Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Rapid wavefront shaping using an optical gradient acquisition
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 January 2026

Rapid wavefront shaping using an optical gradient acquisition

  • Sagi Monin  ORCID: orcid.org/0000-0001-6116-62131,
  • Marina Alterman  ORCID: orcid.org/0000-0003-4869-59401 &
  • Anat Levin  ORCID: orcid.org/0000-0002-9849-90431 

Nature Communications , Article number:  (2026) Cite this article

  • 3327 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Adaptive optics
  • Imaging and sensing

Abstract

Wavefront shaping systems enable deep tissue imaging by correcting scattering aberrations, but estimating optimal modulation correction is challenging, since it depends on the unknown tissue structures. Most current methods use slow coordinate descent algorithms, which sequentially scan all modulation parameters and query them independently, thus their complexity scales prohibitively with the number of parameters. We introduce a rapid wavefront shaping system, replacing coordinate descent with gradient descent optimization. To this end, our system acquires a gradient vector, which allows simultaneous update of all modulation parameters. We start with a non-invasive, guide-star-free score function to assess modulation quality and analytically derive its gradient with respect to all modulation parameters. Although the gradient depends on unknown tissue structure, we show it can be inferred from optical measurements. This enables fast, high-resolution wavefront correction with complexity independent of parameter count. We demonstrate the system’s effectiveness in correcting aberrations in a coherent confocal microscope.

Similar content being viewed by others

Image-guided computational holographic wavefront shaping

Article 18 October 2024

Non-invasive and noise-robust light focusing using confocal wavefront shaping

Article Open access 02 July 2024

Meta Shack–Hartmann wavefront sensor with large sampling density and large angular field of view: phase imaging of complex objects

Article Open access 12 August 2024

Data availability

The data that support the findings of this study is available in ref. 68.

Code availability

The code used for acquiring and processing the data is available at ref. 68.

References

  1. Elliott, A. D. Confocal microscopy: principles and modern practices. Curr. Protoc. Cytom. 92, 68 (2020).

    Google Scholar 

  2. Koustenis, A. Jr. et al. Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br. J. Ophthalmol. 101, 16–20 (2016).

    Google Scholar 

  3. Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007).

    Google Scholar 

  4. Choi, Y. et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Phys. Rev. Lett. 107, 023902 (2011).

  5. Kang, S. et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves. Nat. Photonics 9, 253–258 (2015).

    Google Scholar 

  6. Badon, A. et al. Distortion matrix concept for deep optical imaging in scattering media. Science Advances, 6, eaay7170 (2020).

  7. Kwon, Y. et al. Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin. Nat. Commun. 14, 105 (2023).

    Google Scholar 

  8. Kang, S. et al. Tracing multiple scattering trajectories for deep optical imaging in scattering media. Nat. Commun. 14, 6871 (2023).

    Google Scholar 

  9. Zhang, Y. et al. Deep imaging inside scattering media through virtual spatiotemporal wavefront shaping. Preprint at https://arxiv.org/abs/2306.08793 (2024).

  10. Lee, Y., Kim, D., Jo, Y., Kim, M. & Choi, W. Exploiting volumetric wave correlation for enhanced depth imaging in scattering medium. Nat. Commun. 14, 1878 (2023).

    Google Scholar 

  11. Feng, B. Y. et al. Neuws: neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media. Sci. Adv. 9, 4671 (2023).

    Google Scholar 

  12. Yeminy, T. & Katz, O. Guidestar-free image-guided wavefront shaping. Sci. Adv. 7, 5364 (2021).

    Google Scholar 

  13. Haim, O., Boger-Lombard, J., Katz, O. Image-guided computational holographic wavefront shaping. Nat. Photonics 19, 44–53 (2025).

  14. Balondrade, P. et al. Multi-spectral reflection matrix for ultrafast 3d label-free microscopy. Nat. Photonics 18, 1097–1104 (2024).

    Google Scholar 

  15. Kang, S. et al. High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering. Nat. Commun. 8, 2157 (2017).

    Google Scholar 

  16. Najar, U. et al. Harnessing forward multiple scattering for optical imaging deep inside an opaque medium. Nat. Commun. 15, 7349 (2024).

    Google Scholar 

  17. Zhu, L. et al. Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination. Nat. Commun. 13, 1447 (2022).

    Google Scholar 

  18. Baek, Y., Aguiar, H. B. & Gigan, S. Phase conjugation with spatially incoherent light in complex media. Nat. Photonics 17, 1114–1119 (2023).

    Google Scholar 

  19. Jeong, S. et al. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering. Nat. Photonics 12, 277–283 (2018).

    Google Scholar 

  20. Weinberg, G., Sunray, E. & Katz, O. Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual incoherent reflection matrix. Sci. Adv. 10, 5218 (2024).

    Google Scholar 

  21. Jo, Y. et al. Through-skull brain imaging in vivo at visible wavelengths via dimensionality reduction adaptive-optical microscopy. Sci. Adv. 8, 4366 (2022).

    Google Scholar 

  22. Ji, N. Adaptive optical fluorescence microscopy. Nat. Methods 14, 374–380 (2017).

    Google Scholar 

  23. Hampson, K. et al. Adaptive optics for high-resolution imaging. Nat. Rev. Methods Prim. 1, 68 (2021).

    Google Scholar 

  24. Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics 9, 563–571 (2015).

    Google Scholar 

  25. Yu, H. et al. Recent advances in wavefront shaping techniques for biomedical applications. Curr. Appl. Phys. 15, 632–641 (2015).

    Google Scholar 

  26. Gigan, S. et al. Roadmap on wavefront shaping and deep imaging in complex media. J. Phys.: Photonics 4, 042501 (2022).

    Google Scholar 

  27. Cui, M., Kahraman, S. S. & Wang, L. V. Optical focusing into scattering media via iterative time reversal guided by absorption nonlinearity. Nat. Commun. 16, 7807 (2025).

    Google Scholar 

  28. Prada, C., Thomas, J.-L. & Fink, M. The iterative time reversal process: analysis of the convergence. J. Acoust. Soc. Am. 97, 62–71 (1995).

    Google Scholar 

  29. Jang, J. et al. Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography. Opt. Express 21, 2890–2902 (2013).

    Google Scholar 

  30. Boniface, A., Blochet, B., Dong, J. & Gigan, S. Noninvasive light focusing in scattering media using speckle variance optimization. Optica 6, 1381–1385 (2019).

    Google Scholar 

  31. Aizik, D., Gkioulekas, I. & Levin, A. Fluorescent wavefront shaping using incoherent iterative phase conjugation. Optica 9, 746–754 (2022).

    Google Scholar 

  32. Aizik, D. & Levin, A. Non-invasive and noise-robust light focusing using confocal wavefront shaping. Nat. Commun. 15, 5575 (2024).

    Google Scholar 

  33. Stern, G. & Katz, O. Noninvasive focusing through scattering layers using speckle correlations. Opt. Lett. 44, 143 (2018).

    Google Scholar 

  34. Katz, O., Small, E., Guan, Y. & Silberberg, Y. Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers. Optica 1, 170–174 (2014).

    Google Scholar 

  35. Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    Google Scholar 

  36. Conkey, D. B., Brown, A. N., Caravaca-Aguirre, A. M. & Piestun, R. Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express 20, 4840 (2012).

    Google Scholar 

  37. Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    Google Scholar 

  38. Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nat. Photonics 4, 320–322 (2010).

    Google Scholar 

  39. Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics 2, 110–115 (2008).

    Google Scholar 

  40. Chen, Y., Sharma, M. K., Sabharwal, A., Veeraraghavan, A. & Sankaranarayanan, A. C. 3PointTM: faster measurement of high-dimensional transmission matrices. In Computer Vision – ECCV 2020 (eds. Vedaldi, A., Bischof, H., Brox, T. & Frahm, J.-M.) 153–169 (Springer International Publishing, 2020).

  41. Tang, J., Germain, R. N. & Cui, M. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique. Proc. Natl. Acad. Sci. USA 109, 8434–8439 (2012).

    Google Scholar 

  42. Wang, C. et al. Multiplexed aberration measurement for deep tissue imaging in vivo. Nat. Methods 11, 1037–1040 (2014).

    Google Scholar 

  43. Liu, T. L. et al. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 360, 1392 (2018).

    Google Scholar 

  44. Fiolka, R., Si, K. & Cui, M. Complex wavefront corrections for deep tissue focusing using low coherence backscattered light. Opt. Express 20, 16532–16543 (2012).

    Google Scholar 

  45. Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nat. Photonics 5, 154–157 (2011).

    Google Scholar 

  46. Wang, Y. M., Judkewitz, B., DiMarzio, C. A. & Yang, C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nat. Commun. 3, 928 (2012).

    Google Scholar 

  47. Kong, F. et al. Photoacoustic-guided convergence of light through optically diffusive media. Opt. Lett. 36, 2053–2055 (2011).

    Google Scholar 

  48. Vellekoop, I. M., Cui, M. & Yang, C. Digital optical phase conjugation of fluorescence in turbid tissue. Appl. Phys. Lett. 101, 081108 (2012).

    Google Scholar 

  49. Popoff, S. M. et al. Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis. Phys. Rev. Lett. 107, 263901 (2011).

    Google Scholar 

  50. Mertz, J., Paudel, H. & Bifano, T. G. Field of view advantage of conjugate adaptive optics in microscopy applications. Appl. Opt. 54, 3498–3506 (2015).

  51. Alterman, M., Bar, C., Gkioulekas, I. & Levin, A. Imaging with local speckle intensity correlations: theory and practice. ACM TOG 40, 22 (2021).

  52. Osnabrugge, G., Horstmeyer, R., Papadopoulos, I. N., Judkewitz, B. & Vellekoop, I. M. Generalized optical memory effect. Optica 4, 886–892 (2017).

    Google Scholar 

  53. Dean, B. H. & Bowers, C. W. Diversity selection for phase-diverse phase retrieval. J. Opt. Soc. Am. A 20, 1490–1504 (2003).

    Google Scholar 

  54. Gonsalves, R. A. Phase retrieval and diversity in adaptive optics. Opt. Eng. 21, 215829 (1982).

    Google Scholar 

  55. Candes, E. J., Li, X. & Soltanolkotabi, M. Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory 61, 1985–2007 (2015).

    Google Scholar 

  56. Smartt, R. N. & Steel, W. H. Theory and application of point-diffraction interferometers. Jpn. J. Appl. Phys. 14, 351 (1975).

    Google Scholar 

  57. Akondi, V., Jewel, A. & Vohnsen, B. Digital phase-shifting point diffraction interferometer. Opt. Lett. 39, 1641–4 (2014).

    Google Scholar 

  58. Song, H. C., Kuperman, W. A., Hodgkiss, W. S., Akal, T. & Ferla, C. Iterative time reversal in the ocean. J. Acoust. Soc. Am. 105, 3176–3184 (1999).

    Google Scholar 

  59. Ruan, H., Jang, M., Judkewitz, B. & Yang, C. Iterative time-reversed ultrasonically encoded light focusing in backscattering mode. Sci. Rep. 4, 7156 (2014).

    Google Scholar 

  60. Si, K., Fiolka, R. & Cui, M. Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy. Sci. Rep. 2, 748 (2012).

    Google Scholar 

  61. Papadopoulos, I., Jouhanneau, J.-S., Poulet, J. & Judkewitz, B. Scattering compensation by focus scanning holographic aberration probing (f-sharp). Nat. Photonics 11, 116–123 (2016).

  62. Mididoddi, C. K. et al. Threading light through dynamic complex media. Nat. Photonics 19, 123–134 (2025).

    Google Scholar 

  63. Boniface, A., Dong, J. & Gigan, S. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nat. Commun. 11, 6154 (2020).

  64. Wang, W. & Li, C. Measurement of the light absorption and scattering properties of onion skin and flesh at 633nm. Postharvest Biol. Technol. 86, 494–501 (2013).

    Google Scholar 

  65. Chen, W.-Y., O’Toole, M., Sankaranarayanan, A. C. & Levin, A. Enhancing speckle statistics for imaging inside scattering media. Optica 9, 1408–1416 (2022).

    Google Scholar 

  66. Chen, W.-Y., Sankaranarayanan, A. C., Levin, A. & O’Toole, M. Coherence as texture - passive textureless 3d reconstruction by self-interference. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (eds. Roth, S., Torralba, A. & Wu, J.) 25058–25066 (IEEE/CVF, 2024).

  67. Baek, Y., de Aguiar, H.B. & Gigan, S. Three-dimensional holographic imaging of incoherent objects through scattering media. Nat. Commun. 16, 11653 (2025).

  68. Monin, S. Rapid-wavefront-shaping-code. figshare. https://doi.org/10.6084/m9.figshare.29245634.v1 (2025).

Download references

Acknowledgements

This research was funded by ERC SpeckleCorr-101043471, ISF 563/24.

Author information

Authors and Affiliations

  1. Department of Electrical and Computer Engineering, Technion, Haifa, Israel

    Sagi Monin, Marina Alterman & Anat Levin

Authors
  1. Sagi Monin
    View author publications

    Search author on:PubMed Google Scholar

  2. Marina Alterman
    View author publications

    Search author on:PubMed Google Scholar

  3. Anat Levin
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.M. designed and constructed the system. S.M. and M.A. performed the experiments. S.M. analyzed the data. A.L. conceived and supervised the project. All authors contributed to writing of the manuscript.

Corresponding author

Correspondence to Anat Levin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Christopher Metzler and the other anonymous reviewers for their contribution to the peer review of this work. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monin, S., Alterman, M. & Levin, A. Rapid wavefront shaping using an optical gradient acquisition. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68259-2

Download citation

  • Received: 11 February 2025

  • Accepted: 23 December 2025

  • Published: 10 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68259-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Microscopic Imaging in Deep Tissue

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing