Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Co-occurrence of diverse defense systems shapes complex microbe-virus relationships in deep-sea cold seeps
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 January 2026

Co-occurrence of diverse defense systems shapes complex microbe-virus relationships in deep-sea cold seeps

  • Yingchun Han  ORCID: orcid.org/0000-0003-3964-67681 na1,
  • Jing Liao1 na1,
  • Chengpeng Li2,
  • Fengmin Xing  ORCID: orcid.org/0009-0003-7235-55563,
  • Jiaxue Peng4,
  • Xinyue Liu  ORCID: orcid.org/0009-0008-0783-04921,
  • Wentao Xie5,
  • Fabai Wu  ORCID: orcid.org/0000-0001-5812-56216,
  • Huahua Jian  ORCID: orcid.org/0000-0001-5507-497X5,
  • Rui Cheng  ORCID: orcid.org/0000-0003-4348-03507,8 &
  • …
  • Xiyang Dong  ORCID: orcid.org/0000-0002-9224-59231 

Nature Communications , Article number:  (2026) Cite this article

  • 2496 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Bacteriophages
  • Environmental microbiology
  • Metagenomics
  • Microbial ecology

Abstract

Cold seeps host diverse microbes and viruses with numerous unexplored defense and anti-defense systems. Analysis of 3813 microbial and 13,336 viral genomes from 191 metagenomes across 17 cold seep sites reveals extensive microbial defense repertoires, with over 60% representing candidate systems. Experimental validation confirms that several candidates protect against viral infection. These defense systems frequently co-occur, suggesting potential synergistic interactions, and are broadly distributed across sediments. In response, viruses have evolved diverse anti-defense genes, and the concurrent presence of multiple viral and microbial systems highlights intricate coevolution. Functionally critical lineages, such as anaerobic methanotrophic archaea, sulfate-reducing bacteria, and diazotrophs, appear to modify their defensive strategies under ecological and environmental pressures; for example, sulfate-reducing bacteria harbor multiple Gabija systems while corresponding viruses carry anti-Gabija genes, illustrating specific coevolutionary adaptations. Overall, these findings underscore the critical role of virus-microbe interactions in shaping microbial metabolic functions and environmental adaptation in deep-sea ecosystems.

Similar content being viewed by others

Viruses in deep-sea cold seep sediments harbor diverse survival mechanisms and remain genetically conserved within species

Article Open access 12 August 2023

Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity

Article Open access 01 March 2021

Viral plasticity facilitates host diversity in challenging environments

Article Open access 29 August 2024

Data availability

The metagenomic data analyzed in this study are available from our previous publication65 and the NCBI BioProject ID PRJNA1169195 (Supplementary Data 17). The metatranscriptomic raw reads are available under NCBI BioProject IDs PRJNA738468, PRJNA739005, and PRJNA831433 (Supplementary Data 18). The non-redundant MAG catalogue and viral genomes are available under NCBI BioProject PRJNA950938. Accession numbers of the protein sequences used to construct the custom database for identifying anti-defence genes are provided in Supplementary Data 19. Protein sequences corresponding to defence systems, candidate defence systems, and anti-defence systems have been deposited in the GSA database under BioProject PRJCA052411105,106. Phylogenetic trees of GajAB based on amino acid sequences and protein structural analyses generated in this study are available on Figshare at (https://doi.org/10.6084/m9.figshare.27004438). All additional data supporting the findings of this study are provided within the article and its Supplementary Information files. Source data are provided with this paper.

Code availability

The present study did not generate codes, and mentioned tools used for the data analysis were applied with default parameters unless specified otherwise.

References

  1. Dong, X. et al. Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat. Commun. 10, 1816 (2019).

    Google Scholar 

  2. Joye, S. B. The geology and biogeochemistry of hydrocarbon seeps. Annu. Rev. Earth Planet. Sci. 48, 205–231 (2020).

    Google Scholar 

  3. Dong, X. et al. Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial populations at a Scotian Basin cold seep. Nat. Commun. 11, 5825 (2020).

    Google Scholar 

  4. Kleindienst, S. et al. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J. 8, 2029–2044 (2014).

    Google Scholar 

  5. Yang, X. Y., Shen, Z., Lin, Q. & Fu, T. M. Molecular basis of Gabija anti-phage supramolecular assemblies. Nature 15, 836 (2023).

    Google Scholar 

  6. Li, Z. et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 15, 2366–2378 (2021).

    Google Scholar 

  7. Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).

    Google Scholar 

  8. Millman, A. et al. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 30, 1556–1569 (2022).

    Google Scholar 

  9. Beavogui, A. et al. The defensome of complex bacterial communities. Nat. Commun. 15, 2146 (2024).

    Google Scholar 

  10. Peng, Y. et al. Viruses in deep-sea cold seep sediments harbor diverse survival mechanisms and remain genetically conserved within species. ISME J. 17, 1774–1784 (2023).

    Google Scholar 

  11. Georjon, H. & Bernheim, A. The highly diverse antiphage defence systems of bacteria. Nat. Rev. Microbiol. 21, 686–700 (2023).

    Google Scholar 

  12. Tock, M. R. & Dryden, D. T. F. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 8, 466–472 (2005).

    Google Scholar 

  13. Hille, F. et al. The biology of CRISPR-Cas: backward and forward. Cell 172, 1239–1259 (2018).

    Google Scholar 

  14. Cheng, R. et al. Prokaryotic Gabija complex senses and executes nucleotide depletion and DNA cleavage for antiviral defense. Cell Host Microbe 31, 1331–1344 (2023).

    Google Scholar 

  15. Rousset, F. et al. A conserved family of immune effectors cleaves cellular ATP upon viral infection. Cell 186, 3619–3631 (2023).

    Google Scholar 

  16. Lopatina, A., Tal, N. & Sorek, R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu. Rev. Virol. 7, 371–384 (2020).

    Google Scholar 

  17. Saenz, J. S., Seifert, J. & Rios-Galicia, B. Antiviral defense systems in the rumen microbiome. mSystems 10, e01521–e01524 (2025).

    Google Scholar 

  18. Piel, D. et al. Phage–host coevolution in natural populations. Nat. Microbiol. 7, 1075–1086 (2022).

    Google Scholar 

  19. Tesson, F. et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat. Commun. 13, 2561 (2022).

    Google Scholar 

  20. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).

    Google Scholar 

  21. Rocha, E. P. C. & Bikard, D. Microbial defenses against mobile genetic elements and viruses: Who defends whom from what? PLoS Biol. 20, e3001514 (2022).

    Google Scholar 

  22. Picton, D. M. et al. The phage defence island of a multidrug resistant plasmid uses both BREX and type IV restriction for complementary protection from viruses. Nucleic Acids Res. 49, 11257–11273 (2021).

    Google Scholar 

  23. Wu, Y. et al. Bacterial defense systems exhibit synergistic anti-phage activity. Cell Host Microbe 32, 557–572.e6 (2024).

    Google Scholar 

  24. Mayo-Muñoz, D., Pinilla-Redondo, R., Camara-Wilpert, S., Birkholz, N. & Fineran, P. C. Inhibitors of bacterial immune systems: discovery, mechanisms and applications. Nat. Rev. Genet. 25, 237–254 (2024).

    Google Scholar 

  25. Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

    Google Scholar 

  26. Duan, N., Hand, E., Pheko, M., Sharma, S. & Emiola, A. Structure-guided discovery of anti-CRISPR and anti-phage defense proteins. Nat. Commun. 15, 649 (2024).

    Google Scholar 

  27. Gussow, A. B. et al. Machine-learning approach expands the repertoire of anti-CRISPR protein families. Nat. Commun. 11, 3784 (2020).

    Google Scholar 

  28. Serfiotis-Mitsa, D. et al. The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against Type I DNA restriction systems in vivo but not in vitro. Nucleic Acids Res. 38, 1723–1737 (2010).

    Google Scholar 

  29. Hobbs, S. J. et al. Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity. Nature 605, 522–526 (2022).

    Google Scholar 

  30. Antine, S. P. et al. Structural basis of Gabija anti-phage defence and viral immune evasion. Nature 625, 360–365 (2024).

    Google Scholar 

  31. An, L. et al. Global diversity and ecological functions of viruses inhabiting oil reservoirs. Nat. Commun. 15, 6789 (2024).

    Google Scholar 

  32. Zhong, Z.-P. et al. Viral potential to modulate microbial methane metabolism varies by habitat. Nat. Commun. 15, 1857 (2024).

    Google Scholar 

  33. Payne, L. J. et al. Identification and classification of antiviral defence systems in bacteria and archaea with PADLOC reveals new system types. Nucleic Acids Res. 49, 10868–10878 (2021).

    Google Scholar 

  34. Payne,L. J., Hughes, T.C.D.,Fineran, P.C. & Jackson, S. A. New antiviral defences are genetically embedded within prokaryotic immune systems.bioRxivhttps://doi.org/10.1101/2024.01.29.577857 (2024).

    Google Scholar 

  35. Mayo-Munoz, D., Pinilla-Redondo, R., Birkholz, N. & Fineran, P. C. A host of armor: Prokaryotic immune strategies against mobile genetic elements. Cell Rep. 42, 112672 (2023).

    Google Scholar 

  36. Tesson, F. et al. A comprehensive resource for exploring antiphage defense: DefenseFinder webservice, wiki and databases. Nucleic Acids Res. 53, 13 (2025).

    Google Scholar 

  37. Leão, P. et al. Asgard archaea defense systems and their roles in the origin of eukaryotic immunity. Nat. Commun. 15, 6386 (2024).

    Google Scholar 

  38. Liu, Y., Botelho, J. & Iranzo, J. Timescales and genetic linkage explain the variable impact of defense systems on horizontal gene transfer. Genome Res. 35, 268–278 (2025).

    Google Scholar 

  39. Kogay, R., Wolf, Y. I. & Koonin, E. V. Defence systems and horizontal gene transfer in bacteria. Environ. Microbiol. 26, e16630 (2024).

    Google Scholar 

  40. Li, M. et al. Toxin-antitoxin RNA pairs safeguard CRISPR-Cas systems. Science 372, eabe5601 (2021).

    Google Scholar 

  41. Dupuis, M. -È, Villion, M., Magadán, A. H. & Moineau, S. CRISPR-Cas and restriction–modification systems are compatible and increase phage resistance. Nat. Commun. 4, 2087 (2013).

    Google Scholar 

  42. Maguin, P., Varble, A., Modell, J. W. & Marraffini, L. A. Cleavage of viral DNA by restriction endonucleases stimulates the type II CRISPR-Cas immune response. Mol. Cell 82, 907–919.e7 (2022).

    Google Scholar 

  43. Dong, X. et al. Evolutionary ecology of microbial populations inhabiting deep sea sediments associated with cold seeps. Nat. Commun. 14, 1127 (2023).

    Google Scholar 

  44. Dong, X. et al. A vast repertoire of secondary metabolites potentially influences community dynamics and biogeochemical processes in cold seeps. Sci. Adv. 10, eadl2281 (2024).

    Google Scholar 

  45. Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 1–23 (2020).

    Google Scholar 

  46. Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 1–13 (2021).

    Google Scholar 

  47. Camargo, A. P. et al. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42, 1303–1312 (2023).

    Google Scholar 

  48. Roux, S. et al. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).

    Google Scholar 

  49. Roux, S. et al. iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol. 21, e3002083 (2023).

    Google Scholar 

  50. Zhou, K. et al. Genomic and transcriptomic insights into complex virus-prokaryote interactions in marine biofilms. ISME J. 17, 2303–2312 (2023).

    Google Scholar 

  51. Silas, S. et al. Activation of bacterial programmed cell death by phage inhibitors of host immunity. Mol. Cell 85, 1838–1851.e10 (2025).

    Google Scholar 

  52. Yirmiya, E. et al. Phages overcome bacterial immunity via diverse anti-defence proteins. Nature 625, 352–359 (2024).

    Google Scholar 

  53. Yang, L. et al. Insights into the inhibition of type I-F CRISPR-Cas system by a multifunctional anti-CRISPR protein AcrIF24. Nat. Commun. 13, 1931 (2022).

    Google Scholar 

  54. Suresh, S. K., Murugan, K. & Sashital, D. G. Enzymatic anti-CRISPRs improve the bacteriophage arsenal. Nat. Struct. Mol. Biol. 26, 250–251 (2019).

    Google Scholar 

  55. Knott, G. J. et al. Broad-spectrum enzymatic inhibition of CRISPR-Cas12a. Nat. Struct. Mol. Biol. 26, 315–321 (2019).

    Google Scholar 

  56. Müller, A. L., Kjeldsen, K. U., Rattei, T., Pester, M. & Loy, A. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. ISME J. 9, 1152–1165 (2015).

    Google Scholar 

  57. Gu, Y. et al. Bacterial Shedu immune nucleases share a common enzymatic core regulated by diverse sensor domains. Mol. Cell 85, 523–536 (2024).

    Google Scholar 

  58. Dong, X. et al. Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold seep sediments. Nat. Commun. 13, 4885 (2022).

    Google Scholar 

  59. Sheng, Y. et al. Insertion sequence transposition inactivates CRISPR-Cas immunity. Nat. Commun. 14, 4366 (2023).

    Google Scholar 

  60. Koonin, E. V., Makarova, K. S. & Zhang, F. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 37, 67–78 (2017).

    Google Scholar 

  61. Martínez Arbas, S. et al. Roles of bacteriophages, plasmids and CRISPR immunity in microbial community dynamics revealed using time-series integrated meta-omics. Nat. Microbiol. 6, 123–135 (2021).

    Google Scholar 

  62. Sun, C. L., Thomas, B. C., Barrangou, R. & Banfield, J. F. Metagenomic reconstructions of bacterial CRISPR loci constrain population histories. ISME J. 10, 858–870 (2016).

    Google Scholar 

  63. Guerrero, L. D. et al. Long-run bacteria-phage coexistence dynamics under natural habitat conditions in an environmental biotechnology system. ISME J. 15, 636–648 (2021).

    Google Scholar 

  64. Huo, Y. et al. Structural and biochemical insights into the mechanism of the Gabija bacterial immunity system. Nat. Commun. 15, 836 (2024).

    Google Scholar 

  65. Han, Y. et al. A comprehensive genomic catalog from global cold seeps. Sci. Data 10, 596 (2023).

    Google Scholar 

  66. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    Google Scholar 

  67. Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).

    Google Scholar 

  68. Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evolution 32, 268–274 (2015).

    Google Scholar 

  69. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Google Scholar 

  70. Breitwieser, F. P. & Salzberg, S. L. Pavian: interactive analysis of metagenomics data for microbiome studies and pathogen identification. Bioinformatics 36, 1303–1304 (2020).

    Google Scholar 

  71. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 1–11 (2010).

    Google Scholar 

  72. Zhang, C. et al. The majority of microorganisms in gas hydrate-bearing subseafloor sediments ferment macromolecules. Microbiome 11, 37 (2023).

    Google Scholar 

  73. Xiao, X. et al. Metal-driven anaerobic oxidation of methane as an important methane sink in methanic cold seep sediments. Microbiol. Spectr. 11, e05337–05322 (2023).

    Google Scholar 

  74. Li, W. L. et al. Microbial ecology of sulfur cycling near the sulfate–methane transition of deep-sea cold seep sediments. Environ. Microbiol. 23, 6844–6858 (2021).

    Google Scholar 

  75. Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 1–13 (2018).

    Google Scholar 

  76. Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).

    Google Scholar 

  77. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Google Scholar 

  78. Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).

    Google Scholar 

  79. Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).

    Google Scholar 

  80. Ye, J., McGinnis, S. & Madden, T. L. BLAST: improvements for better sequence analysis. Nucleic Acids Res. 34, W6–W9 (2006).

    Google Scholar 

  81. Coutinho, F. H. et al. RaFAH: Host prediction for viruses of Bacteria and Archaea based on protein content. Patterns 2, 100274 (2021).

    Google Scholar 

  82. Galiez, C., Siebert, M., Enault, F., Vincent, J. & Söding, J. WIsH: who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics 33, 3113–3114 (2017).

    Google Scholar 

  83. Wang, W. et al. A network-based integrated framework for predicting virus–prokaryote interactions. NAR Genomics Bioinforma. 2, lqaa044 (2020).

    Google Scholar 

  84. Lu, C. et al. Prokaryotic virus host predictor: a Gaussian model for host prediction of prokaryotic viruses in metagenomics. BMC Biol. 19, 5 (2021).

    Google Scholar 

  85. Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246–W251 (2018).

    Google Scholar 

  86. Grandjean, M. et al. Gephi: Introduction To Network Analysis And Visualisation. International AAAI Conference on Weblogs and Social Media (2015).

  87. Yan, Y., Zheng, J., Zhang, X. & Yin, Y. dbAPIS: a database of anti-prokaryotic immune system genes. Nucleic Acids Res. 52, 419–425 (2023).

    Google Scholar 

  88. Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nature Methods 18, 366–368 (2021).

    Google Scholar 

  89. Mazzocco, A., Waddell, T.E., Lingohr, E. & Johnson, R.P. Enumeration of Bacteriophages Using The Small Drop Plaque Assay System. Bacteriophages: methods and protocols,1,isolation, characterization, and interactions, 81–85 (2009).

  90. Khedkar, S. et al. Landscape of mobile genetic elements and their antibiotic resistance cargo in prokaryotic genomes. Nucleic Acids Res. 50, 3155–3168 (2022).

    Google Scholar 

  91. Neukirchen, S. & Sousa, F. L. DiSCo: a sequence-based type-specific predictor of Dsr-dependent dissimilatory sulphur metabolism in microbial data. Microb. Genomics 7, 000603 (2021).

    Google Scholar 

  92. Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10, 33 (2022).

    Google Scholar 

  93. Tu, Q., Lin, L., Cheng, L., Deng, Y. & He, Z. NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics 35, 1040–1048 (2019).

    Google Scholar 

  94. Nakamura, T., Yamada, K. D., Tomii, K. & Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34, 2490–2492 (2018).

    Google Scholar 

  95. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Google Scholar 

  96. Chen, C. et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 16, 1733–1742 (2023).

    Google Scholar 

  97. Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).

    Google Scholar 

  98. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Google Scholar 

  99. Mirdita, M., Steinegger, M. & Söding, J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics 35, 2856–2858 (2019).

    Google Scholar 

  100. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Google Scholar 

  101. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Google Scholar 

  102. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Google Scholar 

  103. Van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).

    Google Scholar 

  104. DeLano, W. L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr 40, 82–92 (2002).

    Google Scholar 

  105. Members, C.-N. Partners database resources of the National Genomics Data Center, China National Center for Bioinformation in 2025. Nucleic Acids Res. 53, D30–D44 (2025).

    Google Scholar 

  106. Zhang, S. et al. The GSA family in 2025: a broadened sharing platform for multi-omics and multimodal data. Genomics, Proteom. Bioinforma. 23, qzaf072 (2025).

    Google Scholar 

Download references

Acknowledgements

The work was supported by National Key R&D Program of China (No. 2024YFC2816200 to X.D.), National Science Foundation of China (No. 42376115 to X.D., No. 42406109 to Y.H., No. 32470036 to R.C. and No. 32100025 to R.C.), Natural Science Foundation Project of Xiamen City (No. 3502Z202373076 to X.D.), Natural Science Foundation of Fujian Province (No. 2023J06042 to X.D.), Scientific Research Foundation of Third Institute of Oceanography, MNR (No. 2022025 to X.D., No. 2023022 to X.D. and No. 2025013 to Y.H.), Open Funding Project of State Key Laboratory of Microbial Metabolism (No. MMLKF23-05 to X.D.) and Fundamental Research Funds for the Central Universities (No. 2662025SYPY003 to R.C.).

Author information

Author notes
  1. These authors contributed equally: Yingchun Han, Jing Liao.

Authors and Affiliations

  1. Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China

    Yingchun Han, Jing Liao, Xinyue Liu & Xiyang Dong

  2. Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

    Chengpeng Li

  3. Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, China

    Fengmin Xing

  4. College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China

    Jiaxue Peng

  5. State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China

    Wentao Xie & Huahua Jian

  6. School of Life Sciences, College of Science, Eastern Institute of Technology, Ningbo, China

    Fabai Wu

  7. National Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China

    Rui Cheng

  8. National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China

    Rui Cheng

Authors
  1. Yingchun Han
    View author publications

    Search author on:PubMed Google Scholar

  2. Jing Liao
    View author publications

    Search author on:PubMed Google Scholar

  3. Chengpeng Li
    View author publications

    Search author on:PubMed Google Scholar

  4. Fengmin Xing
    View author publications

    Search author on:PubMed Google Scholar

  5. Jiaxue Peng
    View author publications

    Search author on:PubMed Google Scholar

  6. Xinyue Liu
    View author publications

    Search author on:PubMed Google Scholar

  7. Wentao Xie
    View author publications

    Search author on:PubMed Google Scholar

  8. Fabai Wu
    View author publications

    Search author on:PubMed Google Scholar

  9. Huahua Jian
    View author publications

    Search author on:PubMed Google Scholar

  10. Rui Cheng
    View author publications

    Search author on:PubMed Google Scholar

  11. Xiyang Dong
    View author publications

    Search author on:PubMed Google Scholar

Contributions

X.D. conceived and designed the study. Y.H. and J.L. performed the omics analyses. C.L. contributed to viral identification and classification. R.C. designed and conducted the experimental implementations. X.L. participated in the analysis of some metagenomic data. C.L., F.X., J.P. and W.X. actively participated in discussions and data interpretation. F.W. and H.J. provided valuable suggestions for manuscript revision. Y.H., J.L. and X.D. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Rui Cheng or Xiyang Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.”

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Descriptions of Additional Supplementary Files

Supplementary Data 1-19

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Liao, J., Li, C. et al. Co-occurrence of diverse defense systems shapes complex microbe-virus relationships in deep-sea cold seeps. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68174-6

Download citation

  • Received: 01 November 2024

  • Accepted: 19 December 2025

  • Published: 08 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68174-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology