Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Critical scaling of novelty in the cortex
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 January 2026

Critical scaling of novelty in the cortex

  • Tiago L. Ribeiro  ORCID: orcid.org/0000-0003-3195-92841,
  • Ali Vakili1,
  • Bridgette Gifford1,
  • Raiyyan Siddiqui1,
  • Vincent Sinfuego1,
  • Sinisa Pajevic  ORCID: orcid.org/0000-0002-8880-33201 &
  • …
  • Dietmar Plenz  ORCID: orcid.org/0000-0002-0008-36571 

Nature Communications , Article number:  (2026) Cite this article

  • 2103 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Dynamical systems
  • Neural circuits
  • Neural decoding
  • Neural encoding

Abstract

To guide behavior in uncertain environments, the brain must rapidly detect novel or unexpected events. The neocortex, involved with complex perception and decision-making, is thought to contribute to this computation, but underlying mechanisms are poorly understood. Here, we test how a few unanticipated action potentials influence local circuitry in the resting mouse visual cortex. Using targeted holographic stimulation, we evoked sparse “surprise” spikes in single pyramidal neurons and monitored their effects on hundreds of neighboring cells with 2-photon imaging. These novel spikes, distinct from the cortex’s ongoing large-scale activity fluctuations, produced strong, transient recruitment, following a power-law with slope 0.2–0.3, indicating that single neurons can mobilize large fractions of the surrounding network. Ongoing activity was dominated by neuronal avalanches, highly variable, scale-invariant spike cascades characteristic of systems near criticality. Yet, the information regarding the origin of our perturbations remained reliably identifiable and distributed across most of the observed network, as shown using machine-learning classifiers. Cortical network simulations confirmed that the measured scaling and distributed information matches predictions for systems operating near criticality. These results demonstrate two hallmarks of criticality, avalanche organization and amplified responses to small perturbations, suggesting that critical dynamics enhance the cortex’s ability to detect novel events.

Similar content being viewed by others

The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality

Article Open access 20 August 2024

Disentangling the critical signatures of neural activity

Article Open access 24 June 2022

Influence of topology on the critical behavior of hierarchical modular neuronal networks

Article Open access 16 April 2025

Data availability

The pre-processed imaging data used in this study are available in the general repository Zenodo using the following link: https://doi.org/10.5281/zenodo.17834168. The source data for all figures and supplemental figures in this study are provided for this paper. Source data are provided in this paper.

Code availability

Computer code used in this study is available at the following GitHub link: https://github.com/plenzd/NoveltyScaling.

References

  1. Allen, W. E. et al. Global representations of goal-directed behavior in distinct cell types of mouse neocortex. Neuron 94, 891–907 (2017).

    Google Scholar 

  2. London, M., Roth, A., Beeren, L., Häusser, M. & Latham, P. E. Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature 466, 123–127 (2010).

    Google Scholar 

  3. Meyer, J. F., Golshani, P. & Smirnakis, S. M. The effect of single pyramidal neuron firing within layer 2/3 and layer 4 in mouse V1. Front. Neural Circuits 12, https://doi.org/10.3389/fncir.2018.00029 (2018).

  4. Chettih, S. N. & Harvey, C. D. Single-neuron perturbations reveal feature-specific competition in V1. Nature 567, 334–340 (2019).

    Google Scholar 

  5. Jouhanneau, J.-S., Kremkow, J. & Poulet, J. F. A. Single synaptic inputs drive high-precision action potentials in parvalbumin expressing GABA-ergic cortical neurons in vivo. Nat. Commun. 9, 1540 (2018).

    Google Scholar 

  6. Hemberger, M., Shein-Idelson, M., Pammer, L. & Laurent, G. Reliable sequential activation of neural assemblies by single pyramidal cells in a three-layered cortex. Neuron 104, 353–369 (2019).

    Google Scholar 

  7. O’Rawe, J. F. et al. Excitation creates a distributed pattern of cortical suppression due to varied recurrent input. Neuron 111, 4086–4101 (2023).

    Google Scholar 

  8. Marshel, J. H. et al. Cortical layer–specific critical dynamics triggering perception. Science 365, eaaw5202 (2019).

  9. Carrillo-Reid, L., Han, S., Yang, W., Akrouh, A. & Yuste, R. Controlling visually guided behavior by holographic recalling of cortical ensembles. Cell 178, 447–457 (2019).

    Google Scholar 

  10. Houweling, A. R. & Brecht, M. Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451, 65–68 (2008).

    Google Scholar 

  11. Wolfe, J., Houweling, A. R. & Brecht, M. Sparse and powerful cortical spikes. Curr. Opin. Neurobiol. 20, 306–312 (2010).

    Google Scholar 

  12. Cheng-yu, T. L., Poo, M. -m & Dan, Y. Burst spiking of a single cortical neuron modifies global brain state. Science 324, 643–646 (2009).

    Google Scholar 

  13. Zucca, S. et al. An inhibitory gate for state transition in cortex. Elife 6, e26177 (2017).

    Google Scholar 

  14. Histed, M. H., Ni, A. M. & Maunsell, J. H. Insights into cortical mechanisms of behavior from microstimulation experiments. Prog. Neurobiol. 103, 115–130 (2013).

    Google Scholar 

  15. Vaadia, E. et al. Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373, 515–518 (1995).

    Google Scholar 

  16. Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, eaav7893 (2019).

    Google Scholar 

  17. Kuhn, A., Aertsen, A. & Rotter, S. Neuronal integration of synaptic input in the fluctuation-driven regime. J. Neurosci. 24, 2345–2356 (2004).

    Google Scholar 

  18. Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).

    Google Scholar 

  19. Braitenberg, V. & Schüz, A. Cortex: Statistics and Geometry of Neuronal Connectivity. 2nd Thoroughly Revised Edition. (Springer-Verlag, 1998).

  20. Thomson, A. M., West, D. C., Wang, Y. & Bannister, A. P. Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. Cereb. Cortex 12, 936–953 (2002).

    Google Scholar 

  21. Levy, R. B. & Reyes, A. D. Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex. J. Neurosci. 32, 5609 (2012).

    Google Scholar 

  22. Jouhanneau, J.-S., Kremkow, J., Dorrn, A. L. & Poulet, J. F. In vivo monosynaptic excitatory transmission between layer 2 cortical pyramidal neurons. Cell Rep. 13, 2098–2106 (2015).

    Google Scholar 

  23. Campagnola, L. et al. Local connectivity and synaptic dynamics in mouse and human neocortex. Science 375, eabj5861 (2022).

    Google Scholar 

  24. Kumar, A., Rotter, S. & Aertsen, A. Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat. Rev. Neurosci. 11, 615–627 (2010).

    Google Scholar 

  25. Haider, B., Hausser, M. & Carandini, M. Inhibition dominates sensory responses in the awake cortex. Nature 493, 97–100 (2013).

    Google Scholar 

  26. Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: From cellular properties to circuits. Neuron 91, 260–292 (2016).

    Google Scholar 

  27. Chialvo, D. R., Cannas, S. A., Grigera, T. S., Martin, D. A. & Plenz, D. Controlling a complex system near its critical point via temporal correlations. Sci. Rep. 10, 12145 (2020).

    Google Scholar 

  28. Muñoz, M. A., Dickman, R., Vespignani, A. & Zapperi, S. Avalanche and spreading exponents in systems with absorbing states. Phys. Rev. E 59, 6175–6179 (1999).

    Google Scholar 

  29. Capek, E. et al. Parabolic avalanche scaling in the synchronization of cortical cell assemblies. Nat. Commun. 14, 2555 (2023).

    Google Scholar 

  30. Plenz, D. et al. Self-Organized Criticality in the Brain. Front. Phys. 9, https://doi.org/10.3389/fphy.2021.639389 (2021).

  31. Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003).

    Google Scholar 

  32. Softky, W. R. & Koch, C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13, 334–350 (1993).

    Google Scholar 

  33. Holmgren, C., Harkany, T., Svennenfors, B. & Zilberter, Y. Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J. Physiol. 551, 139–153 (2003).

    Google Scholar 

  34. Storey, J. D. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B 64, 479–498 (2002).

    Google Scholar 

  35. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multipletesting. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Google Scholar 

  36. Churchland, M. M. et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).

    Google Scholar 

  37. Rajdl, K., Lansky, P. & Kostal, L. Fano factor: a potentially useful information. Front. Comput. Neurosci. 14, 569049 (2020).

    Google Scholar 

  38. Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785–794 (2016).

  39. Ho, T. K. Random decision forests. In Proceedings of 3rd International Conference on Document Analysis and Recognition. (1995).

  40. Breiman, L. Random forests. MLear 45, 5–32 (2001).

    Google Scholar 

  41. Shapley, L. S. Notes on the n-person game—ii: The value of an n-person game. (RAND Coorperation, Santa Monica, CA, USA, 1951).

  42. Srinivasan, K., Ribeiro, T. L., Kells, P. & Plenz, D. The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality. Sci. Rep. 14, 19329 (2024).

    Google Scholar 

  43. Miller, S. R., Yu, S. & Plenz, D. The scale-invariant, temporal profile of neuronal avalanches in relation to cortical γ–oscillations. Sci. Rep. 9, 16403 (2019).

    Google Scholar 

  44. Yu, S., Klaus, A., Yang, H. & Plenz, D. Scale-invariant neuronal avalanche dynamics and the cut-off in size distributions. PLoS ONE 9, e99761 (2014).

    Google Scholar 

  45. Marro, J. & Dickman, R. Nonequilibrium Phase Transitions in Lattice Models (2005).

  46. Ribeiro, T. L., Ribeiro, S., Belchior, H., Caixeta, F. & Copelli, M. Undersampled critical branching processes on small-world and random networks fail to reproduce the statistics of spike avalanches. PloS ONE 9, e94992 (2014).

    Google Scholar 

  47. Kinouchi, O. & Copelli, M. Optimal dynamical range of excitable networks at criticality. Nat. Phys. 2, 348–351 (2006).

    Google Scholar 

  48. Histed, M. H., Bonin, V. & Reid, R. C. Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63, 508–522 (2009).

    Google Scholar 

  49. Seeman, S. C. et al. Sparse recurrent excitatory connectivity in the microcircuit of the adult mouse and human cortex. ELife 7, e37349 (2018).

    Google Scholar 

  50. Abeles, M. Corticonics: Neural Circuits of the Cerebral Cortex. Vol. 1 (Cambridge University Press, 1991).

  51. Diesmann, M., Gewaltig, M. O. & Aertsen, A. Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529–533 (1999).

    Google Scholar 

  52. Prechtl, J. C., Cohen, L. B., Pesaran, B., Mitra, P. P. & Kleinfeld, D. Visual stimuli induce waves of electrical activity in turtle cortex. Proc. Natl. Acad. Sci. USA 94, 7621–7626 (1997).

    Google Scholar 

  53. Rubino, D., Robbins, K. A. & Hatsopoulos, N. G. Propagating waves mediate information transfer in the motor cortex. Nat. Neurosci. 9, 1549–1557 (2006).

    Google Scholar 

  54. Singer, W. Cortical dynamics revisited. Trends Cogn. Sci. 17, 616–626 (2013).

  55. Gray, C. M., Konig, P., Engel, A. K. & Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989).

    Google Scholar 

  56. Lisman, J. E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20, 38–43 (1997).

    Google Scholar 

  57. Riquelme, J. L., Hemberger, M., Laurent, G. & Gjorgjieva, J. Single spikes drive sequential propagation and routing of activity in a cortical network. ELife 12, e79928 (2023).

    Google Scholar 

  58. Shu, Y., Hasenstaub, A., Badoual, M., Bal, T. & McCormick, D. A. Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J. Neurosci. 23, 10388–10401 (2003).

    Google Scholar 

  59. Tsodyks, M., Uziel, A. & Markram, H. Synchrony generation in recurrent networks with frequency-dependent synapses. J. Neurosci. 20, RC50 (2000).

    Google Scholar 

  60. Molnár, G. et al. Complex events initiated by individual spikes in the human cerebral cortex. PLoS Biol. 6, e222 (2008).

    Google Scholar 

  61. Ferrarese, L. et al. Dendrite-specific amplification of weak synaptic input during network activity in vivo. Cell Rep. 24, 3455–3465 (2018).

    Google Scholar 

  62. Harris, K. D. & Mrsic-Flogel, T. D. Cortical connectivity and sensory coding. Nature 503, 51–58 (2013).

    Google Scholar 

  63. Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).

    Google Scholar 

  64. Histed, M. H. & Maunsell, J. H. Cortical neural populations can guide behavior by integrating inputs linearly, independent of synchrony. Proc. Natl. Acad. Sci. USA 111, E178–E187 (2014).

    Google Scholar 

  65. Barth, A. L. & Poulet, J. F. A. Experimental evidence for sparse firing in the neocortex. Trends Neurosci. 35, 345–355 (2012).

    Google Scholar 

  66. Stevens, S. S. Psychophysics: Introduction to its Perceptual, Neural and Social Prospects. (Routledge, 2017).

  67. Assis, V. R. & Copelli, M. Dynamic range of hypercubic stochastic excitable media. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77, 011923 (2008).

    Google Scholar 

  68. Scott, G. et al. Voltage imaging of waking mouse cortex reveals emergence of critical neuronal dynamics. J. Neurosci. 34, 16611–16620 (2014).

    Google Scholar 

  69. Bellay, T., Klaus, A., Seshadri, S. & Plenz, D. Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state. ELife 4, e07224 (2015).

    Google Scholar 

  70. Bellay, T., Shew, W. L., Yu, S., Falco-Walter, J. J. & Plenz, D. Selective participation of single cortical neurons in neuronal avalanches. Front. Neural Circuits 14, https://doi.org/10.3389/fncir.2020.620052 (2021).

  71. Petermann, T. et al. Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc. Natl. Acad. Sci. USA 106, 15921–15926 (2009).

    Google Scholar 

  72. Beggs, J. M. & Plenz, D. Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 24, 5216–5229 (2004).

    Google Scholar 

  73. Stewart, C. V. & Plenz, D. Inverted-U profile of dopamine-NMDA-mediated spontaneous avalanche recurrence in superficial layers of rat prefrontal cortex. J. Neurosci. 26, 8148–8159 (2006).

    Google Scholar 

  74. Lombardi, F., Herrmann, H. J., Plenz, D. & de Arcangelis, L. Temporal correlations in neuronal avalanche occurrence. Sci. Rep. 6, 24690 (2016).

    Google Scholar 

  75. Lombardi, F., Herrmann, H., Plenz, D. & de Arcangelis, L. On the temporal organization of neuronal avalanches. Front. Syst. Neurosci. 8, 204 (2014).

    Google Scholar 

  76. Jun, N. Y. et al. Coordinated multiplexing of information about separate objects in visual cortex. ELife 11, e76452 (2022).

    Google Scholar 

  77. Caruso, V. C. et al. Single neurons may encode simultaneous stimuli by switching between activity patterns. Nat. Commun. 9, 2715 (2018).

    Google Scholar 

  78. Levy, M., Sporns, O. & MacLean, J. N. Network analysis of murine cortical dynamics implicates untuned neurons in visual stimulus coding. Cell Rep. 31, 107483 (2020).

  79. Goldey, G. J. et al. Removable cranial windows for long-term imaging in awake mice. Nat. Protocols 9, 2515 (2014).

    Google Scholar 

  80. Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2019).

    Google Scholar 

  81. Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338 (2014).

    Google Scholar 

  82. Juavinett, A. L., Nauhaus, I., Garrett, M. E., Zhuang, J. & Callaway, E. M. Automated identification of mouse visual areas with intrinsic signal imaging. Nat. Protocols 12, 32–43 (2017).

    Google Scholar 

  83. Sit, K. K. & Goard, M. J. Distributed and retinotopically asymmetric processing of coherent motion in mouse visual cortex. Nat. Commun. 11, 1–14 (2020).

    Google Scholar 

  84. Kleiner, M., Brainard, D. & Pelli, D. What’s new in Psychtoolbox-3? Perception 36, 1–16 (2007).

  85. Adesnik, H. & Abdeladim, L. Probing neural codes with two-photon holographic optogenetics. Nat. Neurosci. 24, 1356–1366 (2021).

    Google Scholar 

  86. Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at https://doi.org/10.1101/061507 (2017).

  87. Lecoq, J. et al. Removing independent noise in systems neuroscience data using DeepInterpolation. Nat. Methods 18, 1401–1408 (2021).

  88. Dalgleish, H. W. et al. How many neurons are sufficient for perception of cortical activity? ELife 9, e58889 (2020).

    Google Scholar 

  89. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  90. Scott, M. & Su-In, L. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017).

    Google Scholar 

  91. Greenberg, J. M. & Hastings, S. P. Spatial patterns for discrete models of diffusion in excitable media. SIAM J. Appl. Math. 34, 515–523 (1978).

    Google Scholar 

Download references

Acknowledgements

We thank Craig C. Stewart and members of the Plenz lab for help with animal surgery and care. We thank the members from our U19 BRAIN initiative grant for the many discussions and technical advice. This research was supported by the Division of the Intramural Research Program (DIRP) of the National Institute of Mental Health (NIMH), USA, ZIAMH002797, ZIAMH002971, and the BRAIN initiative Grant U19 NS107464-01. This research utilized the supercomputing resources of the National Institutes of Health (NIH, USA; Biowulf, http://hpc.nih.gov). The contributions of the authors were made as part of their official duties as NIH federal employees, are in compliance with agency policy requirements, and are considered Works of the United States Government. However, the findings and conclusions presented in this paper are those of the author(s) and do not necessarily reflect the views of the NIH or the U.S. Department of Health and Human Services.

Funding

Open access funding provided by the National Institutes of Health.

Author information

Authors and Affiliations

  1. Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA

    Tiago L. Ribeiro, Ali Vakili, Bridgette Gifford, Raiyyan Siddiqui, Vincent Sinfuego, Sinisa Pajevic & Dietmar Plenz

Authors
  1. Tiago L. Ribeiro
    View author publications

    Search author on:PubMed Google Scholar

  2. Ali Vakili
    View author publications

    Search author on:PubMed Google Scholar

  3. Bridgette Gifford
    View author publications

    Search author on:PubMed Google Scholar

  4. Raiyyan Siddiqui
    View author publications

    Search author on:PubMed Google Scholar

  5. Vincent Sinfuego
    View author publications

    Search author on:PubMed Google Scholar

  6. Sinisa Pajevic
    View author publications

    Search author on:PubMed Google Scholar

  7. Dietmar Plenz
    View author publications

    Search author on:PubMed Google Scholar

Contributions

T.L.R. and D.P. conceived and planned the study; T.L.R., B.G., and V.S. performed experiments; A.V. took the lead in holographic setup design. T.L.R. took the lead in data analysis with support from B.G. and V.S. S.P. and R.S. took the lead in machine learning based decoding of experimental data. All authors contributed to the analyses. T.L.R. and D.P. wrote the manuscript.

Corresponding author

Correspondence to Dietmar Plenz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Taro Toyoizumi (eRef) who co-reviewed with Matthew Farrell (ECR); and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, T.L., Vakili, A., Gifford, B. et al. Critical scaling of novelty in the cortex. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68277-0

Download citation

  • Received: 06 February 2025

  • Accepted: 24 December 2025

  • Published: 10 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68277-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing