Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Reducibility of higher-order networks from dynamics
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 15 January 2026

Reducibility of higher-order networks from dynamics

  • Maxime Lucas  ORCID: orcid.org/0000-0001-8087-29811,2,3,
  • Luca Gallo  ORCID: orcid.org/0000-0002-2160-84674,5,6,
  • Arsham Ghavasieh  ORCID: orcid.org/0000-0001-8138-72087,
  • Federico Battiston  ORCID: orcid.org/0000-0001-9646-62324,8 na1 &
  • …
  • Manlio De Domenico  ORCID: orcid.org/0000-0001-5158-85947,9,10 na1 

Nature Communications , Article number:  (2026) Cite this article

  • 3239 Accesses

  • 17 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Complex networks
  • Information theory and computation
  • Statistical physics

Abstract

Empirical complex systems can be characterized not only by pairwise interactions, but also by higher-order (group) interactions influencing collective phenomena, from metabolic reactions to epidemics. Nevertheless, higher-order networks’ apparent superior descriptive power—compared to classical pairwise networks—comes with a much increased model complexity and computational cost, challenging their application. Consequently, it is of paramount importance to establish a quantitative method to determine when such a modeling framework is advantageous with respect to pairwise models, and to which extent it provides a valuable description of empirical systems. Here, we propose an information-theoretic framework, accounting for how structures affect diffusion behaviors, quantifying the entropic cost and distinguishability of higher-order interactions to assess their reducibility to lower-order structures while preserving relevant functional information. Empirical analyses indicate that some systems retain essential higher-order structure, whereas in some technological and biological networks it collapses to pairwise interactions. With controlled randomization procedures, we investigate the role of nestedness and degree heterogeneity in this reducibility process. Our findings contribute to ongoing efforts to minimize the dimensionality of models for complex systems.

Similar content being viewed by others

Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes

Article Open access 23 March 2023

The physics of higher-order interactions in complex systems

Article 04 October 2021

Nonparametric inference of higher order interaction patterns in networks

Article Open access 31 July 2024

Data availability

All data is publicly available from XGI-data: https://zenodo.org/communities/xgi/about.

Code availability

Code for reproducing our results is available online from the repository https://github.com/maximelucas/hypergraph_reducibility and on Zenodo https://doi.org/10.5281/zenodo.1783306072. It uses the XGI package26.

References

  1. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    Google Scholar 

  2. Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

    Google Scholar 

  3. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    Google Scholar 

  4. Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925 (2015).

    Google Scholar 

  5. Cimini, G. et al. The statistical physics of real-world networks. Nat. Rev. Phys. 1, 58–71 (2019).

    Google Scholar 

  6. De Domenico, M. More is different in real-world multilayer networks. Nat. Phys. 19, 1247–1262 (2023).

    Google Scholar 

  7. Lambiotte, R., Rosvall, M. & Scholtes, I. From networks to optimal higher-order models of complex systems. Nat. Phys. 15, 313–320 (2019).

    Google Scholar 

  8. Battiston, F. et al. Networks beyond pairwise interactions: Structure and dynamics. Phys. Rep. 874, 1–92 (2020).

    Google Scholar 

  9. Battiston, F. et al. The physics of higher-order interactions in complex systems. Nat. Phys. 17, 1093–1098 (2021).

    Google Scholar 

  10. Rosas, F. E. et al. Disentangling high-order mechanisms and high-order behaviours in complex systems. Nat. Phys. 18, 476–477 (2022).

    Google Scholar 

  11. Petri, G. et al. Homological scaffolds of brain functional networks. J. R. Soc. Interface 11, 20140873 (2014).

    Google Scholar 

  12. Santoro, A., Battiston, F., Lucas, M., Petri, G. & Amico, E. Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior. Nat. Commun. 15, 10244 (2024).

    Google Scholar 

  13. Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56 (2017).

    Google Scholar 

  14. Patania, A., Petri, G. & Vaccarino, F. The shape of collaborations. EPJ Data Sci. 6, 1–16 (2017).

    Google Scholar 

  15. Cencetti, G., Battiston, F., Lepri, B. & Karsai, M. Temporal properties of higher-order interactions in social networks. Sci. Rep. 11, 1–10 (2021).

    Google Scholar 

  16. Iacopini, I., Petri, G., Barrat, A. & Latora, V. Simplicial models of social contagion. Nat. Commun. 10, 1–9 (2019).

    Google Scholar 

  17. Zhang, Y., Lucas, M. & Battiston, F. Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes. Nat. Commun. 14, 1605 (2023).

    Google Scholar 

  18. Skardal, P. S. & Arenas, A. Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching. Commun. Phys. 3, 1–6 (2020).

    Google Scholar 

  19. Millán, A. P., Torres, J. J. & Bianconi, G. Explosive higher-order Kuramoto dynamics on simplicial complexes. Phys. Rev. Lett. 124, 218301 (2020).

    Google Scholar 

  20. Ferraz de Arruda, G., Petri, G., Rodriguez, P. M. & Moreno, Y. Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs. Nat. Commun. 14, 1–15 (2023).

    Google Scholar 

  21. Alvarez-Rodriguez, U. et al. Evolutionary dynamics of higher-order interactions in social networks. Nat. Hum. Behav. 5, 586–595 (2021).

    Google Scholar 

  22. Contisciani, M., Battiston, F. & De Bacco, C. Inference of hyperedges and overlapping communities in hypergraphs. Nat. Commun. 13, 7229 (2022).

    Google Scholar 

  23. Lotito, Q. F., Musciotto, F., Montresor, A. & Battiston, F. Higher-order motif analysis in hypergraphs. Commun. Phys. 5, 79 (2022).

    Google Scholar 

  24. Benson, A. R., Abebe, R., Schaub, M. T., Jadbabaie, A. & Kleinberg, J. Simplicial closure and higher-order link prediction. Proc. Natl. Acad. Sci. USA 115, E11221–E11230 (2018).

    Google Scholar 

  25. Chodrow, P. S. Configuration models of random hypergraphs. J. Complex Netw. 8, cnaa018 (2020).

    Google Scholar 

  26. Landry, N. W. et al. XGI: a Python package for higher-order interaction networks. J. Open Source Softw. 8, 5162 (2023).

    Google Scholar 

  27. Lotito, Q. F. et al. Hypergraphx: a library for higher-order network analysis. J. Complex Netw. 11, cnad019 (2023).

    Google Scholar 

  28. Praggastis, B. et al. Hypernetx: a Python package for modeling complex network data as hypergraphs. J. Open Source Softw. 9, 6016 (2024).

    Google Scholar 

  29. Scagliarini, T. et al. Gradients of O-information: low-order descriptors of high-order dependencies. Phys. Rev. Res. 5, 013025 (2023).

    Google Scholar 

  30. Santoro, A., Battiston, F., Petri, G. & Amico, E. Higher-order organization of multivariate time series. Nat. Phys. 19, 221–229 (2023).

    Google Scholar 

  31. Schneidman, E., Still, S., Berry, M. J. & Bialek, W. Network information and connected correlations. Phys. Rev. Lett. 91, 238701 (2003).

    Google Scholar 

  32. Merchan, L. & Nemenman, I. On the sufficiency of pairwise interactions in maximum entropy models of networks. J. Stat. Phys. 162, 1294–1308 (2016).

    Google Scholar 

  33. Shimazaki, H., Sadeghi, K., Ishikawa, T., Ikegaya, Y. & Toyoizumi, T. Simultaneous silence organizes structured higher-order interactions in neural populations. Sci. Rep. 5, 9821 (2015).

    Google Scholar 

  34. Amari, S.-I. Information geometry on hierarchy of probability distributions. IEEE Trans. Inf. Theory 47, 1701–1711 (2001).

    Google Scholar 

  35. Robiglio, T. et al. Synergistic signatures of group mechanisms in higher-order systems. Phys. Rev. Lett. 134, 137401 (2025).

    Google Scholar 

  36. Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. & Onnela, J.-P. Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010).

    Google Scholar 

  37. Holme, P. & Saramäki, J. Temporal networks. Phys. Rep. 519, 97–125 (2012).

    Google Scholar 

  38. Battiston, F., Nicosia, V. & Latora, V. Structural measures for multiplex networks. Phys. Rev. E 89, 032804 (2014).

    Google Scholar 

  39. De Domenico, M. et al. Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013).

    Google Scholar 

  40. De Domenico, M., Nicosia, V., Arenas, A. & Latora, V. Structural reducibility of multilayer networks. Nat. Commun. 6, 6864 (2015).

    Google Scholar 

  41. Ghavasieh, A. & De Domenico, M. Enhancing transport properties in interconnected systems without altering their structure. Phys. Rev. Res. 2, 013155 (2020).

    Google Scholar 

  42. De Domenico, M. & Biamonte, J. Spectral entropies as information-theoretic tools for complex network comparison. Phys. Rev. X 6, 041062 (2016).

    Google Scholar 

  43. Wallace, C. S. & Boulton, D. M. An information measure for classification. Comput. J. 11, 185–194 (1968).

    Google Scholar 

  44. Rissanen, J. Modeling by shortest data description. Automatica 14, 465–471 (1978).

    Google Scholar 

  45. Wallace, C. S. Statistical and Inductive Inference by Minimum Message Length (Springer Science & Business Media, 2005).

  46. Rosvall, M. & Bergstrom, C. T. An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. USA 104, 7327–7331 (2007).

    Google Scholar 

  47. De Domenico, M., Lancichinetti, A., Arenas, A. & Rosvall, M. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Phys. Rev. X 5, 011027 (2015).

    Google Scholar 

  48. Santoro, A. & Nicosia, V. Algorithmic complexity of multiplex networks. Phys. Rev. X 10, 021069 (2020).

    Google Scholar 

  49. Ghavasieh, A., Nicolini, C. & De Domenico, M. Statistical physics of complex information dynamics. Phys. Rev. E 102, 052304 (2020).

    Google Scholar 

  50. Lucas, M., Cencetti, G. & Battiston, F. Multiorder Laplacian for synchronization in higher-order networks. Phys. Rev. Res. 2, 033410 (2020).

    Google Scholar 

  51. Ghavasieh, A., Bontorin, S., Artime, O., Verstraete, N. & De Domenico, M. Multiscale statistical physics of the pan-viral interactome unravels the systemic nature of SARS-CoV-2 infections. Commun. Phys. 4, 1–13 (2021).

    Google Scholar 

  52. Nicolini, C., Forcellini, G., Minati, L. & Bifone, A. Scale-resolved analysis of brain functional connectivity networks with spectral entropy. NeuroImage 211, 116603 (2020).

    Google Scholar 

  53. Ghavasieh, A. & De Domenico, M. Diversity of information pathways drives sparsity in real-world networks. Nat. Phys. 20, 1–8 (2024).

    Google Scholar 

  54. Villegas, P., Gili, T., Caldarelli, G. & Gabrielli, A. Laplacian renormalization group for heterogeneous networks. Nat. Phys. 19, 445–450 (2023).

    Google Scholar 

  55. Gambuzza, L. V. et al. Stability of synchronization in simplicial complexes. Nat. Commun. 12, 1255 (2021).

    Google Scholar 

  56. Zhang, Y., Skardal, P. S., Battiston, F., Petri, G. & Lucas, M. Deeper but smaller: higher-order interactions increase linear stability but shrink basins. Sci. Adv. 10, eado8049 (2024).

    Google Scholar 

  57. Gray, R. M. et al. Toeplitz and circulant matrices: a review. Found. Trends Commun. Inf. Theory 2, 155–239 (2006).

    Google Scholar 

  58. Landry, N. W., Young, J.-G. & Eikmeier, N. The simpliciality of higher-order networks. EPJ Data Sci. 13, 17 (2024).

    Google Scholar 

  59. Landry, N. W. & Restrepo, J. G. The effect of heterogeneity on hypergraph contagion models. Chaos 30, 103117 (2020).

    Google Scholar 

  60. Ghavasieh, A. & De Domenico, M. Generalized network density matrices for analysis of multiscale functional diversity. Phys. Rev. E 107, 044304 (2023).

    Google Scholar 

  61. Neuhäuser, L., Scholkemper, M., Tudisco, F. & Schaub, M. T. Learning the effective order of a hypergraph dynamical system. Sci. Adv. 10, eadh4053 (2024).

    Google Scholar 

  62. Nurisso, M. et al. Higher-order Laplacian renormalization. Nat. Phys. 21, 661–668 (2025).

    Google Scholar 

  63. Bick, C., Ashwin, P. & Rodrigues, A. Chaos in generically coupled phase oscillator networks with nonpairwise interactions. Chaos 26, 094814 (2016).

    Google Scholar 

  64. Jiang, J. et al. Predicting tipping points in mutualistic networks through dimension reduction. Proc. Natl. Acad. Sci. USA 115, E639–E647 (2018).

    Google Scholar 

  65. Laurence, E., Doyon, N., Dubé, L. J. & Desrosiers, P. Spectral dimension reduction of complex dynamical networks. Phys. Rev. X 9, 011042 (2019).

    Google Scholar 

  66. Thibeault, V., Allard, A. & Desrosiers, P. The low-rank hypothesis of complex systems. Nat. Phys. 20, 294–302(2024).

  67. Sinha, A. et al. An overview of microsoft academic service (MAS) and applications. In Proc. 24th International Conference on World Wide Web https://doi.org/10.1145/2740908.2742839 (ACM Press, 2015).

  68. Barrat, A. et al. Empirical temporal networks of face-to-face human interactions. Eur. Phys. J. Spec. Top. 222, 1295–1309 (2013).

    Google Scholar 

  69. SocioPatterns: a collection of contacts datasets http://www.sociopatterns.org/datasets/ (2008). Accessed: 2023-08-19.

  70. Traversa, P., Ferraz de Arruda, G., Vazquez, A. & Moreno, Y. Robustness and complexity of directed and weighted metabolic hypergraphs. Entropy 25, 1537 (2023).

    Google Scholar 

  71. Coupette, C., Vreeken, J. & Rieck, B. All the world’s a (hyper)graph: a data drama. Dig. Scholarsh. Humanit. 39, 74–96 (2024).

    Google Scholar 

  72. Lucas, M., Gallo, L., Ghavasieh, A., Battiston, F. & De Domenico, M. Reducibility of higher-order networks from dynamics (code repository: hypergraph_reducibility) https://doi.org/10.5281/zenodo.17833060 (2025).

Download references

Acknowledgements

M.L. thanks Marco Nurisso for useful feedback on the manuscript and Nicholas Landry for discussions about the configuration model and his publicly available implementations of it and of the simplicial fraction measure. M.L. is a Postdoctoral Researcher of the Fonds de la Recherche Scientifique-FNRS. F.B. and L.G. acknowledge support from the Air Force Office of Scientific Research under award number FA8655-22-1-7025. F.B. acknowledges support from the Austrian Science Fund (FWF) through projects 10.55776/PAT1052824 and 10.55776/PAT1652425. L.G. acknowledges support from the Villum Foundation (project no. 57396) at the University of Copenhagen. M.D.D acknowledge MUR funding within the FIS (DD n. 1219 31-07-2023) Project no. FIS00000158 (CUP C53C23000660001).

Author information

Author notes
  1. These authors contributed equally: Federico Battiston, Manlio De Domenico.

Authors and Affiliations

  1. Department of Mathematics and Namur Institute for Complex Systems (naXys), Université de Namur, Namur, Belgium

    Maxime Lucas

  2. Mycology Laboratory, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

    Maxime Lucas

  3. CENTAI Institute, Turin, Italy

    Maxime Lucas

  4. Department of Network and Data Science, Central European University, Vienna, Austria

    Luca Gallo & Federico Battiston

  5. ANETI Lab, Corvinus Institute for Advanced Studies (CIAS), Corvinus University, Budapest, Hungary

    Luca Gallo

  6. Center for Social Data Science (SODAS), University of Copenhagen, Copenhagen, Denmark

    Luca Gallo

  7. Department of Physics and Astronomy “Galileo Galilei”, University of Padua, Padova, Italy

    Arsham Ghavasieh & Manlio De Domenico

  8. Department of AI, Data and Decision Sciences, Luiss University of Rome, Viale Romania 32, 00197, Rome, Italy

    Federico Battiston

  9. Padua Center for Network Medicine, University of Padua, Padova, Italy

    Manlio De Domenico

  10. Istituto Nazionale di Fisica Nucleare, Sez. Padova, Padova, Italy

    Manlio De Domenico

Authors
  1. Maxime Lucas
    View author publications

    Search author on:PubMed Google Scholar

  2. Luca Gallo
    View author publications

    Search author on:PubMed Google Scholar

  3. Arsham Ghavasieh
    View author publications

    Search author on:PubMed Google Scholar

  4. Federico Battiston
    View author publications

    Search author on:PubMed Google Scholar

  5. Manlio De Domenico
    View author publications

    Search author on:PubMed Google Scholar

Contributions

All authors designed the study. M.L., L.G., and A.G. performed the theoretical analysis. M.L. and L.G. performed the numerical simulations. All authors discussed the results. M.L. wrote the original draft and all authors reviewed and edited it. F.B. and M.D.D. supervised the project.

Corresponding author

Correspondence to Maxime Lucas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucas, M., Gallo, L., Ghavasieh, A. et al. Reducibility of higher-order networks from dynamics. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68273-4

Download citation

  • Received: 30 October 2025

  • Accepted: 26 December 2025

  • Published: 15 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68273-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing