Macromolecules 54, 9587–9601 (2021).

    Google Scholar 

  91. Thompson, A. P. et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Google Scholar 

  92. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Google Scholar 

  93. Liu, A. Y., Emamy, H., Douglas, J. F. & Starr, F. W. Effects of chain length on the structure and dynamics of semidilute nanoparticle–polymer composites. Macromolecules 54, 3041–3051 (2021).

    Google Scholar 

  94. Vengallur, N., van Lange, S. G. M., van der Gucht, J. & Giuntoli, A. giuntoli-group/ionic-glass-formers https://doi.org/10.5281/zenodo.17900465 (2025).

  95. Matsuda, Y. et al. Calorimetric study of the glass transition dynamics in lithium borate glasses over a wide composition range by modulated dsc. Fluid Phase Equilib. 256, 127–131 (2007).

    Google Scholar 

  96. Kodama, M. & Kojima, S. Anharmonicity and fragility in lithium borate glasses. J. Therm. Anal. Calorim. 69, 961–970 (2002).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Dutch Research Council (NWO) OCENW.KLEIN.326 (J.v.d.G.).

Author information

Authors and Affiliations

  1. Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, The Netherlands

    Sophie G. M. van Lange, Diane W. te Brake, Eline F. Brink, Jochem Pees, Mathilde M. van Nieuwenhuijzen & Jasper van der Gucht

  2. Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands

    Nayan Vengallur & Andrea Giuntoli

  3. Department of Physics “A. Pontremoli”, University of Milan, Milan, Italy

    Alessio Zaccone

  4. Laboratory of Biochemistry, Wageningen University and Research, Wageningen, The Netherlands

    Joris Sprakel

Authors
  1. Sophie G. M. van Lange
    View author publications

    Search author on:PubMed Google Scholar

  2. Diane W. te Brake
    View author publications

    Search author on:PubMed Google Scholar

  3. Eline F. Brink
    View author publications

    Search author on:PubMed Google Scholar

  4. Jochem Pees
    View author publications

    Search author on:PubMed Google Scholar

  5. Mathilde M. van Nieuwenhuijzen
    View author publications

    Search author on:PubMed Google Scholar

  6. Nayan Vengallur
    View author publications

    Search author on:PubMed Google Scholar

  7. Alessio Zaccone
    View author publications

    Search author on:PubMed Google Scholar

  8. Andrea Giuntoli
    View author publications

    Search author on:PubMed Google Scholar

  9. Joris Sprakel
    View author publications

    Search author on:PubMed Google Scholar

  10. Jasper van der Gucht
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.v.L., J.S., and J.v.d.G. conceived the project. S.v.L., J.v.d.G., D.t.B., A.G., and N.V. developed the methodology. S.v.L., D.t.B., E.B., J.P., and M.v.N. performed synthesis and characterization. S.v.L., E.B., M.v.N., and N.V. curated the data. S.v.L., E.B., M.v.N., and J.v.d.G. carried out the data analysis. N.V. and A.G. performed the programming and code testing; S.v.L. and J.v.d.G. validated modeling data with help of A.G. and A.Z. S.v.L. created the visualizations. S.v.L. and J.v.d.G. wrote the original draft. All authors (S.v.L., D.t.B., E.G., J.P., M.v.N., N.V., A.Z., A.G., J.S., and J.v.d.G.) reviewed and edited the manuscript. J.v.d.G. and J.S. supervised the project. J.v.d.G. acquired the funding.

Corresponding author

Correspondence to Jasper van der Gucht.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Jack Douglas and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Lange, S.G.M., te Brake, D.W., Brink, E.F. et al. Ionic glass formers show an inverted relation between fragility and non-exponential alpha-relaxation. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68124-2

Download citation

  • Received: 20 June 2025

  • Accepted: 18 December 2025

  • Published: 08 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68124-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing