Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Detection and identification of vacancy defects in antimony selenide
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 January 2026

Detection and identification of vacancy defects in antimony selenide

  • David J. Keeble  ORCID: orcid.org/0000-0002-5378-799X1,
  • Theodore D. C. Hobson  ORCID: orcid.org/0000-0002-0013-360X2,
  • Julia Wiktor  ORCID: orcid.org/0000-0003-3395-11043,
  • Ethan Berger  ORCID: orcid.org/0000-0001-9143-44933,
  • Marcel Dickmann  ORCID: orcid.org/0009-0005-8971-76264,
  • Mohamed R. M. Elsharkawy  ORCID: orcid.org/0000-0002-3565-90031,5,
  • Werner Egger4,
  • Jonathan D. Major  ORCID: orcid.org/0000-0002-5554-19852 &
  • …
  • Ken Durose  ORCID: orcid.org/0000-0003-1183-32112 

Nature Communications , Article number:  (2026) Cite this article

  • 3938 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Solar cells

Abstract

Antimony selenide (Sb2Se3) has an optimal bandgap and absorption coefficient for thin film solar cell applications and comprises earth abundant elements. The rate of increase in reported power conversion efficiencies has slowed due to a persistently large open circuit voltage deficit attributed to detrimental concentrations of point defects. Here we use depth-profiling positron annihilation lifetime spectroscopy to study Sb2Se3 crystals and thin films. The method is specific to neutral and negative charge states of vacancy-related defects. Both monovacancy and divacancy defects are identified in intrinsic and n-type samples but no monovacancy defects are detected in the p-type sample. Comparison of the experimental positron lifetimes with density functional theory calculated values provide evidence for the observation of Sb monovacancies in the –3 state and of Se monovacancies in the –2 state. The results are consistent with recent density function theory predictions that the Sb and the Se monovacancy defects both have accessible negative charge states.

Similar content being viewed by others

Field-effect passivation for minimized voltage loss in highly efficient antimony selenosulfide solar cells

Article Open access 06 January 2026

Regulation of hydrothermal reaction kinetics with sodium sulfide for certified 10.7% efficiency Sb2(S,Se)3 solar cells

Article Open access 14 January 2026

Phase transition mechanism and bandgap engineering of Sb2S3 at gigapascal pressures

Article Open access 02 September 2021

Data availability

The positron lifetime data that support the findings of this study and source data for display items have been deposited in figshare with the identifier 10.6084/m9.figshare.c.8192384. The processed data used in this study is provided within the paper and the Supplementary Information file.

References

  1. Choi, J. W., Shin, B., Gora, P., Hoye, R. L. Z. & Palgrave, R. Emerging earth-abundant solar absorbers. ACS Energy Lett. 7, 1553–1557 (2022).

    Google Scholar 

  2. Duan, Z. T. et al. Sb2Se3 thin-film solar cells exceeding 10% power conversion efficiency enabled by injection vapor deposition technology. Adv. Mater. 34, 2202969 (2022).

    Google Scholar 

  3. Li, Z. Q. et al. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat. Commun. 10, 125 (2019).

    Google Scholar 

  4. Wen, X. X. et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nat. Commun. 9, 2179 (2018).

    Google Scholar 

  5. Zhou, Y. et al. Solution-processed antimony selenide heterojunction solar cells. Adv. Energy Mater. 4, 1301846 (2014).

    Google Scholar 

  6. Wang, X. W., Kavanagh, S. R., Scanlon, D. O. & Walsh, A. Four-electron negative-U vacancy defects in antimony selenide. Phys. Rev. B 108, 134102 (2023).

    Google Scholar 

  7. Dong, J., Liu, Y., Wang, Z. & Zhang, Y. Boosting VOC of antimony chalcogenide solar cells: a review on interfaces and defects. Nano Sel. 2, 1818–1848 (2021).

    Google Scholar 

  8. Wijesinghe, U., Longo, G. & Hutter, O. S. Defect engineering in antimony selenide thin film solar cells. Energy Adv. 2, 12–33 (2023).

    Google Scholar 

  9. Che, B. et al. Thermally driven point defect transformation in antimony selenosulfide photovoltaic materials. Adv. Mater. 35, 2208564 (2023).

    Google Scholar 

  10. Chen, X. L. et al. Solvent-assisted hydrothermal deposition approach for highly-efficient Sb2(S,Se)3 thin-film solar cells. Adv. Energy Mater. 13, 2300391 (2023).

  11. Liang, G. X. et al. Crystal growth promotion and defects healing enable minimum open-circuit voltage deficit in antimony selenide solar cells. Adv. Sci. 9, 2105142 (2022).

    Google Scholar 

  12. Hobson, T. D. C., Phillips, L. J., Hutter, O. S., Durose, K. & Major, J. D. Defect properties of Sb2Se3 thin film solar cells and bulk crystals. Appl. Phys. Lett. 116, 261101 (2020).

    Google Scholar 

  13. Ma, Y. Y. et al. Efficient defect passivation of Sb2Se3 film by tellurium doping for high performance solar cells. J. Mater. Chem. A 8, 6510–6516 (2020).

    Google Scholar 

  14. Wang, X. W., Li, Z. Z., Kavanagh, S. R., Ganose, A. M. & Walsh, A. Lone pair driven anisotropy in antimony chalcogenide semiconductors. Phys. Chem. Chem. Phys. 24, 7195–7202 (2022).

    Google Scholar 

  15. McKenna, K. P. Self-healing of broken bonds and deep gap states in Sb2Se3 and Sb2S3. Adv. Electron. Mater. 7, 2000908 (2021).

    Google Scholar 

  16. Wang, L. et al. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat. Energy 2, 17046 (2017).

    Google Scholar 

  17. Liu, X. S. et al. Enhanced Sb2Se3 solar cell performance through theory-guided defect control. Prog. Photovolt. Res. Appl. 25, 861–870 (2017).

    Google Scholar 

  18. Huang, M. L., Xu, P., Han, D., Tang, J. & SY, C. hen Complicated and unconventional defect properties of the quasi-one-dimensional photovoltaic semiconductor Sb2Se3. ACS Appl. Mater. Interfaces 11, 15564–15572 (2019).

    Google Scholar 

  19. Savory, C. & Scanlon, D. O. The complex defect chemistry of antimony selenide. J. Mater. Chem. A 7, 10739–10744 (2019).

    Google Scholar 

  20. Stoliaroff, A. et al. Deciphering the role of key defects in Sb2Se3, a promising candidate for chalcogenide-based solar cells. ACS Appl. Energy Mater. 3, 2496–2509 (2020).

    Google Scholar 

  21. Huang, M. L. et al. More Se vacancies in Sb2Se3 under Se-rich conditions: an abnormal behavior induced by defect-correlation in compensated compound semiconductors. Small 17, 2102429 (2021).

    Google Scholar 

  22. Mosquera-Lois, I., Kavanagh, S. R., Walsh, A. & Scanlon, D. O. Identifying the ground state structures of point defects in solids. NPJ Comput. Mater. 9, 25 (2023).

    Google Scholar 

  23. Chen, G. J. et al. Suppressing buried interface nonradiative recombination losses toward high-efficiency antimony triselenide solar cells. Adv. Mater. 36, 2308522 (2024).

    Google Scholar 

  24. Lian, W. T. et al. Distinctive deep-level defects in non-stoichiometric Sb2Se3 photovoltaic materials. Adv. Sci. 9, 2105268 (2022).

    Google Scholar 

  25. Krause-Rehberg R., Leipner H. S. Positron Annihilation in Semiconductors (Springer-Verlag, 1999).

  26. Tuomisto, F. & Makkonen, I. Defect identification in semiconductors with positron annihilation: experiment and theory. Rev. Mod. Phys. 85, 1583–1631 (2013).

    Google Scholar 

  27. Cizek, J. Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: a review. J. Mater. Sci. Technol. 34, 577–598 (2018).

    Google Scholar 

  28. Wiktor, J., Jomard, G. & Torrent, M. Two-component density functional theory within the projector augmented-wave approach: accurate and self-consistent computations of positron lifetimes and momentum distributions. Phys. Rev. B 92, 125113 (2015).

    Google Scholar 

  29. Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. N. J. Phys. 14, 055027 (2012).

    Google Scholar 

  30. Sperr, P. et al. Status of the pulsed low energy positron beam system (PLEPS) at the munich research reactor FRM-II. Appl. Surf. Sci. 255, 35–38 (2008).

    Google Scholar 

  31. Gonze, X. et al. Recent developments in the ABINIT software package. Comput. Phys. Commun. 205, 106–131 (2016).

    Google Scholar 

  32. Phillips L. J. et al. Close-spaced sublimation for Sb2Se3 solar cells. In Proc. 2017 44th Photovoltaic Specialist Conference (PVSC) 1445–1448 (IEEE, 2017).

  33. Hobson T. D. C., Hutter O. S., Birkett M., Veal T. D., & Durose K. Growth and characterization of Sb2Se3 single crystals for fundamental studies. In Proc. 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (IEEE, 2018).

  34. Hobson, T. D. C. et al. p-type conductivity in Sn-doped Sb2Se3. J. Phys. Energy 4, 045006 (2022).

    Google Scholar 

  35. Hobson, T. D. C. & Durose, K. Protocols for the Miller indexing of Sb2Se3 and a non-x-ray method of orienting its single crystals. Mater. Sci. Semicond. Process. 127, 105691 (2021).

    Google Scholar 

  36. Hobson, T. D. C. et al. Isotype heterojunction solar cells using n-type Sb2Se3 thin films. Chem. Mater. 32, 2621–2630 (2020).

    Google Scholar 

  37. Olsen, J. V., Kirkegaard, P., Pedersen, N. J. & Eldrup, M. PALSfit: a new program for the evaluation of positron lifetime spectra. Phys. Status Solidi C 4, 4004–4006 (2007).

    Google Scholar 

  38. Mosquera-Lois, I., Kavanagh, S. R., Walsh, A. & Scanlon, D. O. ShakeNBreak: navigating the defect configurational landscape. J. Open Source Softw. 7, 4817 (2022).

    Google Scholar 

  39. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. CP2K: atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 4, 15–25 (2014).

    Google Scholar 

  40. Kühne, T. et al. CP2K: an electronic structure and molecular dynamics software package - quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Google Scholar 

  41. Boronski, E. & Nieminen, R. M. Electron-positron density-functional theory. Phys. Rev. B 34, 3820–3831 (1986).

    Google Scholar 

  42. Barbiellini, B. et al. Calculation of positron states and annihilation in solids: a density-gradient-correction scheme. Phys. Rev. B 53, 16201–16213 (1996).

    Google Scholar 

Download references

Acknowledgements

D.J.K. gratefully acknowledges the financial support provided by FRM-II to perform the high-intensity positron beam measurements at Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany. J.W. acknowledges funding from the “Area of Advance - Materials Science” at Chalmers University of Technology and the Swedish Research Council (2019-03993). The computations were partly performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at NSC and PDC. J.M. and K.D. would like to acknowledge support from EPSRC grants EP/N014057/1m and EP/M024768/1. M.D. and W.E. gratefully acknowledges BMBF-grants 05K13WN1-POSIANALYSE, 05K16WN1-POSITEC and 05K19WN1-POSILIFE of the German Federal Office of Research and Education.

Author information

Authors and Affiliations

  1. Physics, SUPA, School of Science and Engineering, University of Dundee, Dundee, UK

    David J. Keeble & Mohamed R. M. Elsharkawy

  2. Stephenson Institute for Renewable Energy, Department of Physics, University of Liverpool, Liverpool, UK

    Theodore D. C. Hobson, Jonathan D. Major & Ken Durose

  3. Department of Physics, Chalmers University of Technology, Gothenburg, Sweden

    Julia Wiktor & Ethan Berger

  4. Institut für Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Neubiberg, Germany

    Marcel Dickmann & Werner Egger

  5. Physics Department, Faculty of Science, Minia University, Minia, Egypt

    Mohamed R. M. Elsharkawy

Authors
  1. David J. Keeble
    View author publications

    Search author on:PubMed Google Scholar

  2. Theodore D. C. Hobson
    View author publications

    Search author on:PubMed Google Scholar

  3. Julia Wiktor
    View author publications

    Search author on:PubMed Google Scholar

  4. Ethan Berger
    View author publications

    Search author on:PubMed Google Scholar

  5. Marcel Dickmann
    View author publications

    Search author on:PubMed Google Scholar

  6. Mohamed R. M. Elsharkawy
    View author publications

    Search author on:PubMed Google Scholar

  7. Werner Egger
    View author publications

    Search author on:PubMed Google Scholar

  8. Jonathan D. Major
    View author publications

    Search author on:PubMed Google Scholar

  9. Ken Durose
    View author publications

    Search author on:PubMed Google Scholar

Contributions

D.J.K. with K.D., J.M., and T.D.C.H. designed the study. K.D. and T.D.C.H. supplied samples. D.J.K., M.D. and W.E. performed the positron annihilation experiments. D.J.K. and M.R.M.E. fitted the experimental spectra. J.W. and E.B. performed the DFT and TC-PAW-DFT calculations. D.J.K., with help from J.W., T.D.C.H. and K.D., wrote the main draft. All authors commented on the manuscript.

Corresponding author

Correspondence to David J. Keeble.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keeble, D.J., Hobson, T.D.C., Wiktor, J. et al. Detection and identification of vacancy defects in antimony selenide. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68153-x

Download citation

  • Received: 08 March 2024

  • Accepted: 22 December 2025

  • Published: 03 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68153-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing