Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Thiazole-conjugated covalent organic framework membranes enable ultraselective molecular desalination under strongly acidic conditions
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 15 January 2026

Thiazole-conjugated covalent organic framework membranes enable ultraselective molecular desalination under strongly acidic conditions

  • Yu Liao  ORCID: orcid.org/0000-0001-6921-817X1,
  • Songjun Fang1,
  • Jiahao Tang1,
  • Mingxiu Tang1,
  • Fuxin Zheng1,
  • Zhenxiang Pan  ORCID: orcid.org/0000-0001-6818-553X1,
  • Jiang Zhan  ORCID: orcid.org/0009-0006-1160-64641 &
  • …
  • Gang Han  ORCID: orcid.org/0000-0001-8943-569X1,2 

Nature Communications , Article number:  (2026) Cite this article

  • 3827 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Organic molecules in materials science
  • Polymers

Abstract

Membrane nanofiltration provides a sustainable and energy-efficient platform for precise molecular separation. However, highly permselective and chemically stable membrane materials capable of operating under harsh conditions are currently lacking. Here we report a generalizable monomer–solvent dual engineering strategy that enables the one-step synthesis of chemically robust thiazole-linked polycrystalline covalent organic framework (COF) membranes via scalable interfacial polymerization under ambient conditions for ultraselective molecular separation. The fully π-conjugated aromatic skeleton and the spatially exposed heteroatoms on the irreversible thiazole linkages establish a lone-pair electron network, which not only forms an atomic hydration layer to protect the framework but also confers long-range regulation of electrostatic interactions. The thiazole-linked COF membranes exhibit remarkable structural stability in strong acids (e.g., 12 M HCl), good resistance to organic solvents and chlorine, and high pharmaceutical desalination permselectivity, achieving ion/pharmaceutical separation factors up to 690. This versatile thiazole-linked framework structure offers potential for the development of chemically stable aromatic conjugated COF membranes for diverse vital applications.

Similar content being viewed by others

Assembling covalent organic framework membranes via phase switching for ultrafast molecular transport

Article Open access 07 June 2022

Photo-tailored heterocrystalline covalent organic framework membranes for organics separation

Article Open access 02 July 2022

High-strength conjugated polymer framework membranes for ultrafast and precise separations

Article 22 December 2025

Data availability

The all data generated in this study are provided in the Supplementary Information. Source data for the optimized structures of TbBa-azo and TbPa are present. Additional data are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Meng, Q.-W. et al. Guanidinium-based covalent organic framework membrane for single-acid recovery. Sci. Adv. 9, eadh0207 (2023).

    Google Scholar 

  2. Wu, D. et al. Engineering bipolar covalent organic framework membranes for selective acid extraction. Angew. Chem. 137, e202503945 (2025).

  3. Liu, X., Lin, W., Bader Al Mohawes, K. & Khashab, N. M. Ultrahigh proton selectivity by assembled cationic covalent organic framework nanosheets. Angew. Chem. Int. Ed. 64, e202419034 (2025).

    Google Scholar 

  4. Jian, M. et al. Artificial proton channel membrane with self-amplified selectivity for simultaneous waste acid recovery and power generation. ACS Nano 19, 16405–16414 (2025).

    Google Scholar 

  5. Hou, L. et al. Enabling highly selective acid recovery by 3D covalent organic frameworks membrane with sub-nanochannels. J. Membr. Sci. 731, 124242 (2025).

  6. Zhou, L. et al. Covalent organic framework membrane with turing structures for deacidification of highly acidic solutions. Adv. Funct. Mater. 32, 2108178 (2022).

    Google Scholar 

  7. Lin, J. et al. Shielding effect enables fast ion transfer through nanoporous membrane for highly energy-efficient electrodialysis. Nat. Wat. 1, 725–735 (2023).

    Google Scholar 

  8. DuChanois, R. M. et al. Membrane materials for selective ion separations at the water–energy nexus. Adv. Mater. 33, 2101312 (2021).

    Google Scholar 

  9. Kim, J., Kim, J. F., Jiang, Z. & Livingston, A. G. Advancing membrane technology in organic liquids towards a sustainable future. Nat. Sustain. 8, 594–605 (2025).

    Google Scholar 

  10. Zhao, Y. et al. Enabling an ultraefficient lithium-selective construction through electric field–assisted ion control. Sci. Adv. 11, eadv6646 (2025).

    Google Scholar 

  11. Lee, T. H. et al. Microporous polyimine membranes for efficient separation of liquid hydrocarbon mixtures. Science 388, 839–844 (2025).

    Google Scholar 

  12. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Google Scholar 

  13. Tan, K. T. et al. Covalent organic frameworks. Nat. Rev. Methods Primers 3, 1 (2023).

    Google Scholar 

  14. Zhou, Z. et al. Carbon dioxide capture from open air using covalent organic frameworks. Nature 635, 96–101 (2024).

    Google Scholar 

  15. Zhang, W. et al. Reconstructed covalent organic frameworks. Nature 604, 72–79 (2022).

    Google Scholar 

  16. Gruber, C. G. et al. Early stages of covalent organic framework formation imaged in operando. Nature 630, 872–877 (2024).

    Google Scholar 

  17. Bao, S. et al. Randomly oriented covalent organic framework membrane for selective Li+ sieving from other ions. Nat. Commun. 16, 3896 (2025).

    Google Scholar 

  18. Gao, X. & Ben, T. Chiral substrate-induced chiral covalent organic framework membranes for enantioselective separation of macromolecular drug. Nat. Commun. 16, 5210 (2025).

    Google Scholar 

  19. Tang, J. et al. Interface-confined catalytic synthesis of anisotropic covalent organic framework nanofilm for ultrafast molecular sieving. Adv. Sci. 12, 2415520 (2025).

    Google Scholar 

  20. Liu, J. et al. Self-standing and flexible covalent organic framework (COF) membranes for molecular separation. Sci. Adv. 6, eabb1110 (2020).

    Google Scholar 

  21. Wu, C. et al. Advanced covalent organic framework-based membranes for recovery of ionic resources. Small 19, 2206041 (2023).

    Google Scholar 

  22. Yang, H. et al. Solvent-responsive covalent organic framework membranes for precise and tunable molecular sieving. Sci. Adv. 10, eads0260 (2024).

    Google Scholar 

  23. Kang, C. et al. Interlayer shifting in two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 142, 12995–13002 (2020).

    Google Scholar 

  24. Yuan, S. et al. Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 48, 2665–2681 (2019).

    Google Scholar 

  25. Qian, C. et al. Imine and imine-derived linkages in two-dimensional covalent organic frameworks. Nat. Rev. Chem. 6, 881–898 (2022).

    Google Scholar 

  26. Cusin, L., Peng, H., Ciesielski, A. & Samorì, P. Chemical conversion and locking of the imine linkage: enhancing the functionality of covalent organic frameworks. Angew. Chem. 133, 14356–14370 (2021).

    Google Scholar 

  27. Meng, Q.-W. et al. Enhancing ion selectivity by tuning solvation abilities of covalent-organic-framework membranes. Proc. Natl. Acad. Sci. USA 121, e2316716121 (2024).

    Google Scholar 

  28. Lai, Z. et al. Covalent–organic-framework membrane with aligned dipole moieties for biomimetic regulable ion transport. Adv. Funct. Mater. 34, 2409356 (2024).

    Google Scholar 

  29. Meng, Q.-W. et al. Optimizing selectivity via membrane molecular packing manipulation for simultaneous cation and anion screening. Sci. Adv. 10, eado8658 (2024).

    Google Scholar 

  30. Zheng, S. et al. Quantitative skeletal-charge engineering of anion-selective COF membrane for ultrahigh osmotic power output. J. Am. Chem. Soc. 147, 15777–15786 (2025).

    Google Scholar 

  31. Wu, T. et al. Imine-linked 3D covalent organic framework membrane featuring highly charged sub-1 nm channels for exceptional lithium-ion sieving. Adv. Mater. 37, 2415509 (2025).

    Google Scholar 

  32. Li, S. et al. Synthesis of single-crystalline sp2-carbon-linked covalent organic frameworks through imine-to-olefin transformation. Nat. Chem. 17, 226–232 (2025).

    Google Scholar 

  33. Liu, C.-H. & Perepichka, D. F. Bilayer covalent organic frameworks take a twist. Nat. Chem. 17, 471–472 (2025).

    Google Scholar 

  34. Liu, R. et al. Harvesting singlet and triplet excitation energies in covalent organic frameworks for highly efficient photocatalysis. Nat. Mater. 24, 1245–1257 (2025).

  35. Yan, R. et al. A thiazole-linked covalent organic framework for lithium-sulphur batteries. Angew. Chem. Int. Ed. 62, e202302276 (2023).

    Google Scholar 

  36. Zhao, Y. et al. Robust thiazole-linked covalent organic frameworks with post-modified azobenzene groups: photo-regulated dye adsorption and separation. Adv. Funct. Mater. 34, 2401895 (2024).

    Google Scholar 

  37. Hou, Y. et al. Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification. Nat. Commun. 15, 7350 (2024).

    Google Scholar 

  38. Liu, H. et al. Metal-incorporated covalent organic framework membranes via layer-by-layer self-assembly for efficient antibiotic desalination. Desalination 600, 118537 (2025).

    Google Scholar 

  39. Zhou, L. et al. Ultrathin cyclodextrin-based nanofiltration membrane with tunable microporosity for antibiotic desalination. J. Membr. Sci. 715, 123504 (2025).

    Google Scholar 

  40. Bai, Y. et al. Microstructure optimization of bioderived polyester nanofilms for antibiotic desalination via nanofiltration. Sci. Adv. 9, eadg6134 (2023).

    Google Scholar 

  41. Guo, Q. et al. Enhancing the interfacial interactions in PVDF/COF composite nanofiltration membranes for efficient antibiotic separation. Composites Communications 58, 102507 (2025).

    Google Scholar 

  42. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).

    Google Scholar 

  43. Kühne, T. D. et al. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

  44. Neese, F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 8, e1327 (2018).

    Google Scholar 

  45. Neese, F. Software update: the ORCA program system—Version 5.0. WIREs Comput. Mol. Sci. 12, e1606 (2022).

    Google Scholar 

  46. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Google Scholar 

  47. Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists. Multiwfn. J. Chem. Phys. 161, 082503 (2024).

    Google Scholar 

  48. Jusélius, J., Sundholm, D. & Gauss, J. Calculation of current densities using gauge-including atomic orbitals. J. Chem. Phys. 121, 3952–3963 (2004).

    Google Scholar 

  49. Fliegl, H., Taubert, S., Lehtonen, O. & Sundholm, D. The gauge including magnetically induced current method. Phys. Chem. Chem. Phys. 13, 20500–20518 (2011).

    Google Scholar 

  50. Willems, T. F. et al. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous and Mesoporous Materials 149, 134–141 (2012).

    Google Scholar 

  51. Bannwarth, C. et al. Extended tight-binding quantum chemistry methods. WIREs Comput. Mol. Sci. 11, e1493 (2021).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 22576109 to G.H.), the Tianjin Applied Basic Research Diversified Investment–Urban Fire Protection Project (Grant No. 24JCQNJC00010 to G.H.), the Tianjin Natural Science Foundation Project (Grant No. 24JCYBJC01550 to G.H.), and the Fundamental Research Funds for the Central Universities (040-63253198 to G.H.). Special thanks are also made to other members of the Han Gang Research Lab for their helpful suggestions related to materials characterization.

Author information

Authors and Affiliations

  1. College of Environmental Science and Engineering, Nankai University, Tianjin, P.R. China

    Yu Liao, Songjun Fang, Jiahao Tang, Mingxiu Tang, Fuxin Zheng, Zhenxiang Pan, Jiang Zhan & Gang Han

  2. College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, P.R. China

    Gang Han

Authors
  1. Yu Liao
    View author publications

    Search author on:PubMed Google Scholar

  2. Songjun Fang
    View author publications

    Search author on:PubMed Google Scholar

  3. Jiahao Tang
    View author publications

    Search author on:PubMed Google Scholar

  4. Mingxiu Tang
    View author publications

    Search author on:PubMed Google Scholar

  5. Fuxin Zheng
    View author publications

    Search author on:PubMed Google Scholar

  6. Zhenxiang Pan
    View author publications

    Search author on:PubMed Google Scholar

  7. Jiang Zhan
    View author publications

    Search author on:PubMed Google Scholar

  8. Gang Han
    View author publications

    Search author on:PubMed Google Scholar

Contributions

G.H. proposed and supervised the project. Y.L. and S.F. designed and conducted the experiments and analyzed the experimental results. Y.L., J.T., and M.T. participated in the membrane structural characterization. Y.L. and S.F. conducted the molecular simulations. Y.L., S.F., F.Z., Z.P., J.Z., and G.H. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Gang Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Teng Ben, Qi Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Fang, S., Tang, J. et al. Thiazole-conjugated covalent organic framework membranes enable ultraselective molecular desalination under strongly acidic conditions. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68171-9

Download citation

  • Received: 21 August 2025

  • Accepted: 19 December 2025

  • Published: 15 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68171-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing