Abstract
Empirical complex systems can be characterized not only by pairwise interactions, but also by higher-order (group) interactions influencing collective phenomena, from metabolic reactions to epidemics. Nevertheless, higher-order networks’ apparent superior descriptive power—compared to classical pairwise networks—comes with a much increased model complexity and computational cost, challenging their application. Consequently, it is of paramount importance to establish a quantitative method to determine when such a modeling framework is advantageous with respect to pairwise models, and to which extent it provides a valuable description of empirical systems. Here, we propose an information-theoretic framework, accounting for how structures affect diffusion behaviors, quantifying the entropic cost and distinguishability of higher-order interactions to assess their reducibility to lower-order structures while preserving relevant functional information. Empirical analyses indicate that some systems retain essential higher-order structure, whereas in some technological and biological networks it collapses to pairwise interactions. With controlled randomization procedures, we investigate the role of nestedness and degree heterogeneity in this reducibility process. Our findings contribute to ongoing efforts to minimize the dimensionality of models for complex systems.
Similar content being viewed by others
Data availability
All data is publicly available from XGI-data: https://zenodo.org/communities/xgi/about.
Code availability
Code for reproducing our results is available online from the repository https://github.com/maximelucas/hypergraph_reducibility and on Zenodo https://doi.org/10.5281/zenodo.1783306072. It uses the XGI package26.
References
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).
Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).
Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).
Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925 (2015).
Cimini, G. et al. The statistical physics of real-world networks. Nat. Rev. Phys. 1, 58–71 (2019).
De Domenico, M. More is different in real-world multilayer networks. Nat. Phys. 19, 1247–1262 (2023).
Lambiotte, R., Rosvall, M. & Scholtes, I. From networks to optimal higher-order models of complex systems. Nat. Phys. 15, 313–320 (2019).
Battiston, F. et al. Networks beyond pairwise interactions: Structure and dynamics. Phys. Rep. 874, 1–92 (2020).
Battiston, F. et al. The physics of higher-order interactions in complex systems. Nat. Phys. 17, 1093–1098 (2021).
Rosas, F. E. et al. Disentangling high-order mechanisms and high-order behaviours in complex systems. Nat. Phys. 18, 476–477 (2022).
Petri, G. et al. Homological scaffolds of brain functional networks. J. R. Soc. Interface 11, 20140873 (2014).
Santoro, A., Battiston, F., Lucas, M., Petri, G. & Amico, E. Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior. Nat. Commun. 15, 10244 (2024).
Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56 (2017).
Patania, A., Petri, G. & Vaccarino, F. The shape of collaborations. EPJ Data Sci. 6, 1–16 (2017).
Cencetti, G., Battiston, F., Lepri, B. & Karsai, M. Temporal properties of higher-order interactions in social networks. Sci. Rep. 11, 1–10 (2021).
Iacopini, I., Petri, G., Barrat, A. & Latora, V. Simplicial models of social contagion. Nat. Commun. 10, 1–9 (2019).
Zhang, Y., Lucas, M. & Battiston, F. Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes. Nat. Commun. 14, 1605 (2023).
Skardal, P. S. & Arenas, A. Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching. Commun. Phys. 3, 1–6 (2020).
Millán, A. P., Torres, J. J. & Bianconi, G. Explosive higher-order Kuramoto dynamics on simplicial complexes. Phys. Rev. Lett. 124, 218301 (2020).
Ferraz de Arruda, G., Petri, G., Rodriguez, P. M. & Moreno, Y. Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs. Nat. Commun. 14, 1–15 (2023).
Alvarez-Rodriguez, U. et al. Evolutionary dynamics of higher-order interactions in social networks. Nat. Hum. Behav. 5, 586–595 (2021).
Contisciani, M., Battiston, F. & De Bacco, C. Inference of hyperedges and overlapping communities in hypergraphs. Nat. Commun. 13, 7229 (2022).
Lotito, Q. F., Musciotto, F., Montresor, A. & Battiston, F. Higher-order motif analysis in hypergraphs. Commun. Phys. 5, 79 (2022).
Benson, A. R., Abebe, R., Schaub, M. T., Jadbabaie, A. & Kleinberg, J. Simplicial closure and higher-order link prediction. Proc. Natl. Acad. Sci. USA 115, E11221–E11230 (2018).
Chodrow, P. S. Configuration models of random hypergraphs. J. Complex Netw. 8, cnaa018 (2020).
Landry, N. W. et al. XGI: a Python package for higher-order interaction networks. J. Open Source Softw. 8, 5162 (2023).
Lotito, Q. F. et al. Hypergraphx: a library for higher-order network analysis. J. Complex Netw. 11, cnad019 (2023).
Praggastis, B. et al. Hypernetx: a Python package for modeling complex network data as hypergraphs. J. Open Source Softw. 9, 6016 (2024).
Scagliarini, T. et al. Gradients of O-information: low-order descriptors of high-order dependencies. Phys. Rev. Res. 5, 013025 (2023).
Santoro, A., Battiston, F., Petri, G. & Amico, E. Higher-order organization of multivariate time series. Nat. Phys. 19, 221–229 (2023).
Schneidman, E., Still, S., Berry, M. J. & Bialek, W. Network information and connected correlations. Phys. Rev. Lett. 91, 238701 (2003).
Merchan, L. & Nemenman, I. On the sufficiency of pairwise interactions in maximum entropy models of networks. J. Stat. Phys. 162, 1294–1308 (2016).
Shimazaki, H., Sadeghi, K., Ishikawa, T., Ikegaya, Y. & Toyoizumi, T. Simultaneous silence organizes structured higher-order interactions in neural populations. Sci. Rep. 5, 9821 (2015).
Amari, S.-I. Information geometry on hierarchy of probability distributions. IEEE Trans. Inf. Theory 47, 1701–1711 (2001).
Robiglio, T. et al. Synergistic signatures of group mechanisms in higher-order systems. Phys. Rev. Lett. 134, 137401 (2025).
Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. & Onnela, J.-P. Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010).
Holme, P. & Saramäki, J. Temporal networks. Phys. Rep. 519, 97–125 (2012).
Battiston, F., Nicosia, V. & Latora, V. Structural measures for multiplex networks. Phys. Rev. E 89, 032804 (2014).
De Domenico, M. et al. Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013).
De Domenico, M., Nicosia, V., Arenas, A. & Latora, V. Structural reducibility of multilayer networks. Nat. Commun. 6, 6864 (2015).
Ghavasieh, A. & De Domenico, M. Enhancing transport properties in interconnected systems without altering their structure. Phys. Rev. Res. 2, 013155 (2020).
De Domenico, M. & Biamonte, J. Spectral entropies as information-theoretic tools for complex network comparison. Phys. Rev. X 6, 041062 (2016).
Wallace, C. S. & Boulton, D. M. An information measure for classification. Comput. J. 11, 185–194 (1968).
Rissanen, J. Modeling by shortest data description. Automatica 14, 465–471 (1978).
Wallace, C. S. Statistical and Inductive Inference by Minimum Message Length (Springer Science & Business Media, 2005).
Rosvall, M. & Bergstrom, C. T. An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. USA 104, 7327–7331 (2007).
De Domenico, M., Lancichinetti, A., Arenas, A. & Rosvall, M. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Phys. Rev. X 5, 011027 (2015).
Santoro, A. & Nicosia, V. Algorithmic complexity of multiplex networks. Phys. Rev. X 10, 021069 (2020).
Ghavasieh, A., Nicolini, C. & De Domenico, M. Statistical physics of complex information dynamics. Phys. Rev. E 102, 052304 (2020).
Lucas, M., Cencetti, G. & Battiston, F. Multiorder Laplacian for synchronization in higher-order networks. Phys. Rev. Res. 2, 033410 (2020).
Ghavasieh, A., Bontorin, S., Artime, O., Verstraete, N. & De Domenico, M. Multiscale statistical physics of the pan-viral interactome unravels the systemic nature of SARS-CoV-2 infections. Commun. Phys. 4, 1–13 (2021).
Nicolini, C., Forcellini, G., Minati, L. & Bifone, A. Scale-resolved analysis of brain functional connectivity networks with spectral entropy. NeuroImage 211, 116603 (2020).
Ghavasieh, A. & De Domenico, M. Diversity of information pathways drives sparsity in real-world networks. Nat. Phys. 20, 1–8 (2024).
Villegas, P., Gili, T., Caldarelli, G. & Gabrielli, A. Laplacian renormalization group for heterogeneous networks. Nat. Phys. 19, 445–450 (2023).
Gambuzza, L. V. et al. Stability of synchronization in simplicial complexes. Nat. Commun. 12, 1255 (2021).
Zhang, Y., Skardal, P. S., Battiston, F., Petri, G. & Lucas, M. Deeper but smaller: higher-order interactions increase linear stability but shrink basins. Sci. Adv. 10, eado8049 (2024).
Gray, R. M. et al. Toeplitz and circulant matrices: a review. Found. Trends Commun. Inf. Theory 2, 155–239 (2006).
Landry, N. W., Young, J.-G. & Eikmeier, N. The simpliciality of higher-order networks. EPJ Data Sci. 13, 17 (2024).
Landry, N. W. & Restrepo, J. G. The effect of heterogeneity on hypergraph contagion models. Chaos 30, 103117 (2020).
Ghavasieh, A. & De Domenico, M. Generalized network density matrices for analysis of multiscale functional diversity. Phys. Rev. E 107, 044304 (2023).
Neuhäuser, L., Scholkemper, M., Tudisco, F. & Schaub, M. T. Learning the effective order of a hypergraph dynamical system. Sci. Adv. 10, eadh4053 (2024).
Nurisso, M. et al. Higher-order Laplacian renormalization. Nat. Phys. 21, 661–668 (2025).
Bick, C., Ashwin, P. & Rodrigues, A. Chaos in generically coupled phase oscillator networks with nonpairwise interactions. Chaos 26, 094814 (2016).
Jiang, J. et al. Predicting tipping points in mutualistic networks through dimension reduction. Proc. Natl. Acad. Sci. USA 115, E639–E647 (2018).
Laurence, E., Doyon, N., Dubé, L. J. & Desrosiers, P. Spectral dimension reduction of complex dynamical networks. Phys. Rev. X 9, 011042 (2019).
Thibeault, V., Allard, A. & Desrosiers, P. The low-rank hypothesis of complex systems. Nat. Phys. 20, 294–302(2024).
Sinha, A. et al. An overview of microsoft academic service (MAS) and applications. In Proc. 24th International Conference on World Wide Web https://doi.org/10.1145/2740908.2742839 (ACM Press, 2015).
Barrat, A. et al. Empirical temporal networks of face-to-face human interactions. Eur. Phys. J. Spec. Top. 222, 1295–1309 (2013).
SocioPatterns: a collection of contacts datasets http://www.sociopatterns.org/datasets/ (2008). Accessed: 2023-08-19.
Traversa, P., Ferraz de Arruda, G., Vazquez, A. & Moreno, Y. Robustness and complexity of directed and weighted metabolic hypergraphs. Entropy 25, 1537 (2023).
Coupette, C., Vreeken, J. & Rieck, B. All the world’s a (hyper)graph: a data drama. Dig. Scholarsh. Humanit. 39, 74–96 (2024).
Lucas, M., Gallo, L., Ghavasieh, A., Battiston, F. & De Domenico, M. Reducibility of higher-order networks from dynamics (code repository: hypergraph_reducibility) https://doi.org/10.5281/zenodo.17833060 (2025).
Acknowledgements
M.L. thanks Marco Nurisso for useful feedback on the manuscript and Nicholas Landry for discussions about the configuration model and his publicly available implementations of it and of the simplicial fraction measure. M.L. is a Postdoctoral Researcher of the Fonds de la Recherche Scientifique-FNRS. F.B. and L.G. acknowledge support from the Air Force Office of Scientific Research under award number FA8655-22-1-7025. F.B. acknowledges support from the Austrian Science Fund (FWF) through projects 10.55776/PAT1052824 and 10.55776/PAT1652425. L.G. acknowledges support from the Villum Foundation (project no. 57396) at the University of Copenhagen. M.D.D acknowledge MUR funding within the FIS (DD n. 1219 31-07-2023) Project no. FIS00000158 (CUP C53C23000660001).
Author information
Authors and Affiliations
Contributions
All authors designed the study. M.L., L.G., and A.G. performed the theoretical analysis. M.L. and L.G. performed the numerical simulations. All authors discussed the results. M.L. wrote the original draft and all authors reviewed and edited it. F.B. and M.D.D. supervised the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Lucas, M., Gallo, L., Ghavasieh, A. et al. Reducibility of higher-order networks from dynamics. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68273-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-025-68273-4


