Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
A trans-synaptic IgLON adhesion molecular complex directly contacts and clusters a nicotinic receptor
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 22 January 2026

A trans-synaptic IgLON adhesion molecular complex directly contacts and clusters a nicotinic receptor

  • Morgane Mialon1,
  • Liubov Patrash  ORCID: orcid.org/0009-0006-0284-16061,
  • Laure Granger1,
  • Alexis Weinreb2,3,
  • Engin Özkan  ORCID: orcid.org/0000-0002-0263-67294,5,
  • Jean-Louis Bessereau  ORCID: orcid.org/0000-0002-3088-76211 na1 &
  • …
  • Berangere Pinan-Lucarre  ORCID: orcid.org/0000-0002-6866-47141 na1 

Nature Communications , Article number:  (2026) Cite this article

  • 1059 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ion channels in the nervous system
  • Molecular neuroscience

Abstract

The clustering of neurotransmitter receptors at appropriate postsynaptic sites is essential for controlling synaptic transmission. While most known mechanisms involve receptor binding with cytoplasmic scaffolds, recent evidence highlights the importance of extracellular interactions that directly target receptors. Using Caenorhabditis elegans, we identified a trans-synaptic complex that involves RIG-5 and ZIG-8, two adhesion molecules of the immunoglobulin (Ig) superfamily and orthologous to Drosophila DIPs and Dprs, and mammalian IgLONs. Our results show that RIG-5 and ZIG-8 are anchored in the pre- and postsynaptic membranes, respectively, and interact in vivo via their first Ig domains. Furthermore, ZIG-8 directly binds a α7-like acetylcholine receptor (AChR), known as ACR-16, via a cis-interaction between its Ig2 domain and the base of the extracellular AChR domain. This study provides direct evidence that trans-synaptic IgLON interactions can organize neurochemical synapses and suggests that the IgLONs may directly interact with ionotropic receptors in the mammalian nervous system.

Similar content being viewed by others

Evolution of iGluR ligand specificity, polyamine regulation, and ion selectivity inferred from a placozoan epsilon receptor

Article Open access 03 July 2025

Comparative structural insights and functional analysis for the distinct unbound states of Human AGO proteins

Article Open access 19 March 2025

TMIGD1: Emerging functions of a tumor supressor and adhesion receptor

Article Open access 22 April 2023

Data availability

Source data are provided with this paper. The plasmids and C. elegans strains generated in this study are available from the corresponding authors upon request. Source data are provided with this paper.

Code availability

The code used to perform analyses of synapse density is deposited on Zenodo, and is accessible via (https://doi.org/10.5281/zenodo.17571550)95.

References

  1. Südhof, T. C. The cell biology of synapse formation. J. Cell Biol. 220, e202103052 (2021).

    Google Scholar 

  2. Sanes, J. R. & Zipursky, S. L. Synaptic specificity, recognition molecules, and assembly of neural circuits. Cell 181, 536–556 (2020).

    Google Scholar 

  3. Wilkinson, B. & Coba, M. P. Molecular architecture of postsynaptic Interactomes. Cell. Signal. 76, 109782 (2020).

    Google Scholar 

  4. Tyagarajan, S. K. & Fritschy, J. M. Gephyrin: a master regulator of neuronal function?. Nat. Rev. Neurosci. 15, 141–56 (2014).

    Google Scholar 

  5. Yuzaki, M. Two classes of secreted synaptic organizers in the central nervous system. Annu Rev. Physiol. 80, 243–262 (2018).

    Google Scholar 

  6. Xu, D. et al. Narp and NP1 form heterocomplexes that function in developmental and activity-dependent synaptic plasticity. Neuron 39, 513–528 (2003).

    Google Scholar 

  7. O’Brien, R. J. et al. Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product narp. Neuron 23, 309–323 (1999).

    Google Scholar 

  8. Elegheert, J. et al. Structural basis for integration of GluD receptors within synaptic organizer complexes. Science 353, 295–9 (2016).

    Google Scholar 

  9. Matsuda, K. et al. Transsynaptic modulation of kainate receptor functions by C1q-like proteins. Neuron 90, 752–67 (2016).

    Google Scholar 

  10. Fossati, M. et al. Trans-synaptic signaling through the glutamate receptor Delta-1 mediates inhibitory synapse formation in cortical pyramidal neurons. Neuron 104, 1081–1094.e7 (2019).

    Google Scholar 

  11. Richmond, J. E. & Jorgensen, E. M. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat. Neurosci. 2, 791–7 (1999).

    Google Scholar 

  12. Gendrel, M., Rapti, G., Richmond, J. E. & Bessereau, J. L. A secreted complement-control-related protein ensures acetylcholine receptor clustering. Nature 461, 992–6 (2009).

    Google Scholar 

  13. Rapti, G., Richmond, J. & Bessereau, J. L. A single immunoglobulin-domain protein required for clustering acetylcholine receptors in C. elegans. Embo J. 30, 706–18 (2011).

    Google Scholar 

  14. Gally, C., Eimer, S., Richmond, J. E. & Bessereau, J. L. A transmembrane protein required for acetylcholine receptor clustering in Caenorhabditis elegans. Nature 431, 578–82 (2004).

    Google Scholar 

  15. Pinan-Lucarre, B. et al. C. elegans Punctin specifies cholinergic versus GABAergic identity of postsynaptic domains. Nature 511, 466–70 (2014).

    Google Scholar 

  16. Touroutine, D. et al. acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction. J. Biol. Chem. 280, 27013–21 (2005).

    Google Scholar 

  17. Zhou, X. et al. The HSPG syndecan is a core organizer of cholinergic synapses. J. Cell Biol. 220, e202011144 (2021).

    Google Scholar 

  18. Tu, H., Pinan-Lucarre, B., Ji, T., Jospin, M. & Bessereau, J. L. C. elegans Punctin Clusters GABA(A) receptors via neuroligin binding and UNC-40/DCC recruitment. Neuron 86, 1407–19 (2015).

    Google Scholar 

  19. Zhou, X. et al. The netrin receptor UNC-40/DCC assembles a postsynaptic scaffold and sets the synaptic content of GABAA receptors. Nat. Commun. 11, 2674 (2020).

    Google Scholar 

  20. Taylor, S. R. et al. Molecular topography of an entire nervous system. Cell https://doi.org/10.1016/j.cell.2021.06.023 (2021).

  21. White, J. G., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode C. elegans. Philos. Trans. R. Soc. Lond. 314B, 1–340 (1986).

    Google Scholar 

  22. Zhang, L., Ward, J. D., Cheng, Z. & Dernburg, A. F. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development 142, 4374–84 (2015).

    Google Scholar 

  23. Yemini, E. et al. NeuroPAL: a multicolor atlas for whole-brain neuronal identification in C. elegans. Cell 184, 272–288.e11 (2021).

    Google Scholar 

  24. He, S., Cuentas-Condori, A. & Miller, D. M. NATF (native and tissue-specific fluorescence): a strategy for bright, tissue-specific GFP labeling of native proteins in Caenorhabditis elegans. Genetics 212, 387–395 (2019).

    Google Scholar 

  25. Schmitt, C. et al. Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans. Plos One 7, e43164 (2012).

    Google Scholar 

  26. Liu, Y. et al. Nicotine induces abnormal motor coupling through sensitization of a mechanosensory circuit in Caenorhabditis elegans. PLOS Biol. 23, e3003423 (2025).

    Google Scholar 

  27. Pereira, L. et al. A cellular and regulatory map of the cholinergic nervous system of C. elegans. Elife 4, e12432 (2015).

    Google Scholar 

  28. Xuan, Z. et al. Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release. eLife 6, e29276 (2017).

    Google Scholar 

  29. Özkan, E. et al. An extracellular interactome of immunoglobulin and lrr proteins reveals receptor-ligand networks. Cell 154, 228–239 (2013).

    Google Scholar 

  30. Ranaivoson, F. M. et al. A proteomic screen of neuronal cell-surface molecules reveals IgLONs as structurally conserved interaction modules at the synapse. Structure 27, 893–906.e9 (2019).

    Google Scholar 

  31. Cheng, S. et al. Family of neural wiring receptors in bilaterians defined by phylogenetic, biochemical, and structural evidence. Proc. Natl. Acad. Sci. 116, 201818631 (2019).

    Google Scholar 

  32. Lobb-Rabe, M. et al. Neuronal wiring receptors Dprs and DIPs Are GPI anchored and this modification contributes to their cell surface organization. eneuro 11, ENEURO.0184-23.2023 (2024).

    Google Scholar 

  33. McNamee, C. J., Youssef, S. & Moss, D. IgLONs form heterodimeric complexes on forebrain neurons. Cell Biochem Funct. 29, 114–119 (2011).

    Google Scholar 

  34. Venkannagari, H. et al. Highly conserved molecular features in iglons contrast their distinct structural and biological outcomes. J. Mol. Biol. 432, 5287–5303 (2020).

    Google Scholar 

  35. Birtley, J. R. et al. Inactivating mutations and X-ray crystal structure of the tumor suppressor OPCML reveal cancer-associated functions. Nat. Commun. 10, 3134 (2019).

    Google Scholar 

  36. Schwarz, V., Pan, J., Voltmer-Irsch, S. & Hutter, H. IgCAMs redundantly control axon navigation in Caenorhabditis elegans. Neural Dev. 4, 13 (2009).

    Google Scholar 

  37. Feresten, A. H. et al. wrk-1 and rig-5 control pioneer and follower axon navigation in the ventral nerve cord of Caenorhabditis elegans in a nid-1 mutant background. Genetics 223, iyac187 (2022).

  38. Bénard, C. Y., Blanchette, C., Recio, J. & Hobert, O. The Secreted immunoglobulin domain proteins ZIG-5 and ZIG-8 cooperate with L1CAM/SAX-7 to maintain nervous system integrity. Plos Genet 8, e1002819 (2012).

    Google Scholar 

  39. Noviello, C. M. et al. Structure and gating mechanism of the α7 nicotinic acetylcholine receptor. Cell 184, 2121–2134 (2021).

    Google Scholar 

  40. Morud, J. et al. Deorphanization of novel biogenic amine-gated ion channels identifies a new serotonin receptor for learning. Curr. Biol. 31, 4282–4292.e6 (2021).

    Google Scholar 

  41. Albuquerque, E. X., Pereira, E. F., Alkondon, M. & Rogers, S. W. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol. Rev. 89, 73–120 (2009).

    Google Scholar 

  42. Letsinger, A. C., Gu, Z. & Yakel, J. L. α7 nicotinic acetylcholine receptors in the hippocampal circuit: taming complexity. Trends Neurosci. 45, 145–157 (2022).

    Google Scholar 

  43. Stone, T. W. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 468, 321–365 (2021).

    Google Scholar 

  44. Garção, P., Oliveira, C. R., Cunha, R. A. & Agostinho, P. Subsynaptic localization of nicotinic acetylcholine receptor subunits: a comparative study in the mouse and rat striatum. Neurosci. Lett. 566, 106–110 (2014).

    Google Scholar 

  45. Conroy, W. G., Liu, Z., Nai, Q., Coggan, J. S. & Berg, D. K. PDZ-containing proteins provide a functional postsynaptic scaffold for nicotinic receptors in neurons. Neuron 38, 759–71 (2003).

    Google Scholar 

  46. Parker, M. J., Zhao, S., Bredt, D. S., Sanes, J. R. & Feng, G. PSD93 regulates synaptic stability at neuronal cholinergic synapses. J. Neurosci. 24, 378–388 (2004).

    Google Scholar 

  47. Gómez-Varela, D., Schmidt, M., Schoellerman, J., Peters, E. C. & Berg, D. K. PMCA2 via PSD-95 controls calcium signaling by α7-containing nicotinic acetylcholine receptors on aspiny interneurons. J. Neurosci. 32, 6894–6905 (2012).

    Google Scholar 

  48. Baer, K. et al. PICK1 interacts with alpha7 neuronal nicotinic acetylcholine receptors and controls their clustering. Mol. Cell Neurosci. 35, 339–55 (2007).

    Google Scholar 

  49. Bondarenko, V., Chen, Q., Tillman, T. S., Xu, Y. & Tang, P. Unconventional PDZ Recognition Revealed in α7 nAChR-PICK1 complexes. ACS Chem. Neurosci. 15, 2070–2079 (2024).

    Google Scholar 

  50. Li, Z.-L. et al. A novel effect of PDLIM5 in α7 nicotinic acetylcholine receptor upregulation and surface expression. Cell. Mol. Life Sci. 79, 64 (2022).

    Google Scholar 

  51. Palumbo, T. B. & Miwa, J. ulieM. Lynx1 and the family of endogenous mammalian neurotoxin-like proteins and their roles in modulating nAChR function. Pharmacol. Res. 194, 106845 (2023).

    Google Scholar 

  52. Paramonov, A. S. et al. Structural diversity and dynamics of human three-finger proteins acting on nicotinic acetylcholine receptors. Int. J. Mol. Sci. 21, 7280 (2020).

    Google Scholar 

  53. Carrillo, R. A. et al. Control of synaptic connectivity by a network of Drosophila IgSF cell surface proteins. Cell 163, 1770–1782 (2015).

    Google Scholar 

  54. Cheng, S. et al. Molecular basis of synaptic specificity by immunoglobulin superfamily receptors in Drosophila. Elife 8, e41028 (2019).

    Google Scholar 

  55. Cosmanescu, F. et al. Neuron-subtype-specific expression, interaction affinities, and specificity determinants of DIP/Dpr cell recognition proteins. Neuron 100, 1385–1400.e6 (2018).

    Google Scholar 

  56. Wang, Y. et al. Systematic expression profiling of dprs and DIPs reveals cell surface codes in Drosophila larval motor and sensory neurons. Development 149, dev200355 (2022).

  57. Ashley, J. et al. Transsynaptic interactions between IgSF proteins DIP-α and Dpr10 are required for motor neuron targeting specificity. Elife 8, e42690 (2019).

    Google Scholar 

  58. Tan, L. et al. Ig superfamily ligand and receptor pairs expressed in synaptic partners in Drosophila. Cell 163, 1756–1769 (2015).

    Google Scholar 

  59. Venkatasubramanian, L. et al. Stereotyped terminal axon branching of leg motor neurons mediated by IgSF proteins DIP-α and Dpr10. Elife 8, e42692 (2019).

    Google Scholar 

  60. Barish, S. et al. Combinations of DIPs and Dprs control organization of olfactory receptor neuron terminals in Drosophila. Plos Genet 14, e1007560 (2018).

    Google Scholar 

  61. Xu, S. et al. Interactions between the Ig-superfamily proteins DIP-α and Dpr6/10 regulate assembly of neural circuits. Neuron 100, 1369–1384.e6 (2018).

    Google Scholar 

  62. Xu, C. et al. Control of synaptic specificity by establishing a relative preference for synaptic partners. Neuron 103, 865–877.e7 (2019).

    Google Scholar 

  63. Dombrovski, M. et al. Molecular gradients shape synaptic specificity of a visuomotor transformation. Nature 644, 453–462 (2025).

    Google Scholar 

  64. Sharma, K. et al. Cell type– and brain region–resolved mouse brain proteome. Nat. Neurosci. 18, 1819–1831 (2015).

    Google Scholar 

  65. Fearnley, S., Raja, R. & Cloutier, J.-F. Spatiotemporal expression of IgLON family members in the developing mouse nervous system. Sci. Rep. 11, 19536 (2021).

    Google Scholar 

  66. Jagomäe, T. et al. Alternative promoter use governs the expression of IgLON Cell adhesion molecules in histogenetic fields of the embryonic mouse brain. Int. J. Mol. Sci. 22, 6955 (2021).

    Google Scholar 

  67. Salluzzo, M. et al. The role of IgLON cell adhesion molecules in neurodegenerative diseases. Genes 14, 1886 (2023).

    Google Scholar 

  68. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature https://doi.org/10.1038/s41586-022-04434-5 (2022).

  69. Sabater, L. et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol. 13, 575–586 (2014).

    Google Scholar 

  70. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    Google Scholar 

  71. Loh, K. H. et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell 166, 1295–1307.e21 (2016).

    Google Scholar 

  72. Oostrum et al. The proteomic landscape of synaptic diversity across brain regions and cell types. Cell 186, 5411–5427.e23 (2023).

    Google Scholar 

  73. Peng, J. et al. Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry*. J. Biol. Chem. 279, 21003–21011 (2004).

    Google Scholar 

  74. Miyata, S. et al. Biochemical and ultrastructural analyses of iglon cell adhesion molecules, kilon and obcam in the rat brain. Neuroscience 117, 645–658 (2003).

    Google Scholar 

  75. Zacco, A. et al. Isolation, biochemical characterization and ultrastructural analysis of the limbic system-associated membrane protein (LAMP), a protein expressed by neurons comprising functional neural circuits. J. Neurosci. 10, 73–90 (1990).

    Google Scholar 

  76. Zhang, Z. et al. The schizophrenia susceptibility gene OPCML regulates spine maturation and cognitive behaviors through eph-cofilin signaling. Cell Rep. 29, 49–61.e7 (2019).

    Google Scholar 

  77. Hashimoto, T., Maekawa, S. & Miyata, S. IgLON cell adhesion molecules regulate synaptogenesis in hippocampal neurons. Cell Biochem Funct. 27, 496–498 (2009).

    Google Scholar 

  78. Hashimoto, T., Yamada, M., Maekawa, S., Nakashima, T. & Miyata, S. IgLON cell adhesion molecule Kilon is a crucial modulator for synapse number in hippocampal neurons. Brain Res 1224, 1–11 (2008).

    Google Scholar 

  79. Wit, J. de & Ghosh, A. Specification of synaptic connectivity by cell surface interactions. Nat. Rev. Neurosci. 17, 4–4 (2016).

    Google Scholar 

  80. Merrion, H. G. et al. Dynamic extracellular interactions with AMPA receptors. Proc. Natl. Acad. Sci. 122, e2517436122 (2025).

    Google Scholar 

  81. Gao, S. et al. Excitatory motor neurons are local oscillators for backward locomotion. eLife 7, e29915 (2018).

    Google Scholar 

  82. Nawrocka, W. I. et al. Nematode extracellular protein interactome expands connections between signaling pathways. Preprint at bioRxiv https://doi.org/10.1101/2024.07.08.602367 (2024).

  83. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    Google Scholar 

  84. Zuryn, S. & Jarriault, S. Deep sequencing strategies for mapping and identifying mutations from genetic screens. Worm 2, e25081 (2013).

    Google Scholar 

  85. Minevich, G., Park, D. S., Blankenberg, D., Poole, R. J. & Hobert, O. CloudMap: a cloud-based pipeline for analysis of mutant genome sequences. Genetics 192, 1249–69 (2012).

    Google Scholar 

  86. Ghanta, K. S. & Mello, C. C. Melting dsDNA donor molecules greatly improves precision genome editing in caenorhabditis elegans. Genetics 216, 643–650 (2020).

    Google Scholar 

  87. Katz, M., Corson, F., Iwanir, S., Biron, D. & Shaham, S. Glia Modulate a Neuronal Circuit for Locomotion Suppression during Sleep in C. elegans. Cell Rep. 22, 2575–2583 (2018).

    Google Scholar 

  88. Gao, S. et al. The NCA sodium leak channel is required for persistent motor circuit activity that sustains locomotion. Nat. Commun. 6, 6323 (2015).

    Google Scholar 

  89. Meng, J. et al. A tonically active master neuron modulates mutually exclusive motor states at two timescales. Sci. Adv. 10, eadk0002 (2024).

    Google Scholar 

  90. Frokjaer-Jensen, C. et al. Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. Nat. Methods 11, 529–34 (2014).

    Google Scholar 

  91. Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform 18, 529 (2017).

    Google Scholar 

  92. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Google Scholar 

  93. Cizeron, M., Granger, L., BÜlow, H. E. & Bessereau, J.-L. Specific heparan sulfate modifications stabilize the synaptic organizer MADD-4/Punctin at C. elegans neuromuscular junctions. Genetics 218, iyab073 (2021).

    Google Scholar 

  94. Jourdren, L., Delaveau, T., Marquenet, E., Jacq, C. & Garcia, M. CORSEN, a new software dedicated to microscope-based 3D distance measurements: mRNA–mitochondria distance, from single-cell to population analyses. RNA 16, 1301–1307 (2010).

    Google Scholar 

  95. Mialon, M. & Weinreb, A. NeuraCelLab_synapse-density-analysis. https://doi.org/10.5281/zenodo.17571550 (2025).

  96. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Google Scholar 

  97. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv 2021 10, 463034 (2022). 04.

    Google Scholar 

  98. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Google Scholar 

  99. Schrödinger & L. L. C. The PyMOL Molecular Graphics System, Version 3.0.4. (2015).

Download references

Acknowledgements

We thank members of the Bessereau lab for providing feedback, Mélissa Cizeron for advice on image analysis, Driss Laabid and Lina Boumasmoud for technical assistance, and Océane Romatif, Delphine Le Guern and Camille Vachon for strains. We are grateful to Elise Forgues, Cecile Chatras, Mathieu Ben Abu and Manon Courtieux for their help during their respective internships. We thank Pierre-Jean Corringer for critical reading of the manuscript, Mei Zhen and Jun Meng for providing information on neuronal promoters, Alexander Gottschalk for sharing plasmids and Eviatar Yemini for advice on NeuroPAL. We thank the Caenorhabditis Genetics Center (CGC), funded by NIH Office of Research Infrastructure Programs (P40 OD010440), for providing strains. We thank the SFR Biosciences (University Lyon 1 CNRS UAR 3444 INSERM US8, ENS de Lyon), Matthieu Caron and Francesca Palladino for access to equipment. We thank Le Centre d’Imagerie Quantitative Lyon-Est (LyMIC-CIQLE, Lyon, France) imaging facility for support and access to equipment, and Camilla Luccardini for technical assistance. Some strains were generated by SEGiCel (SFR Santé Lyon Est CNRS UAR 3453, Lyon, France) with the support of CNRS and IBiSA. Some graphical elements in Figs. 1d and 6b were provided by Servier Medical Art (https://smart.servier.com), licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). This work was supported as follows: M.M.: fellowship from the French Ministry of Research; BPL: LABEX Cortex (ANR-11-LABX-0042) of University Lyon 1, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) and Fondation pour la Recherche Médicale grant (FRM-MND-202411019867); EÖ: National Institutes of Health, National Institute of Neurological Disorders and Stroke grant R01 NS139060 grant; JLB: Équipe FRM 2023 EQU202303016267, ANR Synapunct ANR-22CE16-0024-01, ERC_Adg C.NAPSE #695295, ANR-11-LABX-0042/ANR-11-IDEX-0007.

Author information

Author notes
  1. These authors contributed equally: Jean-Louis BESSEREAU, Berangere PINAN-LUCARRE.

Authors and Affiliations

  1. Universite Claude Bernard Lyon 1, MeLis, CNRS UMR5284, INSERM U1314, Faculte de Medecine et de Pharmacie, Lyon, France

    Morgane Mialon, Liubov Patrash, Laure Granger, Jean-Louis Bessereau & Berangere Pinan-Lucarre

  2. Department of Genetics, Yale University School of Medicine, New Haven, CT, USA

    Alexis Weinreb

  3. Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA

    Alexis Weinreb

  4. Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA

    Engin Özkan

  5. The Neuroscience Institute, University of Chicago, Chicago, IL, USA

    Engin Özkan

Authors
  1. Morgane Mialon
    View author publications

    Search author on:PubMed Google Scholar

  2. Liubov Patrash
    View author publications

    Search author on:PubMed Google Scholar

  3. Laure Granger
    View author publications

    Search author on:PubMed Google Scholar

  4. Alexis Weinreb
    View author publications

    Search author on:PubMed Google Scholar

  5. Engin Özkan
    View author publications

    Search author on:PubMed Google Scholar

  6. Jean-Louis Bessereau
    View author publications

    Search author on:PubMed Google Scholar

  7. Berangere Pinan-Lucarre
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: M.M., J.-L.B. and B.P.-L.; Methodology: M.M., A.W., E.Ö., J.-L.B. and B.P.-L.; Investigation: M.M., L.P., L. G. and B.P.-L.; Formal analysis: M.M., L.P., E.Ö. and B.P.-L.; Visualization: M.M., E.Ö., J.-L.B. and B.P.-L.; Writing – Original Draft: M.M., J.-L.B. and B.P.-L.; Writing – Review & Editing: M.M., A.W., E.Ö., J.-L.B. and B.P.-L.; Funding Acquisition: E.Ö., J.-L.B. and B.P.-L.; Supervision: J.-L.B. and B.P.-L.

Corresponding authors

Correspondence to Jean-Louis Bessereau or Berangere Pinan-Lucarre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mialon, M., Patrash, L., Granger, L. et al. A trans-synaptic IgLON adhesion molecular complex directly contacts and clusters a nicotinic receptor. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68141-1

Download citation

  • Received: 30 October 2024

  • Accepted: 19 December 2025

  • Published: 22 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68141-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing