Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Precise gene regulation through transcriptional repression is essential for Plasmodium berghei asexual blood stage development
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 January 2026

Precise gene regulation through transcriptional repression is essential for Plasmodium berghei asexual blood stage development

  • Tsubasa Nishi  ORCID: orcid.org/0000-0002-0501-04061,
  • Izumi Kaneko2,
  • Shiroh Iwanaga  ORCID: orcid.org/0000-0002-4394-72671 &
  • …
  • Masao Yuda  ORCID: orcid.org/0000-0002-3416-51322 

Nature Communications , Article number:  (2026) Cite this article

  • 2171 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Parasite development
  • Transcriptional regulatory elements

Abstract

Malaria is caused by the proliferation of Plasmodium parasites in the vertebrate host blood stream through repeated cycles of asexual multiplication inside erythrocytes. During these cycles, parasites dynamically change their transcriptome at each developmental step to express genes exactly when required; however, the mechanisms regulating these transcriptomic changes remain unclear. In this study, we reveal that the AP2-family transcription factor PbAP2-TR is essential for the asexual blood stage development of the rodent malaria parasite Plasmodium berghei, as a transcriptional repressor. Conditional knockout of pbap2-tr causes developmental arrest at the trophozoite stage, i.e., the cell growth phase of asexual blood stage development. The expression of PbAP2-TR target genes is upregulated in pbap2-tr-knockout parasites, and introduction of mutations into the binding motifs increases the promoter activity of the target genes. Time-course transcriptome analysis shows that PbAP2-TR is largely responsible for the transcriptional downregulation from early to late trophozoite development. Furthermore, our data demonstrate that PbAP2-TR recruits a putative chromatin remodeler, PbMORC, as a co-factor. These results indicate that transcriptional repression by PbAP2-TR-PbMORC complex contributes on precise control of transcription peak patterns during the asexual blood stage development.

Similar content being viewed by others

DNA-binding protein PfAP2-P regulates parasite pathogenesis during malaria parasite blood stages

Article Open access 26 October 2023

Transcriptome analysis reveals a de novo DNA element that may interact with chromatin-associated proteins in Plasmodium berghei during erythrocytic development

Article Open access 28 May 2025

Constitutive expression of Cas9 and rapamycin-inducible Cre recombinase facilitates conditional genome editing in Plasmodium berghei

Article Open access 23 January 2025

Data availability

All ChIP-sequencing, RNA-sequencing and DIP-sequencing data generated in this study have been deposited in the Gene Expression Omnibus database under accession numbers GSE290541, GSE290542, GSE290544, and GSE290545. All MS/MS data for RIME have been deposited in the ProteomeXchange Consortium under dataset PXD067426. Source data are provided with this paper.

References

  1. World Health Organization. World malaria report 2024. https://www.who.int/publications/i/item/9789240104440 (2024).

  2. Bannister, L. H. & Mitchell, G. H. The malaria merozoite, forty years on. Parasitology 136, 1435–1444 (2009).

    Google Scholar 

  3. Venugopal, K., Hentzschel, F., Valkiūnas, G. & Marti, M. Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nat. Rev. Microbiol. 2020 18, 177–189 (2020).

    Google Scholar 

  4. Voß, Y., Klaus, S., Guizetti, J. & Ganter, M. Plasmodium schizogony, a chronology of the parasite’s cell cycle in the blood stage. PLoS Pathog. 19, e1011157 (2023).

    Google Scholar 

  5. Bannister, L. H., Hopkins, J. M., Fowler, R. E., Krishna, S. & Mitchell, G. H. A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages. Parasitol. Today 16, 427–433 (2000).

    Google Scholar 

  6. LANGRETH, S. G., JENSEN, J. B., REESE, R. T. & TRAGER, W. Fine Structure of Human Malaria In Vitro. J. Protozool. 25, 443–452 (1978).

    Google Scholar 

  7. Marti, M., Good, R. T., Rug, M., Knuepfer, E. & Cowman, A. F. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science (1979) 306, 1930–1933 (2004).

    Google Scholar 

  8. Olszewski, K. L. et al. Host-parasite interactions revealed by plasmodium falciparum metabolomics. Cell Host Microbe 5, 191–199 (2009).

    Google Scholar 

  9. Rinehart, M. T., Park, H. S., Walzer, K. A., Chi, J. T. A. & Wax, A. Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy. Sci. Rep. 2016 6, 1–9 (2016).

    Google Scholar 

  10. Lu, X. M. et al. Nascent RNA sequencing reveals mechanisms of gene regulation in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res 45, 7825–7840 (2017).

    Google Scholar 

  11. Arnot, D. E., Ronander, E. & Bengtsson, D. C. The progression of the intra-erythrocytic cell cycle of Plasmodium falciparum and the role of the centriolar plaques in asynchronous mitotic division during schizogony. Int J. Parasitol. 41, 71–80 (2011).

    Google Scholar 

  12. Klaus, S. et al. Asynchronous nuclear cycles in multinucleated Plasmodium falciparum facilitate rapid proliferation. Sci. Adv. 8, 5362 (2022).

    Google Scholar 

  13. Rudlaff, R. M., Kraemer, S., Marshman, J. & Dvorin, J. D. Three-dimensional ultrastructure of Plasmodium falciparum throughout cytokinesis. PLoS Pathog. 16, e1008587 (2020).

    Google Scholar 

  14. Bozdech, Z. et al. The transcriptome of the intraerythrocytic developmental cycle of plasmodium falciparum. PLoS Biol. 1, e5 (2003).

    Google Scholar 

  15. Otto, T. D. et al. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Med. 12, 1–18 (2014).

    Google Scholar 

  16. Otto, T. D. et al. New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Mol. Microbiol 76, 12–24 (2010).

    Google Scholar 

  17. Toenhake, C. G. et al. Chromatin accessibility-based characterization of the gene regulatory network underlying plasmodium falciparum blood-stage development. Cell Host Microbe 23, 557–569.e9 (2018).

    Google Scholar 

  18. Watzlowik, M. T. et al. Plasmodium blood stage development requires the chromatin remodeller Snf2L. Nature 2025 639, 1069–1075 (2025). 639:8056.

    Google Scholar 

  19. Balaji, S., Madan Babu, M., Iyer, L. M. & Aravind, L. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res. 33, 3994–4006 (2005).

    Google Scholar 

  20. Singhal, R., Prata, I. O., Bonnell, V. A. & Llinás, M. Unraveling the complexities of ApiAP2 regulation in Plasmodium falciparum. Trends Parasitol. 40, 987–999 (2024).

    Google Scholar 

  21. Santos, J. M. et al. Red Blood Cell Invasion by the Malaria Parasite Is Coordinated by the PfAP2-I Transcription Factor. Cell Host Microbe 21, 731–741.e10 (2017).

    Google Scholar 

  22. Nishi, T., Kaneko, I. & Yuda, M. SIP2 is the master transcription factor of Plasmodium merozoite formation. Sci. Adv. 11, 5458 (2025).

    Google Scholar 

  23. Yuda, M., Sakaida, H. & Chinzei, Y. Targeted disruption of the Plasmodium berghei CTRP gene reveals its essential role in malaria infection of the vector mosquito. J. Exp. Med. 190, 1711–1715 (1999).

    Google Scholar 

  24. Modrzynska, K. et al. A Knockout Screen of ApiAP2 Genes Reveals Networks of Interacting Transcriptional Regulators Controlling the Plasmodium Life Cycle. Cell Host Microbe 21, 11–22 (2017).

    Google Scholar 

  25. Bushell, E. et al. Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes. Cell 170, 260–272.e8 (2017).

    Google Scholar 

  26. Zhang, C. et al. Systematic CRISPR-Cas9-mediated modifications of plasmodium yoelii ApiAP2 genes reveal functional insights into parasite development. mBio 8, 1–17 (2017).

    Google Scholar 

  27. Shinzawa, N. et al. Improvement of CRISPR/Cas9 system by transfecting Cas9-expressing Plasmodium berghei with linear donor template. Commun. Biol. 2020 3, 1–13 (2020).

    Google Scholar 

  28. Jullien, N., Sampieri, F., Enjalbert, A. & Herman, J. P. Regulation of Cre recombinase by ligand-induced complementation of inactive fragments. Nucleic Acids Res 31, e131–e131 (2003).

    Google Scholar 

  29. Knuepfer, E., Napiorkowska, M., Van Ooij, C. & Holder, A. A. Generating conditional gene knockouts in Plasmodium – a toolkit to produce stable DiCre recombinase-expressing parasite lines using CRISPR/Cas9. Sci. Rep. 2017 7, 1–12 (2017).

    Google Scholar 

  30. Shang, X. et al. A cascade of transcriptional repression determines sexual commitment and development in Plasmodium falciparum. Nucleic Acids Res 49, 9264–9279 (2021).

    Google Scholar 

  31. Campbell, T. L., de Silva, E. K., Olszewski, K. L., Elemento, O. & Llinás, M. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite. PLoS Pathog. 6, e1001165 (2010).

    Google Scholar 

  32. Alvarez-Jarreta, J. et al. VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center in 2023. Nucleic Acids Res 52, D808–D816 (2024).

    Google Scholar 

  33. Painter, H. J. et al. Genome-wide real-time in vivo transcriptional dynamics during Plasmodium falciparum blood-stage development. Nat. Commun. 2018 9, 1–12 (2018).

    Google Scholar 

  34. Singh, M. K. et al. A Plasmodium falciparum MORC protein complex modulates epigenetic control of gene expression through interaction with heterochromatin. Elife 12, RP92201 (2024).

    Google Scholar 

  35. Chahine, Z. M. et al. PfMORC protein regulates chromatin accessibility and transcriptional repression in the human malaria parasite, Plasmodium falciparum. Elife 12, RP92499 (2024).

    Google Scholar 

  36. Subudhi, A. K. et al. DNA-binding protein PfAP2-P regulates parasite pathogenesis during malaria parasite blood stages. Nat. Microbiol. 2023 8, 2154–2169 (2023).

    Google Scholar 

  37. Yuda, M., Iwanaga, S., Kaneko, I. & Kato, T. Global transcriptional repression: An initial and essential step for Plasmodium sexual development. Proc. Natl. Acad. Sci. USA 112, 12824–12829 (2015).

    Google Scholar 

  38. Singh, S. et al. The PfAP2-G2 transcription factor is a critical regulator of gametocyte maturation. Mol. Microbiol 115, 1005–1024 (2021).

    Google Scholar 

  39. Nishi, T., Kaneko, I., Iwanaga, S. & Yuda, M. PbAP2-FG2 and PbAP2R-2 function together as a transcriptional repressor complex essential for Plasmodium female development. PLoS Pathog. 19, e1010890 (2023).

    Google Scholar 

  40. Sierra-Miranda, M. et al. PfAP2Tel, harbouring a non-canonical DNA-binding AP2 domain, binds to Plasmodium falciparum telomeres. Cell Microbiol 19, e12742 (2017).

    Google Scholar 

  41. Martins, R. M. et al. An ApiAP2 member regulates expression of clonally variant genes of the human malaria parasite Plasmodium falciparum. Sci. Rep. 2017 7, 1–10 (2017).

    Google Scholar 

  42. Cubillos, E. F. G., Prata, I. O., Fotoran, W. L., Ranford-Cartwright, L. & Wunderlich, G. The Transcription Factor PfAP2-O Influences Virulence Gene Transcription and Sexual Development in Plasmodium falciparum. Front Cell Infect. Microbiol 11, 669088 (2021).

    Google Scholar 

  43. Guizetti, J. & Scherf, A. Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum. Cell Microbiol 15, 718–726 (2013).

    Google Scholar 

  44. Fraschka, S. A. et al. Comparative heterochromatin profiling reveals conserved and unique epigenome signatures linked to adaptation and development of malaria parasites. Cell Host Microbe 23, 407–420.e8 (2018).

    Google Scholar 

  45. Gomes, A. R. et al. A transcriptional switch controls sex determination in Plasmodium falciparum. Nature 2022 612, 528–533 (2022). 7940 612.

    Google Scholar 

  46. Schmoller, K. M. & Skotheim, J. M. The biosynthetic basis of cell size control. Trends Cell Biol. 25, 793–802 (2015).

    Google Scholar 

  47. Gilson, P. R., Chisholm, S. A., Crabb, B. S. & de Koning-Ward, T. F. Host cell remodelling in malaria parasites: a new pool of potential drug targets. Int J. Parasitol. 47, 119–127 (2017).

    Google Scholar 

  48. Counihan, N. A., Modak, J. K. & de Koning-Ward, T. F. How malaria parasites acquire nutrients from their host. Front Cell Dev. Biol. 9, 649184 (2021).

    Google Scholar 

  49. Wichers, J. S. et al. Dissecting the gene expression, localization, membrane topology, and function of the plasmodium falciparum STEVOR protein family. mBio 10, e01500-19 (2019).

    Google Scholar 

  50. Kono, M. et al. Pellicle formation in the malaria parasite. J. Cell Sci. 129, 673–680 (2016).

    Google Scholar 

  51. Yahata, K. et al. Gliding motility of Plasmodium merozoites. Proc. Natl. Acad. Sci. USA 118, e2114442118 (2021).

    Google Scholar 

  52. He, L. et al. Plasmodium falciparum GAP40 plays an essential role in merozoite invasion and gametocytogenesis. Microbiol Spectr. 11, e0143423 (2023).

    Google Scholar 

  53. Koch, A. et al. MORC proteins: Novel players in plant and animal health. Front Plant Sci. 8, 1720 (2017).

    Google Scholar 

  54. Farhat, D. C. et al. A MORC-driven transcriptional switch controls Toxoplasma developmental trajectories and sexual commitment. Nat. Microbiol 5, 570 (2020).

    Google Scholar 

  55. Fan, F., Xue, L., Yin, X., Gupta, N. & Shen, B. AP2XII-1 is a negative regulator of merogony and presexual commitment in Toxoplasma gondii. mBio 14, e0178523 (2023).

    Google Scholar 

  56. Antunes, A. V. et al. In vitro production of cat-restricted Toxoplasma pre-sexual stages. Nature 2023 625, 366–376 (2023). 7994 625.

    Google Scholar 

  57. Wang, J. L. et al. The transcription factor AP2XI-2 is a key negative regulator of Toxoplasma gondii merogony. Nat. Commun. 2024 15, 1–17 (2024).

    Google Scholar 

  58. Xue, L. et al. A novel nuclear protein complex controlling the expression of developmentally regulated genes in Toxoplasma Gondii. Adv. Sci. 12, 2412000 (2025).

    Google Scholar 

  59. Sinha, A. et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature 507, 253–257 (2014).

    Google Scholar 

  60. Kafsack, B. F. C. et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507, 248–252 (2014).

    Google Scholar 

  61. Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011).

    Google Scholar 

  62. Yuda, M. et al. Identification of a transcription factor in the mosquito-invasive stage of malaria parasites. Mol. Microbiol 71, 1402–1414 (2009).

    Google Scholar 

  63. Yuda, M., Iwanaga, S., Shigenobu, S., Kato, T. & Kaneko, I. Transcription factor AP2-Sp and its target genes in malarial sporozoites. Mol. Microbiol 75, 854–863 (2010).

    Google Scholar 

  64. Yuda, M., Kaneko, I., Murata, Y., Iwanaga, S. & Nishi, T. Mechanisms of triggering malaria gametocytogenesis by AP2-G. Parasitol. Int 84, 102403 (2021).

    Google Scholar 

  65. Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35, 2084–2092 (2019).

    Google Scholar 

  66. Iwanaga, S. et al. Functional identification of the plasmodium centromere and generation of a plasmodium artificial chromosome. Cell Host Microbe 7, 245–255 (2010).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Agency for Medical Research and Development (253fa627002h to S.I.), the Japan Society for the Promotion of Science (24K10187 to TN; 23H02709 to YM; 23K06515 to IK), and the Grant for Joint Research Project of the Research Institute for Microbial Diseases, The University of Osaka (JRPRIMD25B9 to IK). We would like to express our gratitude to Dr. Hiroko Kato and Dr. Ryohei Narumi, Central Instrumentation Laboratory, Research Institute for Microbial Diseases, The University of Osaka for performing analysis using timsTOF Pro and providing insight and expertise that greatly assisted the research.

Author information

Authors and Affiliations

  1. Research Institute for Microbial Diseases, Osaka University, Suita, Japan

    Tsubasa Nishi & Shiroh Iwanaga

  2. Department of Medicine, Mie University, Tsu, Japan

    Izumi Kaneko & Masao Yuda

Authors
  1. Tsubasa Nishi
    View author publications

    Search author on:PubMed Google Scholar

  2. Izumi Kaneko
    View author publications

    Search author on:PubMed Google Scholar

  3. Shiroh Iwanaga
    View author publications

    Search author on:PubMed Google Scholar

  4. Masao Yuda
    View author publications

    Search author on:PubMed Google Scholar

Contributions

T.N. and Y.M. designed the study. T.N. performed all experiments, except for next generation sequencing and liquid chromatography-tandem mass spectrometry analysis. These analyses were performed by DNAFORM and Central Instrumentation Laboratory, Research Institute for Microbial Diseases, The University of Osaka, respectively. T.N. performed all formal data analyses and statistical analyses. I.K. contributed to the generation of transgenic parasites. S.I. contributed technical assistance/suggestions. All obtained funding for the study. Y.M. supervised the project. T.N. and Y.M. wrote the paper.

Corresponding author

Correspondence to Masao Yuda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Mohamed Hakim, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Description Of Additional Supplementary File

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Supplementary Data 7

Supplementary Data 8

Supplementary Data 9

Supplementary Data 10

Reporting summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishi, T., Kaneko, I., Iwanaga, S. et al. Precise gene regulation through transcriptional repression is essential for Plasmodium berghei asexual blood stage development. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68222-1

Download citation

  • Received: 25 June 2025

  • Accepted: 23 December 2025

  • Published: 03 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68222-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing