Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Photo-driven bifunctional iron-catalyzed one-pot assembling of indoles from arylamines and alkanes/carboxylic acids
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 January 2026

Photo-driven bifunctional iron-catalyzed one-pot assembling of indoles from arylamines and alkanes/carboxylic acids

  • Lifang Wang1,
  • Shuyang Liu  ORCID: orcid.org/0009-0001-8246-49701,
  • Hui Zi1,
  • Ran Xu1,
  • Fangyi Qu1,
  • Wenlong He1,
  • Ziyu Gan1,
  • Jian Gao1 &
  • …
  • Yunhe Jin  ORCID: orcid.org/0000-0003-0626-45871 

Nature Communications , Article number:  (2026) Cite this article

  • 2873 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Synthetic chemistry methodology
  • Photocatalysis

Abstract

Indoles are privileged structural motifs in N-heterocyclic chemistry, while developing a general and facile platform capable of directly transforming commodity chemicals into multi-functionalized indoles persists as an unmet challenge. Herein, we present a photo-driven bifunctional iron-catalyzed strategy for one-pot synthesis of indoles from readily available arylamines and alkanes/carboxylic acids. By leveraging a synergistic combination of iron-based photocatalysis via ligand-to-metal charge transfer pathway and Lewis acid catalysis, the method enables efficient C(sp3)–H activation or decarboxylation followed by sigmatropic rearrangement cyclization under mild conditions. The protocol demonstrates broad substrate scope (152 examples), excellent functional group tolerance, and high yields (up to 95%), facilitating the direct construction of diverse indole scaffolds without pre-functionalization. Notably, the methodology can be successfully applied to the concise and scale-up total synthesis of several pharmacologically relevant indole derivatives, including Iprindole, Mebhydrolin, Melatonin, and A-FABP inhibitor, underscoring its practicality and potential for industrial application in pharmaceutical manufacturing.

Similar content being viewed by others

Photoredox-catalyzed diastereoselective dearomative prenylation and reverse-prenylation of electron-deficient indole derivatives

Article Open access 30 June 2023

Organocatalytic cycloaddition of alkynylindoles with azonaphthalenes for atroposelective construction of indole-based biaryls

Article Open access 02 February 2022

Photocatalytic α-arylation of cyclic ketones

Article 03 February 2022

Data availability

All data that support the findings of this study are provided within the paper and its supplementary information files, and are also available from the corresponding author upon request.

References

  1. Chen, F.-E. & Huang, J. Reserpine: a challenge for total synthesis of natural products. Chem. Rev. 105, 4671–4706 (2005).

    Google Scholar 

  2. Heravi, M. M., Rohani, S., Zadsirjan, V. & Zahedi, N. Fischer indole synthesis applied to the total synthesis of natural products. RSC Adv. 7, 52852–52887 (2017).

    Google Scholar 

  3. Liu, X.-Y. & Qin, Y. Indole alkaloid synthesis facilitated by photoredox catalytic radical cascade reactions. Acc. Chem. Res. 52, 1877–1891 (2019).

    Google Scholar 

  4. Kochanowska-Karamyan, A. J. & Hamann, M. T. Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chem. Rev. 110, 4489–4497 (2010).

    Google Scholar 

  5. Thanikachalam, P. V., Maurya, R. K., Garg, V. & Monga, V. An insight into the medicinal perspective of synthetic analogs of indole: a review. Eur. J. Med. Chem. 180, 562–612 (2019).

    Google Scholar 

  6. Heravi, M. M. & Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Adv. 10, 44247–44311 (2020).

    Google Scholar 

  7. Gore, P., Hughes, G. & Ritchie, E. The Fischer indole synthesis. Nature 164, 835–835 (1949).

    Google Scholar 

  8. Humphrey, G. R. & Kuethe, J. T. Practical methodologies for the synthesis of indoles. Chem. Rev. 106, 2875–2911 (2006).

    Google Scholar 

  9. Taber, D. F. & Tirunahari, P. K. Indole synthesis: a review and proposed classification. Tetrahedron 67, 7195–7210 (2011).

    Google Scholar 

  10. Sahu, S., Banerjee, A., Kundu, S., Bhattacharyya, A. & Maji, M. S. Synthesis of functionalized indoles via cascade benzannulation strategies: a decade’s overview. Org. Biomol. Chem. 20, 3029–3042 (2022).

    Google Scholar 

  11. Bugaenko, D. I., Karchava, A. V. & Yurovskaya, M. A. Synthesis of indoles: recent advances. Russ. Chem. Rev. 88, 99–159 (2019).

    Google Scholar 

  12. Inman, M. & Moody, C. J. Indole synthesis–something old, something new. Chem. Sci. 4, 29–41 (2013).

    Google Scholar 

  13. Matcha, K. & Antonchick, A. P. Cascade multicomponent synthesis of indoles, pyrazoles, and pyridazinones by functionalization of alkenes. Angew. Chem. Int. Ed. 53, 11960–11964 (2014).

    Google Scholar 

  14. Yu, X.-L., Chen, J.-R., Chen, D.-Z. & Xiao, W.-J. Visible-light-induced photocatalytic azotrifluoromethylation of alkenes with aryldiazonium salts and sodium triflinate. Chem. Commun. 52, 8275–8278 (2016).

    Google Scholar 

  15. Haag, B. A., Zhang, Z.-G., Li, J.-S. & Knochel, P. Fischer indole synthesis with organozinc reagents. Angew. Chem. Int. Ed. 49, 9513–9516 (2010).

    Google Scholar 

  16. Govaerts, S., Nakamura, K., Constantin, T. & Leonori, D. A halogen-atom transfer (XAT)-based approach to indole synthesis using aryl diazonium salts and alkyl iodides. Org. Lett. 24, 7883–7887 (2022).

    Google Scholar 

  17. Zhang, J. et al. Transition-metal free C–N bond formation from alkyl iodides and diazonium salts via halogen-atom transfer. Nat. Commun. 13, 7961 (2022).

    Google Scholar 

  18. Angnes, R. A., Potnis, C., Liang, S., Correia, C. R. D. & Hammond, G. B. Photoredox-catalyzed synthesis of alkylaryldiazenes: formal deformylative C–N bond formation with alkyl radicals. J. Org. Chem. 85, 4153–4164 (2020).

    Google Scholar 

  19. Heitz, D. R., Tellis, J. C. & Molander, G. A. Photochemical nickel-catalyzed C–H arylation: synthetic scope and mechanistic investigations. J. Am. Chem. Soc. 138, 12715–12718 (2016).

    Google Scholar 

  20. Abderrazak, Y., Bhattacharyya, A. & Reiser, O. Visible-light-induced homolysis of earth-abundant metal-substrate complexes: a complementary activation strategy in photoredox catalysis. Angew. Chem. Int. Ed. 60, 21100–21115 (2021).

    Google Scholar 

  21. Juliá, F. Ligand-to-metal charge transfer (LMCT) photochemistry at 3d-metal complexes: an emerging tool for sustainable organic synthesis. ChemCatChem 14, e202200916 (2022).

    Google Scholar 

  22. Li, C., Kong, X. Y., Tan, Z. H., Yang, C. T. & Soo, H. S. Emergence of ligand-to-metal charge transfer in homogeneous photocatalysis and photosensitization. Chem. Phys. Rev. 3, 021303 (2022).

    Google Scholar 

  23. Chang, L. et al. Resurgence and advancement of photochemical hydrogen atom transfer processes in selective alkane functionalizations. Chem. Sci. 14, 6841–6859 (2023).

    Google Scholar 

  24. Ji, C.-L. et al. Photoinduced late-stage radical decarboxylative and deoxygenative coupling of complex carboxylic acids and their derivatives. Angew. Chem. Int. Ed. 64, e202423113 (2025).

    Google Scholar 

  25. Holmberg-Douglas, N. & Nicewicz, D. A. Photoredox-catalyzed C–H functionalization reactions. Chem. Rev. 122, 1925–2016 (2021).

    Google Scholar 

  26. Dalton, T., Faber, T. & Glorius, F. C–H activation: toward sustainability and applications. ACS Cent. Sci. 7, 245–261 (2021).

    Google Scholar 

  27. Capaldo, L., Ravelli, D. & Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C–H bonds elaboration. Chem. Rev. 122, 1875–1924 (2021).

    Google Scholar 

  28. Zhang, J. & Rueping, M. Metallaphotoredox catalysis for sp3C–H functionalizations through hydrogen atom transfer (HAT). Chem. Soc. Rev. 52, 4099–4120 (2023).

    Google Scholar 

  29. Hu, A., Guo, J.-J., Pan, H. & Zuo, Z. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. Science 361, 668–672 (2018).

    Google Scholar 

  30. Wen, L. et al. Multiplicative enhancement of stereoenrichment by a single catalyst for deracemization of alcohols. Science 382, 458–464 (2023).

    Google Scholar 

  31. Campbell, B. M. et al. Electrophotocatalytic perfluoroalkylation by LMCT excitation of Ag(II) perfluoroalkyl carboxylates. Science 383, 279–284 (2024).

    Google Scholar 

  32. Chinchole, A., Henriquez, M. A., Cortes-Arriagada, D., Cabrera, A. R. & Reiser, O. Iron(III)-light-induced homolysis: a dual photocatalytic approach for the hydroacylation of alkenes using acyl radicals via direct HAT from aldehydes. ACS Catal. 12, 13549–13554 (2022).

    Google Scholar 

  33. Li, Q. Y. et al. Decarboxylative cross-nucleophile coupling via ligand-to-metal charge transfer photoexcitation of Cu(II) carboxylates. Nat. Chem. 14, 94–99 (2022).

    Google Scholar 

  34. Lutovsky, G. A., Gockel, S. N., Bundesmann, M. W., Bagley, S. W. & Yoon, T. P. Iron-mediated modular decarboxylative cross-nucleophile coupling. Chem 9, 1610–1621 (2023).

    Google Scholar 

  35. Wang, M., Huang, Y. & Hu, P. Terminal C(sp3)–H borylation through intermolecular radical sampling. Science 383, 537–544 (2024).

    Google Scholar 

  36. Wenger, O. S. Photoactive complexes with earth-abundant metals. J. Am. Chem. Soc. 140, 13522–13533 (2018).

    Google Scholar 

  37. de Groot, L. H., Ilic, A., Schwarz, J. & Wärnmark, K. Iron photoredox catalysis–past, present, and future. J. Am. Chem. Soc. 145, 9369–9388 (2023).

    Google Scholar 

  38. Zhang, Z. et al. Controllable C–H alkylation of polyethers via iron photocatalysis. J. Am. Chem. Soc. 145, 7612–7620 (2023).

    Google Scholar 

  39. Tu, J.-L., Hu, A.-M., Guo, L. & Xia, W. Iron-catalyzed C.(sp3)–H borylation, thiolation, and sulfinylation enabled by photoinduced ligand-to-metal charge transfer. J. Am. Chem. Soc. 145, 7600–7611 (2023).

    Google Scholar 

  40. Cao, Y., Huang, C. & Lu, Q. Photoelectrochemically driven iron-catalysed C(sp3)−H borylation of alkanes. Nat. Synth. 3, 537–544 (2024).

    Google Scholar 

  41. Jin, Y. et al. Convenient C(sp3)–H bond functionalisation of light alkanes and other compounds by iron photocatalysis. Green Chem. 23, 6984–6989 (2021).

    Google Scholar 

  42. Jin, Y. et al. Photo-induced direct alkynylation of methane and other light alkanes by iron catalysis. Green Chem. 23, 9406–9411 (2021).

    Google Scholar 

  43. Zhang, Y. et al. Bifunctional iron-catalyzed alkyne Z-selective hydroalkylation and tandem Z-E inversion via radical molding and flipping. Nat. Commun. 15, 8619 (2024).

    Google Scholar 

  44. Liu, S. et al. Selective arene photonitration via iron-complex β-homolysis. JACS Au 4, 4899–4909 (2024).

    Google Scholar 

  45. Liu, S. et al. Iron-catalyzed Ipso-nitration of aryl borides via visible-light-induced β-homolysis. ACS Catal. 15, 3306–3313 (2025).

    Google Scholar 

  46. Geraci, A. Baudoin O. Fe-Catalyzed α-C(sp3)−H amination of N-heterocycles. Angew. Chem. Int. Ed. 64, e202417414 (2025).

    Google Scholar 

  47. Song, G. et al. Light-promoted efficient generation of Fe(I) to initiate amination. ACS Catal. 14, 4968–4974 (2024).

    Google Scholar 

  48. Tang, S.-X., Huang, G.-W., Cheng, J.-K. & Wang, F. meta-Selective C–H amination of aryl amines via protonation-enabled polarity inversion in homolytic aromatic substitution. CCS Chem. 7, 3606–3615 (2025).

    Google Scholar 

  49. Fürstner, A. Iron catalysis in organic synthesis: a critical assessment of what it takes to make this base metal a multitasking champion. ACS Cent. Sci. 2, 778–789 (2016).

    Google Scholar 

  50. Riehl, P. S. & Schindler, C. S. Lewis acid-catalyzed carbonyl–olefin metathesis. Trends Chem. 1, 272–273 (2019).

    Google Scholar 

  51. Ludwig, J. R. S. C. S. lewis acid catalyzed carbonyl-olefin metathesis. Synlett 28, 1501–1509 (2017).

    Google Scholar 

  52. Tu, J.-L., Zhu, Y., Li, P. & Huang, B. Visible-light induced direct C(sp3)–H functionalization: recent advances and future prospects. Org. Chem. Front. 11, 5278–5305 (2024).

    Google Scholar 

  53. Jin, Y. & Fu, H. Visible-light photoredox decarboxylative couplings. Asian J. Org. Chem. 6, 368–385 (2017).

    Google Scholar 

  54. Xuan, J., Zhang, Z.-G. & Xiao, W.-J. Visible-light-induced decarboxylative functionalization of carboxylic acids and their derivatives. Angew. Chem. Int. Ed. 54, 15632–15641 (2015).

    Google Scholar 

  55. Varenikov, A., Shapiro, E. & Gandelman, M. Decarboxylative halogenation of organic compounds. Chem. Rev. 121, 412–484 (2020).

    Google Scholar 

  56. Kitcatt, D. M., Nicolle, S. & Lee, A.-L. Direct decarboxylative Giese reactions. Chem. Soc. Rev. 51, 1415–1453 (2022).

    Google Scholar 

  57. Li, Z., Wang, X., Xia, S. & Jin, J. Ligand-accelerated iron photocatalysis enabling decarboxylative alkylation of heteroarenes. Org. Lett. 21, 4259–4265 (2019).

    Google Scholar 

  58. Fernández-García, S., Chantzakou, V. O. & Juliá-Hernández, F. Direct decarboxylation of trifluoroacetates enabled by iron photocatalysis. Angew. Chem. Int. Ed. 63, e202311984 (2024).

    Google Scholar 

  59. Jiang, X. et al. Iron photocatalysis via Brønsted acid-unlocked ligand-to-metal charge transfer. Nat. Commun. 15, 6115 (2024).

    Google Scholar 

  60. Stempel, E. & Gaich, T. Cyclohepta[b]indoles: a privileged structure motif in natural products and drug design. Acc. Chem. Res. 49, 2390–2402 (2016).

    Google Scholar 

  61. Talaz, O. & Saracoglu, N. A study on the synthesis of structural analogs of bis-indole alkaloid caulerpin: a step-by-step synthesis of a cyclic indole-tetramer. Tetrahedron 66, 1902–1910 (2010).

    Google Scholar 

  62. Zhu, C., Zhang, X., Lian, X. & Ma, S. One-pot approach to installing eight-membered rings onto indoles. Angew. Chem. 51, 7817–7820 (2012).

    Google Scholar 

  63. Butler, K. V. et al. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc. 132, 10842–10846 (2010).

    Google Scholar 

  64. Li, J., Lai, Z., Zhang, W., Zeng, L. & Cui, S. Modular assembly of indole alkaloids enabled by multicomponent reaction. Nat. Commun. 14, 4806 (2023).

    Google Scholar 

  65. Xiong, R. et al. Design, synthesis and biological evaluation of tryptamine salicylic acid derivatives as potential antitumor agents. MedChemComm 10, 573–583 (2019).

    Google Scholar 

  66. Yokoo, H., Ohsaki, A., Kagechika, H. & Hirano, T. Structural development of canthin-5, 6-dione moiety as a fluorescent dye and its application to novel fluorescent sensors. Tetrahedron 72, 5872–5879 (2016).

    Google Scholar 

  67. Barf, T. et al. N-Benzyl-indolo carboxylic acids: design and synthesis of potent and selective adipocyte fatty-acid binding protein (A-FABP) inhibitors. Bioorg. Med. Chem. Lett. 19, 1745–1748 (2009).

    Google Scholar 

  68. Dawande, S. G. et al. Rhodium enalcarbenoids: direct synthesis of indoles by rhodium (II)-catalyzed [4+2] benzannulation of pyrroles. Angew. Chem. Int. Ed. 53, 4076–4080 (2014).

    Google Scholar 

  69. Buettner, G. R. Spin trapping: ESR parameters of spin adducts 1474 1528V. Free Radic. Biol. Med. 3, 259–303 (1987).

    Google Scholar 

  70. Han, M. et al. Oxygen vacancy boosts nitrogen-centered radical coupling initiated by primary amine electrooxidation. J. Am. Chem. Soc. 146, 33893–33902 (2024).

    Google Scholar 

  71. Simmons, E. M. & Hartwig, J. F. On the interpretation of deuterium kinetic isotope effects in C–H bond functionalizations by transition-metal complexes. Angew. Chem. Int. Ed. 51, 3066–3072 (2012).

    Google Scholar 

  72. Innocent, M., Lalande, G., Cam, F., Aubineau, T. & Guérinot, A. Iron-catalyzed, light-driven decarboxylative oxygenation. Eur. J. Org. Chem. 26, e202300892 (2023).

    Google Scholar 

  73. Blank, O. & Heinrich, M. R. Carbodiazenylation of olefins by radical iodine transfer and addition to arenediazonium salts. Eur. J. Org. Chem. 2006, 4331–4334 (2006).

    Google Scholar 

  74. Gavelle, S., Innocent, M., Aubineau, T. & Guérinot, A. Photoinduced ligand-to-metal charge transfer of carboxylates: decarboxylative functionalizations, lactonizations, and rearrangements. Adv. Synth. Catal. 364, 4189–4230 (2022).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the assistance of Dr. Huihui Wan and Dr. Yuming Sun in the DUT Instrumental Analysis Center for their great help in HRMS analysis. We acknowledge the support of the Natural Science Foundation of Liaoning Province (2024-MSLH-080 for Y.J.), the National College Student Innovation Training Program (20251014110304 for J.G., 20241014110019 for Y.J.), the Fundamental Research Funds for the Central Universities (DUT24BK042 for Y.J.), and the Young Teachers Incentive Project from the School of Chemistry @DUT (for Y.J.).

Author information

Authors and Affiliations

  1. State Key Laboratory of Fine Chemicals, School of Chemisftry, Dalian University of Technology, Dalian, China

    Lifang Wang, Shuyang Liu, Hui Zi, Ran Xu, Fangyi Qu, Wenlong He, Ziyu Gan, Jian Gao & Yunhe Jin

Authors
  1. Lifang Wang
    View author publications

    Search author on:PubMed Google Scholar

  2. Shuyang Liu
    View author publications

    Search author on:PubMed Google Scholar

  3. Hui Zi
    View author publications

    Search author on:PubMed Google Scholar

  4. Ran Xu
    View author publications

    Search author on:PubMed Google Scholar

  5. Fangyi Qu
    View author publications

    Search author on:PubMed Google Scholar

  6. Wenlong He
    View author publications

    Search author on:PubMed Google Scholar

  7. Ziyu Gan
    View author publications

    Search author on:PubMed Google Scholar

  8. Jian Gao
    View author publications

    Search author on:PubMed Google Scholar

  9. Yunhe Jin
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.J. led this project. L.W. and Y.J. conceived and designed the experiments. L.W., S.L., H.Z., R.X., F.Q., W.H., Z.G., and J.G. performed and analyzed the experiments. L.W., S.L., and Y.J. wrote and revised the manuscript. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Yunhe Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Carlos Roque Correia and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, S., Zi, H. et al. Photo-driven bifunctional iron-catalyzed one-pot assembling of indoles from arylamines and alkanes/carboxylic acids. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68208-z

Download citation

  • Received: 18 October 2025

  • Accepted: 22 December 2025

  • Published: 08 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68208-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing