Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
The transcription factor HHEX maintains glucocorticoid levels and protects adrenals from androgen-induced lipid depletion
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 11 January 2026

The transcription factor HHEX maintains glucocorticoid levels and protects adrenals from androgen-induced lipid depletion

  • Typhanie Dumontet  ORCID: orcid.org/0000-0002-1328-95151,2,
  • Kaitlin J. Basham2,3,
  • Micah C. Foster  ORCID: orcid.org/0009-0002-3139-15022,
  • Emma Silverman2,
  • Kyle A. Heard2,
  • Dominque Johnson2,
  • Chaelin Lee2,
  • Samuel W. Plaska4,
  • David T. Breault  ORCID: orcid.org/0000-0002-0402-48575,
  • David Penton  ORCID: orcid.org/0000-0002-6425-37666,
  • Felix Beuschlein  ORCID: orcid.org/0000-0001-7826-39847,8,9,
  • Adina F. Turcu2,
  • Christopher R. LaPensee2,
  • Antonio Marcondes Lerario  ORCID: orcid.org/0000-0002-8336-64322 &
  • …
  • Gary D. Hammer  ORCID: orcid.org/0000-0001-6843-36282,10,11 

Nature Communications , Article number:  (2026) Cite this article

  • 4674 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cell biology
  • Macroautophagy
  • Physiology

Abstract

Glucocorticoid-producing cells of the adrenal cortex (i.e. zona fasciculata, zF) constitute the critical effectors of the hypothalamic-pituitary-adrenal axis, mediating the mammalian stress response. With glucocorticoids being essential for life, zF dysfunction perturbs multiple organs that participate in optimizing cardiometabolic fitness. The zF forms a dynamic and heterogenous cell population endowed with the capacity to remodel through the engagement of both proliferative and differentiation programs that enable the adrenal to adapt and respond to diverse stressors. However, the mechanisms that sustain such differential responsiveness remain poorly understood. In this study, we resolve the transcriptome of the steroidogenic lineage by scRNA-seq using Sf1-Crehigh; RosamT/mG reporter mice. We identify HHEX, a homeodomain protein, as the most enriched transcription factor in glucocorticoid-producing cells. We utilize genetic mouse models to demonstrate that Hhex deletion causes glucocorticoid deficiency in male animals. Molecularly, we demonstrate that HHEX is an androgen receptor (AR) target gene, shaping the sexual dimorphism of the adrenal gland by repressing the female transcriptional program at puberty, while also maintaining zF cholesterol ester content by protecting lipid droplets from androgen-induced-lipophagy. Moreover, our study reveals that, in both sexes, HHEX is crucial for maintaining the identity of the innermost adrenocortical cell subpopulation. Specifically, loss of HHEX impairs the expression of Abcb1b (P-glycoprotein/MDR1), an efflux pump regulating steroid export and cellular levels of xenobiotics. Together, these data demonstrate that HHEX serves as a multi-functional regulator of post-natal adrenal maturation that is potentiated by androgens.

Similar content being viewed by others

Management challenges and therapeutic advances in congenital adrenal hyperplasia

Article 11 April 2022

Circulating adrenal and gonadal steroid hormones heterogeneity in active young males and the contribution of 11-oxy androgens

Article Open access 14 July 2024

Adrenal cortex renewal in health and disease

Article 19 May 2021

Data availability

All sequencing datasets generated in this study have been deposited in the Gene Expression Omnibus (GEO) database under the accession code GSE291343, GSE291472, and GSE291344. Processed data are provided in Supplementary Data 1. The CLOUPE file related to the scRNAseq dataset presented in this manuscript is accessible at the following address [https://doi.org/10.6084/m9.figshare.28612406]. Source data are provided with this paper.

References

  1. Kuo, T., McQueen, A., Chen, T.-C. & Wang, J.-C. Regulation of glucose homeostasis by glucocorticoids. Adv. Exp. Med. Biol. 872, 99–126 (2015).

    Google Scholar 

  2. Cain, D. W. & Cidlowski, J. A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 17, 233–247 (2017).

    Google Scholar 

  3. Dickmeis, T. Glucocorticoids and the circadian clock. J. Endocrinol. 200, 3–22 (2009).

    Google Scholar 

  4. Marin, M.-F. et al. Chronic stress, cognitive functioning and mental health. Neurobiol. Learn. Mem. 96, 583–595 (2011).

    Google Scholar 

  5. Shimba, A. & Ikuta, K. Glucocorticoids regulate circadian rhythm of innate and adaptive immunity. Front. Immunol. 11, 2143 (2020).

    Google Scholar 

  6. Lacroix, A. Cardiometabolic morbidity of mild cortisol excess. Ann. Intern. Med. https://doi.org/10.7326/M21-4526 (2022).

    Google Scholar 

  7. Mitani, F. et al. Cytochrome P-45011 beta and P-450scc in adrenal cortex: zonal distribution and intramitochondrial localization by the horseradish peroxidase-labeled antibody method. J. Histochem. Cytochem. 30, 1066–1074 (1982).

    Google Scholar 

  8. Sugano, S. et al. Monoclonal antibodies against bovine adrenal cytochrome P-450(11 beta) and cytochrome P-450SCC. Their isolation, characterization and application to immunohistochemical analysis of adrenal cortex. J. Steroid Biochem. 23, 1013–1021 (1985).

    Google Scholar 

  9. Ogishima, T., Suzuki, H., Hata, J., Mitani, F. & Ishimura, Y. Zone-specific expression of aldosterone synthase cytochrome P-450 and cytochrome P-45011 beta in rat adrenal cortex: histochemical basis for the functional zonation. Endocrinology 130, 2971–2977 (1992).

    Google Scholar 

  10. Ho, M. M. & Vinson, G. P. 11 beta-hydroxylase gene expression in the rat adrenal cortex. J. Endocrinol. 139, 301–306 (1993).

    Google Scholar 

  11. Erdmann, B., Denner, K., Gerst, H., Lenz, D. & Bernhardt, R. Human adrenal CYP11B1: localization by in situ-hybridization and functional expression in cell cultures. Endocr. Res. 21, 425–435 (1995).

    Google Scholar 

  12. Gomez-Sanchez, C. E. et al. Development of monoclonal antibodies against human CYP11B1 and CYP11B2. Mol. Cell. Endocrinol. 383, 111–117 (2014).

    Google Scholar 

  13. Arakane, F. et al. Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J. Biol. Chem. 272, 32656–32662 (1997).

    Google Scholar 

  14. Clark, B. J. et al. Hormonal and developmental regulation of the steroidogenic acute regulatory protein. Mol. Endocrinol. Baltim. Md 9, 1346–1355 (1995).

    Google Scholar 

  15. Lopez, J. P. et al. Single-cell molecular profiling of all three components of the HPA axis reveals adrenal ABCB1 as a regulator of stress adaptation. Sci. Adv. 7, eabe4497 (2021).

    Google Scholar 

  16. Lerario, A. M., Mohan, D. R. & Hammer, G. D. Update on biology and genomics of adrenocortical carcinomas: rationale for emerging therapies. Endocr. Rev. 43, 1051–1073 (2022).

    Google Scholar 

  17. Paz, H., Lynch, M. R., Bogue, C. W. & Gasson, J. C. The homeobox gene Hhex regulates the earliest stages of definitive hematopoiesis. Blood 116, 1254–1262 (2010).

    Google Scholar 

  18. Guiral, M., Bess, K., Goodwin, G. & Jayaraman, P. S. PRH represses transcription in hematopoietic cells by at least two independent mechanisms. J. Biol. Chem. 276, 2961–2970 (2001).

    Google Scholar 

  19. Swingler, T. E., Bess, K. L., Yao, J., Stifani, S. & Jayaraman, P.-S. The proline-rich homeodomain protein recruits members of the Groucho/Transducin-like enhancer of split protein family to co-repress transcription in hematopoietic cells. J. Biol. Chem. 279, 34938–34947 (2004).

    Google Scholar 

  20. Yang, D. et al. CRISPR screening uncovers a central requirement for HHEX in pancreatic lineage commitment and plasticity restriction. Nat. Cell Biol. 24, 1064–1076 (2022).

    Google Scholar 

  21. Bort, R. Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development 131, 797–806 (2004).

    Google Scholar 

  22. Bort, R., Signore, M., Tremblay, K., Barbera, J. P. M. & Zaret, K. S. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev. Biol. 290, 44–56 (2006).

    Google Scholar 

  23. Keng, V. W. et al. Homeobox gene hex is essential for onset of mouse embryonic liver development and differentiation of the monocyte lineage. Biochem. Biophys. Res. Commun. 276, 1155–1161 (2000).

    Google Scholar 

  24. Martinez Barbera, J. P. et al. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Dev. Camb. Engl. 127, 2433–2445 (2000).

    Google Scholar 

  25. Zhang, J., McKenna, L. B., Bogue, C. W. & Kaestner, K. H. The diabetes gene Hhex maintains -cell differentiation and islet function. Genes Dev. 28, 829–834 (2014).

    Google Scholar 

  26. Alfaifi, M. Contribution of genetic variant identified in HHEX gene in the overweight Saudi patients confirmed with type 2 diabetes mellitus. Saudi J. Biol. Sci. 29, 804–808 (2022).

    Google Scholar 

  27. Wang, X. et al. The association between HHEX single-nucleotide polymorphism rs5015480 and gestational diabetes mellitus: a meta-analysis. Medicine (Baltimore) 99, e19478 (2020).

    Google Scholar 

  28. Li, C. et al. Association between single nucleotide polymorphisms in CDKAL1 and HHEX and type 2 diabetes in Chinese population. Diabetes Metab. Syndr. Obes. Targets Ther. 13, 5113–5123 (2020).

    Google Scholar 

  29. Ragvin, A. et al. Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4, and IRX3. Proc. Natl. Acad. Sci. USA 107, 775–780 (2010).

    Google Scholar 

  30. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007).

    Google Scholar 

  31. Cauchi, S. et al. Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value. PLoS ONE 3, e2031 (2008).

    Google Scholar 

  32. van Vliet-Ostaptchouk, J. V. et al. HHEX gene polymorphisms are associated with type 2 diabetes in the Dutch Breda cohort. Eur. J. Hum. Genet. 16, 652–656 (2008).

    Google Scholar 

  33. Chiang, C.-W., Chou, Y.-H., Huang, C.-N., Lu, W.-Y. & Liaw, Y.-P. Gender-specific genetic influence of rs1111875 on diabetes risk: insights from the Taiwan biobank study. J. Diabetes Investig. https://doi.org/10.1111/jdi.14359 (2024).

    Google Scholar 

  34. Zhai, G. et al. Eight common genetic variants associated with serum DHEAS levels suggest a key role in ageing mechanisms. PLoS Genet. 7, e1002025 (2011).

    Google Scholar 

  35. Vernerova, L. et al. Contribution of genetic factors to lower DHEAS in patients with rheumatoid arthritis. Cell. Mol. Neurobiol. 38, 379–383 (2018).

    Google Scholar 

  36. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Google Scholar 

  37. Bingham, N. C., Verma-Kurvari, S., Parada, L. F. & Parker, K. L. Development of a steroidogenic factor 1/Cre transgenic mouse line. Genes 44, 419–424 (2006).

    Google Scholar 

  38. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    Google Scholar 

  39. Basham, K. J. et al. A ZNRF3-dependent Wnt/β-catenin signaling gradient is required for adrenal homeostasis. Genes Dev. 33, 209–220 (2019).

    Google Scholar 

  40. Mathieu, M. et al. Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex. Proc. Natl. Acad. Sci. USA 115, E12265–E12274 (2018).

    Google Scholar 

  41. Dufour, D. et al. Loss of SUMO-specific protease 2 causes isolated glucocorticoid deficiency by blocking adrenal cortex zonal transdifferentiation in mice. Nat. Commun. 13, 7858 (2022).

    Google Scholar 

  42. Gjerstad, J. K., Lightman, S. L. & Spiga, F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress 21, 403–416 (2018).

    Google Scholar 

  43. Ramamoorthy, S. & Cidlowski, J. A. Corticosteroids. Rheum. Dis. Clin. N. Am. 42, 15–31 (2016).

    Google Scholar 

  44. Holst, J. P., Soldin, O. P., Guo, T. & Soldin, S. J. Steroid hormones: relevance and measurement in the clinical laboratory. Clin. Lab. Med. 24, 105–118 (2004).

    Google Scholar 

  45. Rosol, T. J. & Gröne, A. Chapter 3 - Endocrine glands. In Jubb, Kennedy & Palmer’s Pathology of Domestic Animals: Volume 3 (Sixth Edition) (ed. Maxie, M. G.) 269–357.e1 (W.B. Saunders, 2016).

  46. Acconcia, F. & Marino, M. Steroid hormones: synthesis, secretion, and transport. In Principles of Endocrinology and Hormone Action (eds Belfiore, A. & LeRoith, D.) 43–72 (Springer International Publishing, Cham, 2018).

  47. Lightman, S. L., Birnie, M. T. & Conway-Campbell, B. L. Dynamics of ACTH and cortisol secretion and implications for disease. Endocr. Rev. 41, bnaa002 (2020).

    Google Scholar 

  48. Dailey, R. E., Swell, L. & Treadwell, C. R. Utilization of free and esterified gholesterol-4-G14 for corticoid biosynthesis by hog adrenal homogenates. Proc. Soc. Exp. Biol. Med. 110, 571–574 (1962).

    Google Scholar 

  49. Long, C. N. H. The relation of cholesterol and ascorbic acid to the secretion of the adrenal cortex. Recent Prog. Horm. Res. 1, 99–122 (1947).

    Google Scholar 

  50. Wang, N., Wang, W., Breslow, J. L. & Tall, A. R. Scavenger receptor BI (SR-BI) is up-regulated in adrenal gland in apolipoprotein A-I and hepatic lipase knock-out mice as a response to depletion of cholesterol stores. In vivo evidence that SR-BI is a functional high density lipoprotein receptor under feedback control. J. Biol. Chem. 271, 21001–21004 (1996).

    Google Scholar 

  51. Shroff, A. & Nazarko, T. Y. SQSTM1, lipid droplets and current state of their lipophagy affairs. Autophagy 19, 720–723 (2023).

  52. Wang, L. et al. Ethanol-triggered lipophagy requires SQSTM1 in AML12 hepatic cells. Sci. Rep. 7, 12307 (2017).

    Google Scholar 

  53. Kumar, A. V., Mills, J. & Lapierre, L. R. Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging. Front. Cell Dev. Biol. 10, 793328 (2022).

    Google Scholar 

  54. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010).

    Google Scholar 

  55. Freedman, B. D. et al. Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells. Dev. Cell 26, 666–673 (2013).

    Google Scholar 

  56. Pihlajoki, M. et al. Conditional mutagenesis of Gata6 in SF1-positive cells causes gonadal-like differentiation in the adrenal cortex of mice. Endocrinology https://doi.org/10.1210/en.2012-1892 (2013).

    Google Scholar 

  57. Mauthe, M. et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 14, 1435–1455 (2018).

    Google Scholar 

  58. Beyer, C. & Komisaruk, B. Effects of diverse androgens on estrous behavior, lordosis reflex, and genital tract morphology in the rat. Horm. Behav. 2, 217–225 (1971).

    Google Scholar 

  59. Brown-Grant, K., Munck, A., Naftolin, F. & Sherwood, M. R. The effects of the administration of testosterone propionate alone or with phenobarbitone and of testosterone metabolites to neonatal female rats. Horm. Behav. 2, 173–182 (1971).

    Google Scholar 

  60. De Gendt, K. et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc. Natl. Acad. Sci. USA. 101, 1327–1332 (2004).

    Google Scholar 

  61. Nikkanen, J. et al. An evolutionary trade-off between host immunity and metabolism drives fatty liver in male mice. Science 378, 290–295 (2022).

    Google Scholar 

  62. Jo, S. et al. Sex differences in pancreatic β-cell physiology and glucose homeostasis in C57BL/6J mice. J. Endocr. Soc. 7, bvad099 (2023).

    Google Scholar 

  63. Dumontet, T. et al. PKA signaling drives reticularis differentiation and sexually dimorphic adrenal cortex renewal. JCI Insight 3, e98394 (2018).

    Google Scholar 

  64. Grabek, A. et al. The adult adrenal cortex undergoes rapid tissue renewal in a sex-specific manner. Cell Stem Cell 25, 290–296.e2 (2019).

    Google Scholar 

  65. Levasseur, A., Dumontet, T. & Martinez, A. “Sexual dimorphism in adrenal gland development and tumorigenesis”. Curr. Opin. Endocr. Metab. Res. 8, 60–65 (2019).

    Google Scholar 

  66. Yeung, K. Y. & Ruzzo, W. L. Principal component analysis for clustering gene expression data. Bioinforma. Oxf. Engl. 17, 763–774 (2001).

    Google Scholar 

  67. Lyu, Q. et al. RNA-seq reveals sub-zones in mouse adrenal zona fasciculata and the sexually dimorphic responses to thyroid hormone. Endocrinology 161, bqaa126 (2020).

    Google Scholar 

  68. Wakil, A. E., Mari, B., Barhanin, J. & Lalli, E. Genomic analysis of sexual dimorphism of gene expression in the mouse adrenal gland. Horm. Metab. Res. 45, 870–873 (2013).

    Google Scholar 

  69. Mukai, T. et al. Sexually dimorphic expression of Dax-1 in the adrenal cortex. Genes Cells Devoted Mol. Cell. Mech. 7, 717–729 (2002).

    Google Scholar 

  70. Devine, K. et al. The ATP-binding cassette proteins ABCB1 and ABCC1 as modulators of glucocorticoid action. Nat. Rev. Endocrinol. 19, 112–124 (2023).

    Google Scholar 

  71. Menzies, R. I. et al. Transcription controls growth, cell kinetics and cholesterol supply to sustain ACTH responses. Endocr. Connect. 6, 446–457 (2017).

    Google Scholar 

  72. Vogel, F. et al. Polymorphism in the drug transporter gene ABCB1 as a potential disease modifier in cortisol-producing adrenal adenomas. Exp. Clin. Endocrinol. Diabetes 132, 608–613 (2024).

    Google Scholar 

  73. Hammer, G. D. & Basham, K. J. Stem cell function and plasticity in the normal physiology of the adrenal cortex. Mol. Cell. Endocrinol. 519, 111043 (2021).

    Google Scholar 

  74. Guasti, L., Paul, A., Laufer, E. & King, P. Localization of Sonic hedgehog secreting and receiving cells in the developing and adult rat adrenal cortex. Mol. Cell. Endocrinol. 336, 117–122 (2011).

    Google Scholar 

  75. Neirijnck, Y. et al. Single-cell transcriptomic profiling redefines the origin and specification of early adrenogonadal progenitors. Cell Rep. 42, 112191 (2023).

    Google Scholar 

  76. Pivovarova, O., Nikiforova, V. J., Pfeiffer, A. F. H. & Rudovich, N. The influence of genetic variations in HHEX gene on insulin metabolism in the German MESYBEPO cohort. Diabetes Metab. Res. Rev. 25, 156–162 (2009).

    Google Scholar 

  77. Staiger, H. et al. A candidate type 2 diabetes polymorphism near the HHEX locus affects acute glucose-stimulated insulin release in European populations: results from the EUGENE2 study. Diabetes 57, 514–517 (2008).

    Google Scholar 

  78. Pascoe, L. et al. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. Diabetes 56, 3101–3104 (2007).

    Google Scholar 

  79. Grarup, N. et al. Studies of association of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 danish subjects: validation and extension of genome-wide association studies. Diabetes 56, 3105–3111 (2007).

    Google Scholar 

  80. Liu, S. et al. Genetic variants at 10q23.33 are associated with plasma lipid levels in a Chinese population. J. Biomed. Res. 28, 53–58 (2014).

    Google Scholar 

  81. Dumontet, T. & Martinez, A. Adrenal androgens, adrenarche, and zona reticularis: a human affair? Mol. Cell. Endocrinol. 528, 111239 (2021).

    Google Scholar 

  82. Kraemer, F. B. et al. Adrenal neutral cholesteryl ester hydrolase: identification, subcellular distribution, and sex differences. Endocrinology 143, 801–806 (2002).

    Google Scholar 

  83. Li, H. et al. Hormone-sensitive lipase deficiency in mice causes lipid storage in the adrenal cortex and impaired corticosterone response to corticotropin stimulation. Endocrinology 143, 3333–3340 (2002).

    Google Scholar 

  84. Al, E. M. et al. Wolman’s disease: the king faisal specialist hospital and research centre experience. Ann. Saudi Med. 18, 120–124 (1998).

    Google Scholar 

  85. Perry, R. et al. Primary adrenal insufficiency in children: twenty years experience at the Sainte-Justine Hospital, Montreal. J. Clin. Endocrinol. Metab. 90, 3243–3250 (2005).

    Google Scholar 

  86. Menon, J. et al. Wolman’s disease: a rare cause of infantile cholestasis and cirrhosis. J. Pediatr. Genet. 11, 132–134 (2020).

    Google Scholar 

  87. Foladi, N. & Aien, M. T. CT features of Wolman disease (lysosomal acid lipase enzyme deficiency) – A case report. Radiol. Case Rep. 16, 2857–2861 (2021).

    Google Scholar 

  88. Sen, D., Satija, L., Saxena, S., Rastogi, V. & Singh, M. A rare constellation of imaging findings in Wolman disease. Med. J. Armed Forces India 71, S448–S451 (2015).

    Google Scholar 

  89. Fulcher, A. S., Das Narla, L. & Hingsbergen, E. A. Pediatric case of the day. Wolman disease (primary familial xanthomatosis with involvement and calcification of the adrenal glands). RadioGraphics 18, 533–535 (1998).

    Google Scholar 

  90. Wolman, M., Sterk, V. V., Gatt, S. & Frenkel, M. Primary familial xanthomatosis with involvement and calcification of the adrenals. Report of two more cases in siblings of a previously described infant. Pediatrics 28, 742–757 (1961).

    Google Scholar 

  91. Abramov, A., Schorr, S. & Wolman, M. Generalized xanthomatosis with calcified adrenals. AMA J. Dis. Child. 91, 282–286 (1956).

    Google Scholar 

  92. Low, G., Irwin, G. J., MacPhee, G. B. & Robinson, P. H. Characteristic imaging findings in Wolman’s disease. Clin. Radiol. Extra 59, 106–108 (2004).

    Google Scholar 

  93. Schaub, J. et al. Wolman’s disease: clinical, biochemical and ultrastructural studies in an unusual case without striking adrenal calcification. Eur. J. Pediatr. 135, 45–53 (1980).

    Google Scholar 

  94. Zhang, S. et al. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis. 13, 1–11 (2022).

    Google Scholar 

  95. Gao, F. et al. Autophagy regulates testosterone synthesis by facilitating cholesterol uptake in Leydig cells. J. Cell Biol. 217, 2103–2119 (2018).

    Google Scholar 

  96. Ma, Y. et al. Lipophagy contributes to testosterone biosynthesis in male rat leydig cells. Endocrinology 159, 1119–1129 (2018).

    Google Scholar 

  97. Esmaeilian, Y. et al. Autophagy regulates sex steroid hormone synthesis through lysosomal degradation of lipid droplets in human ovary and testis. Cell Death Dis. 14, 1–13 (2023).

    Google Scholar 

  98. Berruti, A. et al. Prognostic role of overt hypercortisolism in completely operated patients with adrenocortical cancer. Eur. Urol. 65, 832–838 (2014).

    Google Scholar 

  99. Vanbrabant, T., Fassnacht, M., Assie, G. & Dekkers, O. M. Influence of hormonal functional status on survival in adrenocortical carcinoma: systematic review and meta-analysis. Eur. J. Endocrinol. 179, 429–436 (2018).

    Google Scholar 

  100. Jeong, S.-J. et al. Prdx1 (peroxiredoxin 1) deficiency reduces cholesterol efflux via impaired macrophage lipophagic flux. Autophagy 14, 120–133 (2018).

    Google Scholar 

  101. Chen, K., Yuan, R., Zhang, Y., Geng, S. & Li, L. Tollip deficiency alters atherosclerosis and steatosis by disrupting lipophagy. J. Am. Heart Assoc. 6, e004078 (2017).

    Google Scholar 

  102. Ouimet, M. et al. microRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 37, 1058–1067 (2017).

    Google Scholar 

  103. Carotti, S. et al. Lipophagy impairment is associated with disease progression in NAFLD. Front. Physiol. 11, 850 (2020).

    Google Scholar 

  104. Fu, Y. et al. Degradation of lipid droplets by chimeric autophagy-tethering compounds. Cell Res. 31, 965–979 (2021).

    Google Scholar 

  105. Minami, Y. et al. Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion. Nat. Commun. 14, 4084 (2023).

    Google Scholar 

  106. Müller, M. B. et al. ABCB1 (MDR1)-type P-glycoproteins at the blood-brain barrier modulate the activity of the hypothalamic-pituitary-adrenocortical system: implications for affective disorder. Neuropsychopharmacology 28, 1991–1999 (2003).

    Google Scholar 

  107. Flynn, S. D. et al. P-glycoprotein expression and multidrug resistance in adrenocortical carcinoma. Surgery 112, 981–986 (1992).

    Google Scholar 

  108. Creemers, S. G. et al. MDR1 inhibition increases sensitivity to doxorubicin and etoposide in adrenocortical cancer. Endocr. Relat. Cancer 26, 367–378 (2019).

    Google Scholar 

  109. Bechmann, N. et al. Asymmetric adrenals: sexual dimorphism of adrenal tumors. J. Clin. Endocrinol. Metab. 109, 471–482 (2024).

    Google Scholar 

  110. Takahashi, F. et al. Development of sexual dimorphism of skeletal muscles through the adrenal cortex, caused by androgen-induced global gene suppression. Cell Rep. 43, 113715 (2024).

    Google Scholar 

  111. Wilson, S., Qi, J. & Filipp, F. V. Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines. Sci. Rep. 6, 32611 (2016).

    Google Scholar 

  112. Hunter, M. P. et al. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev. Biol. 308, 355–367 (2007).

    Google Scholar 

  113. Ferreira, M. J. et al. Spontaneous pancreatitis caused by tissue-specific gene ablation of Hhex in mice. Cell. Mol. Gastroenterol. Hepatol. 1, 550–569 (2015).

    Google Scholar 

  114. Watanabe, H. et al. Transcription factor hematopoietically expressed homeobox protein (Hhex) negatively regulates osteoclast differentiation by controlling cyclin-dependent kinase inhibitors. JBMR Plus 6, e10608 (2022).

    Google Scholar 

  115. Jackson, J. T. et al. A crucial role for the homeodomain transcription factor Hhex in lymphopoiesis. Blood 125, 803–814 (2015).

    Google Scholar 

  116. Kim, A. C. et al. Targeted disruption of β-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex. Development 135, 2593–2602 (2008).

    Google Scholar 

  117. King, P., Paul, A. & Laufer, E. Shh signaling regulates adrenocortical development and identifies progenitors of steroidogenic lineages. Proc. Natl. Acad. Sci. USA 106, 21185–21190 (2009).

    Google Scholar 

  118. Huang, C.-C. J. & Yao, H. H. Inactivation of Dicer1 in Steroidogenic factor 1-positive cells reveals tissue-specific requirement for Dicer1 in adrenal, testis, and ovary. BMC Dev. Biol. 10, 66 (2010).

    Google Scholar 

  119. Tevosian, S. G. et al. Adrenal development in mice requires GATA4 and GATA6 transcription factors. Endocrinology 156, 2503–2517 (2015).

    Google Scholar 

  120. Drelon, C. et al. PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development. Nat. Commun. 7, 12751 (2016).

    Google Scholar 

  121. Vidal, V. et al. The adrenal capsule is a signaling center controlling cell renewal and zonation through Rspo3. Genes Dev. 30, 1389–1394 (2016).

    Google Scholar 

  122. Dumontet, T. et al. Hormonal and spatial control of SUMOylation in the human and mouse adrenal cortex. FASEB J. 33, 10218–10230 (2019).

    Google Scholar 

  123. Heaton, J. H. et al. Progression to adrenocortical tumorigenesis in mice and humans through insulin-like growth factor 2 and β-catenin. Am. J. Pathol. 181, 1017–1033 (2012).

    Google Scholar 

  124. Krill, K. T., Gurdziel, K., Heaton, J. H., Simon, D. P. & Hammer, G. D. Dicer deficiency reveals microRNAs predicted to control gene expression in the developing adrenal cortex. Mol. Endocrinol. 27, 754–768 (2013).

    Google Scholar 

  125. Ching, S. & Vilain, E. Targeted disruption of Sonic Hedgehog in the mouse adrenal leads to adrenocortical hypoplasia. Genesis 47, 628–637 (2009).

    Google Scholar 

  126. Truett, G. E. et al. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). BioTechniques 29, 52 (2000).

    Google Scholar 

  127. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

    Google Scholar 

  128. Hippen, A. A. et al. miQC: an adaptive probabilistic framework for quality control of single-cell RNA-sequencing data. PLoS Comput. Biol. 17, e1009290 (2021).

    Google Scholar 

  129. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).

    Google Scholar 

  130. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Google Scholar 

  131. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).

    Google Scholar 

  132. Alquicira-Hernandez, J. & Powell, J. E. Nebulosa recovers single-cell gene expression signals by kernel density estimation. Bioinforma. Oxf. Engl. 37, 2485–2487 (2021).

    Google Scholar 

  133. Cummins, C. L. et al. Liver X receptors regulate adrenal cholesterol balance. J. Clin. Invest. 116, 1902–1912 (2006).

    Google Scholar 

  134. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Google Scholar 

  135. Rueden, C. T. et al. ImageJ2: imageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529 (2017).

    Google Scholar 

  136. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Google Scholar 

  137. Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4, 1521 (2015).

    Google Scholar 

  138. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Google Scholar 

  139. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinforma. Oxf. Engl. 28, 882–883 (2012).

    Google Scholar 

  140. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the International Fund for Congenital Adrenal Hyperplasia to G.D.H., F.B., and T.D., the Center for Cell Plasticity and Organ Design to T.D., the National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health under Award Number R01DK043140, R01DK062027 to G.D.H. and Dr. William Rainey, the National Heart, Lung, and Blood Institute under Award Number 1R01HL15583401 to A.F.T., the Swiss National Science Foundation (310030L_182700/1) to F.B., the Swiss NCCR “Kidney.CH” and from the University Research Priority Program of the University of Zurich ITINERARE–Innovative Therapies in Rare Disease to D.P. and F.B. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We thank all the members of the Hammer Lab for helpful discussion and feedback on the manuscript. We especially thank Dr. Rainey (University of Michigan) for providing Human adrenal paraffin samples and sharing ARKO RNAseq. We thank Dr. Pierre Val (University of Clermont-Ferrand) for sharing reagents. We thank Dr. Gregg Myers (University of Michigan) for technical assistance with hematopoietic cells. We thank Dr. Leonard Cheung (Stony Brook University) for helpful discussion regarding HHEX expression in the mouse pituitary gland. We thank Dr. Klionsky (University of Michigan), autophagy expert for helpful discussion on lipophagy process. We thank Dr. Frank Claessens and Dr. Johan Swinnen (KU Leuven) for sharing the AR flox mice60. The research reported in this publication used the Advanced Genomic Core, the Microscopy Core, the Flow Cytometry Core, and the Orthopaedic Research Laboratories (ORL) Histology Core at the University of Michigan. We especially thank Emma Snyder-White and Carol Whitinger for technical assistance with histology experiments and Michael Pihalja with FACS sorting.

Author information

Authors and Affiliations

  1. Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, University of Michigan, Ann Arbor, MI, USA

    Typhanie Dumontet

  2. Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA

    Typhanie Dumontet, Kaitlin J. Basham, Micah C. Foster, Emma Silverman, Kyle A. Heard, Dominque Johnson, Chaelin Lee, Adina F. Turcu, Christopher R. LaPensee, Antonio Marcondes Lerario & Gary D. Hammer

  3. Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA

    Kaitlin J. Basham

  4. Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA

    Samuel W. Plaska

  5. Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA

    David T. Breault

  6. Electrophysiology Facility, University of Zurich, Zurich, Switzerland

    David Penton

  7. Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland

    Felix Beuschlein

  8. Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany

    Felix Beuschlein

  9. The LOOP Zurich - Medical Research Center, Zurich, Switzerland

    Felix Beuschlein

  10. Department of Cell and Molecular Biology, University of Michigan, Ann Arbor, MI, USA

    Gary D. Hammer

  11. Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA

    Gary D. Hammer

Authors
  1. Typhanie Dumontet
    View author publications

    Search author on:PubMed Google Scholar

  2. Kaitlin J. Basham
    View author publications

    Search author on:PubMed Google Scholar

  3. Micah C. Foster
    View author publications

    Search author on:PubMed Google Scholar

  4. Emma Silverman
    View author publications

    Search author on:PubMed Google Scholar

  5. Kyle A. Heard
    View author publications

    Search author on:PubMed Google Scholar

  6. Dominque Johnson
    View author publications

    Search author on:PubMed Google Scholar

  7. Chaelin Lee
    View author publications

    Search author on:PubMed Google Scholar

  8. Samuel W. Plaska
    View author publications

    Search author on:PubMed Google Scholar

  9. David T. Breault
    View author publications

    Search author on:PubMed Google Scholar

  10. David Penton
    View author publications

    Search author on:PubMed Google Scholar

  11. Felix Beuschlein
    View author publications

    Search author on:PubMed Google Scholar

  12. Adina F. Turcu
    View author publications

    Search author on:PubMed Google Scholar

  13. Christopher R. LaPensee
    View author publications

    Search author on:PubMed Google Scholar

  14. Antonio Marcondes Lerario
    View author publications

    Search author on:PubMed Google Scholar

  15. Gary D. Hammer
    View author publications

    Search author on:PubMed Google Scholar

Contributions

We followed guidelines for authorship at University of Michigan Office of Research including 4 criteria. (1) significant contribution to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; (2) drafting the work or revising it critically for important intellectual content; (3) final approval of the version to be published; (4) agreement to be accountable for all aspects of the work in ensuring that questions related to accuracy or integrity of any part of the work are appropriately investigated. T.D., K.J.B., and G.D.H. design the experiments, T.D. and A.M.L. analyzed the data, T.D., K.J.B., M.C.F., C.R.L., D.J, E.S., and K.A.H. genotyped mice, performed the experiments, or acquired data. C.L. and A.F.T. performed LCMSMS. S.W.P. and A.M.L. analyzed the ARKO RNAseq data. D.P. and F.B. provided Cyp11b1-CreERT2 mice. D.T.B. provided Cyp11b2-Cre (AS-Cre) mice. T.D. wrote the original manuscript, T.D., K.J.B., C.R.L., and G.D.H. edited the manuscript. All coauthors provided expertise and feedback.

Corresponding author

Correspondence to Typhanie Dumontet.

Ethics declarations

Competing interests

G.D.H. Founder and Board of Directors—Sling Therapeutics, Advisor—Orphagen Pharmaceuticals. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumontet, T., Basham, K.J., Foster, M.C. et al. The transcription factor HHEX maintains glucocorticoid levels and protects adrenals from androgen-induced lipid depletion. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68257-4

Download citation

  • Received: 17 March 2025

  • Accepted: 17 December 2025

  • Published: 11 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68257-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Lipids in Cell Biology

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing