Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
De novo variants in the splicing factor gene SF3B1 are associated with neurodevelopmental disorders
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 23 January 2026

De novo variants in the splicing factor gene SF3B1 are associated with neurodevelopmental disorders

  • Kevin Uguen1,2,3 na1,
  • Tiffany Bergot1,4 na1,
  • Marie-Pier Scott-Boyer5,
  • Solène Chapalain1,
  • Camille Desdouets1,
  • Séverine Commet1,
  • Changlian Zhu  ORCID: orcid.org/0000-0002-5029-67306,7,
  • Yiran Xu7,
  • Yangong Wang8,
  • Tony Roscioli  ORCID: orcid.org/0000-0003-1502-50009,10,
  • Frederic Tran-Mau-Them  ORCID: orcid.org/0000-0002-3795-945611,
  • Laurence Faivre  ORCID: orcid.org/0000-0001-9770-444X12,
  • Julien Maraval  ORCID: orcid.org/0009-0003-6744-582112,
  • Julian Delanne12,
  • Anne-Sophie Denommé-Pichon  ORCID: orcid.org/0000-0002-8986-822211,
  • Antonio Vitobello  ORCID: orcid.org/0000-0003-3717-837411,
  • Céline Jost  ORCID: orcid.org/0009-0005-2130-690012,
  • Marc Planes2,3,
  • Susan Hiatt13,
  • Patricia Wheeler14,
  • Claudia Gonzaga-Jauregui  ORCID: orcid.org/0000-0002-4667-367915,
  • Heng Wang16,
  • Baozhong Xin16,
  • Valerie Sency16,
  • Michael C. Kruer  ORCID: orcid.org/0000-0002-1373-789117,18,
  • Somayeh Bakhtiari  ORCID: orcid.org/0000-0002-2795-450417,18,
  • Patrick Sulem  ORCID: orcid.org/0000-0001-7123-612319,
  • Cynthia Curry20,
  • Trine Prescott21,
  • Gertrud Strobl-Wildemann22,
  • Theresa Brunet  ORCID: orcid.org/0000-0002-5183-780X23,
  • Martine Doco Fenzy24,25,
  • Thomas Courtin26,27,
  • Céline Poirsier28,
  • Trine Bjørg Hammer29,30,
  • Christina D. Fenger29,
  • Melissa MacPherson  ORCID: orcid.org/0000-0002-3382-748031,
  • Kosuke Izumi  ORCID: orcid.org/0000-0002-7922-748032,
  • Jacqueline Leonard32,
  • Dong Li  ORCID: orcid.org/0000-0002-2265-672732,
  • Elaine H. Zackai  ORCID: orcid.org/0000-0002-8002-893X32,
  • Ian A. Glass  ORCID: orcid.org/0000-0001-6762-840733,
  • Scott Ward34,
  • Philippe M. Campeau  ORCID: orcid.org/0000-0001-9713-710735,
  • Maria Carla Hermida Borroto35,
  • Laurence Le Moigno36,
  • Hilde Van Esch  ORCID: orcid.org/0000-0002-9604-572637,
  • Liesbeth De Waele  ORCID: orcid.org/0000-0001-7126-575X38,
  • Daniel G. Calame39,
  • James R. Lupski  ORCID: orcid.org/0000-0001-9907-924640,
  • Giulia Barcia41,
  • Cristina Peduto  ORCID: orcid.org/0000-0003-4054-365141,
  • Pauline Planté-Bordeneuve  ORCID: orcid.org/0000-0003-1973-210841,
  • Lucie Dupuis  ORCID: orcid.org/0000-0002-6068-819942,
  • Roberto Mendoza-Londono  ORCID: orcid.org/0000-0003-3542-810642,
  • Dimitri J. Stavropoulos43,
  • Jennifer Gillibert-Duplantier44,
  • Thomas Besnard  ORCID: orcid.org/0000-0003-4804-514724,25,
  • Laura Do Souto Ferreira24,
  • Benjamin Cogné  ORCID: orcid.org/0000-0002-5503-629224,25,
  • Stéphane Bézieau  ORCID: orcid.org/0000-0003-0095-131924,25,
  • Arnaud Droit  ORCID: orcid.org/0000-0001-7922-790X5,45,
  • Laurent Corcos1,
  • Eric Lippert  ORCID: orcid.org/0000-0002-2312-65841,46,47,
  • Claude Férec1,
  • Sebastien Küry  ORCID: orcid.org/0000-0001-5497-046524,25 &
  • …
  • Delphine G. Bernard  ORCID: orcid.org/0000-0002-9439-54821,47 

Nature Communications , Article number:  (2026) Cite this article

  • 1144 Accesses

  • 15 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Disease genetics
  • Genetics research
  • Neurodevelopmental disorders
  • RNA splicing
  • Transcriptomics

Abstract

SF3B1 is an essential and ubiquitous splicing factor that plays a pivotal role in the early steps of pre-mRNA splicing. Recurrent somatic missense mutations in SF3B1 are frequent in cancers, but no constitutional variant has been reported so far. We describe here a cohort of 26 individuals with neurodevelopmental disorders, harbouring SF3B1 constitutional heterozygous variants that appeared mostly de novo. Patients present with a global developmental delay, associated with variable neurological and facial dysmorphic traits. A dichotomy may emerge between patients harbouring predicted loss of function (n = 9) and missense variants (n = 17), the latter being associated with a more severe and syndromic phenotype, including heart and gastrointestinal anomalies. We focused on de novo SF3B1 missense variants, which were largely distinct from those reported in cancer. Functional complementation assays show that de novo SF3B1 missense variants did not cause a loss of function of the protein. Targeted and genome-wide analysis of RNA splicing reveal that they affect canonical and alternative splicing more moderately than somatic variants, and subtly modify the splicing of many transcripts. These findings place SF3B1 among the rare U2 snRNP components implicated in both cancer and neurodevelopmental disorders, highlighting its critical and multifaceted role in human disease.

Similar content being viewed by others

Monoallelic loss-of-function variants in GSK3B lead to autism and developmental delay

Article 29 October 2024

Dominant variants in major spliceosome U4 and U5 small nuclear RNA genes cause neurodevelopmental disorders through splicing disruption

Article Open access 16 May 2025

A novel homozygous splicing variant in FRA10AC1: further delineation of the phenotype

Article Open access 23 January 2026

Data availability

The RNA sequencing data generated from patient-derived lymphocytes have been deposited in the European Genome–Phenome Archive (EGA, http://www.ebi.ac.uk/ega), under accession code EGAS50000001473, and are subjected to a data processing agreement due to their sensitive nature. Access will be provided only for health or medical or biomedical research, only for non commercial use, and a collaboration with the primary study investigator is required. Due to the sensitive nature of human genetic data, controlled access to human genome data is necessary to protect participant privacy and to ensure compliance with ethical and legal standards. Individual genome data provided within a clinical diagnostic setting, which are stored on secure hospital servers, cannot be made available due to ethical and regulatory considerations, including patient consent limitations and data protection regulations. However, whole exome sequencing data performed in the framework of the HUGODIMS consortium, as well as the exome sequencing data generated in a research setting, are available from the corresponding author under controlled access. Access will be restricted to qualified researchers for non-commercial research purposes and subject to a data processing agreement. Data access requests for RNA sequencing and exome sequencing data generated in a research setting should be submitted to the corresponding author and will be reviewed within 30 days by a data accessibility committee to ensure that data access complies with ethical and legal standards respective to the corresponding projects. The RNA sequencing data generated in this study on K562 cells have been deposited in the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/gds) under accession code GSE287369. All other data supporting the findings of this study are available within the paper and its supplementary information files. The source data underlying Figs. 3 and 5 and Supplementary Fig . 4-6 are provided as a Source Data file. Source data are provided with this paper.

References

  1. Marasco, L. E. & Kornblihtt, A. R. The physiology of alternative splicing. Nat. Rev. Mol. Cell Biol. 24, 242–254 (2023).

    Google Scholar 

  2. Bonnal, S. C., López-Oreja, I. & Valcárcel, J. Roles and mechanisms of alternative splicing in cancer—implications for care. Nat. Rev. Clin. Oncol. 17, 457–474 (2020).

    Google Scholar 

  3. Griffin, C. & Saint-Jeannet, J.-P. Spliceosomopathies: Diseases and mechanisms. Dev. Dyn. Publ. Am. Assoc. Anat. 249, 1038–1046 (2020).

    Google Scholar 

  4. Cretu, C. et al. Molecular architecture of SF3b and structural consequences of its cancer-related mutations. Mol. Cell 64, 307–319 (2016).

    Google Scholar 

  5. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    Google Scholar 

  6. Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365, 1384–1395 (2011).

    Google Scholar 

  7. Alsafadi, S. et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat. Commun. 7, 10615 (2016).

    Google Scholar 

  8. Darman, R. B. et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3’ splice site selection through use of a different branch point. Cell Rep. 13, 1033–1045 (2015).

    Google Scholar 

  9. Shiozawa, Y. et al. Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia. Nat. Commun. 9, 3649 (2018).

    Google Scholar 

  10. Dolatshad, H. et al. Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes. Leukemia 30, 2322–2331 (2016).

    Google Scholar 

  11. Dalton, W. B. et al. The K666N mutation in SF3B1 is associated with increased progression of MDS and distinct RNA splicing. Blood Adv. 4, 1192–1196 (2020).

    Google Scholar 

  12. Choi, I. Y. et al. The E592K variant of SF3B1 creates unique RNA missplicing and associates with high-risk MDS without ring sideroblasts. Blood Adv. 8, 3961–3971 (2024).

    Google Scholar 

  13. El Chehadeh, S. et al. Dominant variants in the splicing factor PUF60 cause a recognizable syndrome with intellectual disability, heart defects and short stature. Eur. J. Hum. Genet. EJHG 25, 43–51 (2016).

    Google Scholar 

  14. Wang, Q., Moore, M. J., Adelmant, G., Marto, J. A. & Silver, P. A. PQBP1, a factor linked to intellectual disability, affects alternative splicing associated with neurite outgrowth. Genes Dev. 27, 615–626 (2013).

    Google Scholar 

  15. Yang, Y. et al. Prevalence of neurodevelopmental disorders among US children and adolescents in 2019 and 2020. Front. Psychol. 13, 997648 (2022).

  16. Gidziela, A. et al. A meta-analysis of genetic effects associated with neurodevelopmental disorders and co-occurring conditions. Nat. Hum. Behav. 7, 642–656 (2023).

    Google Scholar 

  17. Gillentine, M. A., Wang, T. & Eichler, E. E. Estimating the prevalence of de novo monogenic neurodevelopmental disorders from large cohort studies. Biomedicines 10, 2865 (2022).

    Google Scholar 

  18. Lagrán, M. M. de, Bascón-Cardozo, K. & Dierssen, M. Neurodevelopmental disorders: 2024 update. Free Neuropathol. 5, 20 (2024).

  19. Manickam, K. et al. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: An evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. J. Am. Coll. Med. Genet. 23, 2029–2037 (2021).

    Google Scholar 

  20. Li, D. et al. Spliceosome malfunction causes neurodevelopmental disorders with overlapping features. J. Clin. Invest. 134, e171235 (2024).

    Google Scholar 

  21. Deutsch, H. M., Song, Y. & Li, D. Spliceosome complex and neurodevelopmental disorders. Curr. Opin. Genet. Dev. 93, 102358 (2025).

    Google Scholar 

  22. Greene, D. et al. Mutations in the small nuclear RNA gene RNU2-2 cause a severe neurodevelopmental disorder with prominent epilepsy. Nat. Genet. 57, 1367–1373 (2025).

    Google Scholar 

  23. Low, K. J. et al. PUF60 variants cause a syndrome of ID, short stature, microcephaly, coloboma, craniofacial, cardiac, renal and spinal features. Eur. J. Hum. Genet. 25, 552–559 (2017).

    Google Scholar 

  24. Dauber, A. et al. SCRIB and PUF60 are primary drivers of the multisystemic phenotypes of the 8q24.3 copy-number variant. Am. J. Hum. Genet. 93, 798–811 (2013).

    Google Scholar 

  25. Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017).

  26. Yeo, G. & Burge, C. B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. J. Comput. Mol. Cell Biol. 11, 377–394 (2004).

    Google Scholar 

  27. Leman, R. et al. SPiP: Splicing prediction pipeline, a machine learning tool for massive detection of exonic and intronic variant effects on mRNA splicing. Hum. Mutat. 43, 2308–2323 (2022).

    Google Scholar 

  28. Jian, X., Boerwinkle, E. & Liu, X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res. 42, 13534–13544 (2014).

    Google Scholar 

  29. Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 176, 535–548.e24 (2019).

    Google Scholar 

  30. Yang, F. et al. Mechanisms of the RNA helicases DDX42 and DDX46 in human U2 snRNP assembly. Nat. Commun. 14, 897 (2023).

    Google Scholar 

  31. Zhang, X. et al. Structural insights into branch site proofreading by human spliceosome. Nat. Struct. Mol. Biol. 31, 835–845 (2024).

    Google Scholar 

  32. Bergot, T. et al. Human cancer-associated mutations of SF3B1 lead to a splicing modification of its own RNA. Cancers 12, 652 (2020).

  33. Dolatshad, H. et al. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells. Leukemia 29, 1798 (2015).

    Google Scholar 

  34. Corrionero, A., Miñana, B. & Valcárcel, J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 25, 445–459 (2011).

    Google Scholar 

  35. Seiler, M. et al. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep. 23, 282–296.e4 (2018).

    Google Scholar 

  36. Kesarwani, A. K. et al. Cancer-associated SF3B1 mutants recognize otherwise inaccessible cryptic 3’ splice sites within RNA secondary structures. Oncogene 36, 1123–1133 (2017).

    Google Scholar 

  37. Liberante, F. G. et al. Altered splicing and cytoplasmic levels of tRNA synthetases in SF3B1-mutant myelodysplastic syndromes as a therapeutic vulnerability. Sci. Rep. 9, 2678 (2019).

    Google Scholar 

  38. Florea, L., Song, L. & Salzberg, S. L. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Research 2, 188 (2013).

    Google Scholar 

  39. Ikeda, F. et al. Exome sequencing identified RPS15A as a novel causative gene for Diamond-Blackfan anemia. Haematologica 102, e93–e96 (2017).

    Google Scholar 

  40. Tajima, H. et al. Evidence for in vivo production of Humanin peptide, a neuroprotective factor against Alzheimer’s disease-related insults. Neurosci. Lett. 324, 227–231 (2002).

    Google Scholar 

  41. Liu, Z. et al. Mutations in the RNA splicing Factor SF3B1 promote tumorigenesis through MYC stabilization. Cancer Discov. 10, 806–821 (2020).

    Google Scholar 

  42. Hwang, J. Y. et al. rMAPS2: An update of the RNA map analysis and plotting server for alternative splicing regulation. Nucleic Acids Res. 48, W300–W306 (2020).

    Google Scholar 

  43. Duijkers, F. A. et al. HNRNPR variants that impair homeobox gene expression drive developmental disorders in humans. Am. J. Hum. Genet. 104, 1040–1059 (2019).

    Google Scholar 

  44. de Masfrand, S. et al. Penetrance, variable expressivity and monogenic neurodevelopmental disorders. Eur. J. Med. Genet. 69, 104932 (2024).

    Google Scholar 

  45. Chen, P. et al. Phenotypic spectrum and molecular basis in a chinese cohort of osteogenesis imperfecta with mutations in type I collagen. Front. Genet. 13, 816078 (2022).

    Google Scholar 

  46. Guo, L. et al. Null and missense mutations of ERI1 cause a recessive phenotypic dichotomy in humans. Am. J. Hum. Genet. 110, 1068–1085 (2023).

    Google Scholar 

  47. Chettle, J. et al. LARP1 haploinsufficiency is associated with an autosomal dominant neurodevelopmental disorder. HGG Adv. 100345 https://doi.org/10.1016/j.xhgg.2024.100345 (2024).

  48. Nussinov, R., Tsai, C.-J. & Jang, H. How can same-gene mutations promote both cancer and developmental disorders? Sci. Adv. 8, eabm2059 (2022).

    Google Scholar 

  49. Timberlake, A. T. et al. Haploinsufficiency of SF3B2 causes craniofacial microsomia. Nat. Commun. 12, 4680 (2021).

    Google Scholar 

  50. Bernier, F. P. et al. Haploinsufficiency of SF3B4, a component of the pre-mRNA spliceosomal complex, causes Nager syndrome. Am. J. Hum. Genet. 90, 925–933 (2012).

    Google Scholar 

  51. Sobreira, N., Schiettecatte, F., Valle, D. & Hamosh, A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 36, 928–930 (2015).

    Google Scholar 

  52. SIFT - Predict effects of nonsynonmous / missense variants. https://sift.bii.a-star.edu.sg/.

  53. PolyPhen-2: Prediction of functional effects of human nsSNPs. http://genetics.bwh.harvard.edu/pph2/.

  54. Schwarz, J. M., Rödelsperger, C., Schuelke, M. & Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 7, 575–576 (2010).

    Google Scholar 

  55. Kim, S., Jhong, J.-H., Lee, J. & Koo, J.-Y. Meta-analytic support vector machine for integrating multiple omics data. BioData Min. 10, 2 (2017).

  56. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47, D886–D894 (2019).

    Google Scholar 

  57. Ioannidis, N. M. et al. REVEL: An ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99, 877–885 (2016).

    Google Scholar 

  58. Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, eadg7492 (2023).

    Google Scholar 

  59. Silk, M., Petrovski, S. & Ascher, D. B. MTR-Viewer: Identifying regions within genes under purifying selection. Nucleic Acids Res. 47, W121–W126 (2019).

    Google Scholar 

  60. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. J. Am. Coll. Med. Genet. 17, 405–424 (2015).

    Google Scholar 

  61. Abou Tayoun, A. N. et al. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum. Mutat. 39, 1517–1524 (2018).

    Google Scholar 

  62. Stenton, S. L. et al. Assessment of the evidence yield for the calibrated PP3/BP4 computational recommendations. Genet. Med. J. Am. Coll. Med. Genet. 26, 101213 (2024).

    Google Scholar 

  63. Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

  64. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinforma. Oxf. Engl. 30, 2114–2120 (2014).

    Google Scholar 

  65. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Google Scholar 

  66. Anders, S. et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc. 8, 1765–1786 (2013).

    Google Scholar 

  67. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Google Scholar 

  68. Kolberg, L., Raudvere, U., Kuzmin, I., Vilo, J. & Peterson, H. gprofiler2 -- an R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler. F1000Research 9, ELIXIR-709 (2020).

  69. Nava, C. et al. Dominant variants in major spliceosome U4 and U5 small nuclear RNA genes cause neurodevelopmental disorders through splicing disruption. Nat. Genet. 57, 1374–1388 (2025).

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the patients and families included as part of this study. The authors acknowledge HUGODIMS (Western France exome-based trio approach project to identify genes involved in intellectual disability); funding for HUGODIMS is supported by a grant from the French Ministry of Health and from the Health Regional Agency from Poitou-Charentes (HUGODIMS, 2013, RC14_0107). This study was funded by INSERM, by the French League against cancer (la Ligue contre le Cancer, committees 29 and 35), by the French Biomedecine Agency and by the association Gaetan Saleun. T.B. was funded by the Brittany Region and the Ministère de l’Enseignement Supérieur, S.Ch. and C. D. were funded by the Ministère de l’Enseignement Supérieur de la Recherche et de l’Innovation. This study was supported by the « Priority Research Programme on Rare Diseases » of the French Investments for the Future Programme, project MultiOmixCare. JRL was supported in part by US National Institutes of Health NS105078 and HG011758. D.G.C. was supported by the Child Neurologist Career Development Programme K12 and Muscular Dystrophy Association Development Grant (873841). The authors thank the vectorology core facility Vect’UB in Bordeaux for the production of lentiviral particles, and thank the Centre of Biological Resources in Brest (CHU).

Author information

Author notes
  1. These authors contributed equally: Kevin Uguen, Tiffany Bergot.

Authors and Affiliations

  1. Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France

    Kevin Uguen, Tiffany Bergot, Solène Chapalain, Camille Desdouets, Séverine Commet, Laurent Corcos, Eric Lippert, Claude Férec & Delphine G. Bernard

  2. Service de Génétique Médicale, CHU de Brest, Brest, France

    Kevin Uguen & Marc Planes

  3. Centre de Référence Déficience Intellectuelle et Polyhandicap de causes rares, CHU de Brest, Brest, France

    Kevin Uguen & Marc Planes

  4. Currently in the Division of Structural Biology, The Institute of Cancer Research, London, England

    Tiffany Bergot

  5. CHU de Québec–Laval University Research Center, Quebec City, QC, Canada

    Marie-Pier Scott-Boyer & Arnaud Droit

  6. Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden

    Changlian Zhu

  7. Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China

    Changlian Zhu & Yiran Xu

  8. Institutes of Biomedical Sciences and Children’s Hospital, Fudan University, Shanghai, China

    Yangong Wang

  9. New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia

    Tony Roscioli

  10. Neuroscience Research Australia (NeuRA), University of New South Wales Sydney, Sydney, NSW, Australia

    Tony Roscioli

  11. Université Bourgogne Europe, CHU Dijon Bourgogne, Laboratoire de Génomique Médicale, Centre Neomics, FHU TRANSLAD, Centre de recherche Translationnelle en Médecine moléculaire—Inserm UMR1231, équipe GAD, Dijon, France

    Frederic Tran-Mau-Them, Anne-Sophie Denommé-Pichon & Antonio Vitobello

  12. Université Bourgogne Europe, CHU Dijon Bourgogne, Inserm, CTM UMR1231, équipe GAD, FHU TRANSLAD, Centre de génétique, Centre de référence Anomalies du Développement et Syndromes Malformatifs, Centre de référence Déficiences Intellectuelles de Causes Rares, et Centre de référence GénoPsy, Dijon, France

    Laurence Faivre, Julien Maraval, Julian Delanne & Céline Jost

  13. HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA

    Susan Hiatt

  14. Division of Genetics, Arnold Palmer Hospital for Children-Orlando Health, Orlando, FL, USA

    Patricia Wheeler

  15. International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, México

    Claudia Gonzaga-Jauregui

  16. DDC Clinic for Special Needs Children, Middlefield, OH, USA

    Heng Wang, Baozhong Xin & Valerie Sency

  17. Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ, USA

    Michael C. Kruer & Somayeh Bakhtiari

  18. Departments of Child Health, Neurology, Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, USA

    Michael C. Kruer & Somayeh Bakhtiari

  19. deCODE Genetics/Amgen, Inc, Reykjavik, Iceland

    Patrick Sulem

  20. Genetic Medicine, University of California, San Francisco, Fresno, CA, USA

    Cynthia Curry

  21. Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway

    Trine Prescott

  22. Department of Human Genetics, MVZ Humangenetik Ulm, Ulm, Germany

    Gertrud Strobl-Wildemann

  23. Institute of Human Genetics, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany

    Theresa Brunet

  24. Nantes Université, CHU de Nantes, Service de Génétique médicale, Nantes, France

    Martine Doco Fenzy, Thomas Besnard, Laura Do Souto Ferreira, Benjamin Cogné, Stéphane Bézieau & Sebastien Küry

  25. Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France

    Martine Doco Fenzy, Thomas Besnard, Benjamin Cogné, Stéphane Bézieau & Sebastien Küry

  26. Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, Paris, France

    Thomas Courtin

  27. Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique, DMU BioGeM, Paris, France

    Thomas Courtin

  28. Département de génétique médicale, CHU Reims, Reims, France

    Céline Poirsier

  29. Department of Epilepsy Genetics and Personalized Treatment, The Filadelfia Danish Epilepsy Centre, Dianalund, Denmark

    Trine Bjørg Hammer & Christina D. Fenger

  30. Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark

    Trine Bjørg Hammer

  31. Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Alberta Health Services, Edmonton, AB, Canada

    Melissa MacPherson

  32. Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA

    Kosuke Izumi, Jacqueline Leonard, Dong Li & Elaine H. Zackai

  33. Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA

    Ian A. Glass

  34. Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA

    Scott Ward

  35. Centre de Recherche Azrieli du CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada

    Philippe M. Campeau & Maria Carla Hermida Borroto

  36. Service de Pédiatrie et Unité d’Urgence Pédiatrique, Centre Hospitalier de Cornouaille, Quimper, France

    Laurence Le Moigno

  37. Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven, Belgium

    Hilde Van Esch

  38. Department of Child Neurology, University Hospitals Leuven, Herestraat 49, Leuven, Belgium

    Liesbeth De Waele

  39. Section of Pediatric Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA

    Daniel G. Calame

  40. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA

    James R. Lupski

  41. Service de Médecine Génomique des Maladies Rares, Hôpital Necker - Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France

    Giulia Barcia, Cristina Peduto & Pauline Planté-Bordeneuve

  42. Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada

    Lucie Dupuis & Roberto Mendoza-Londono

  43. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada

    Dimitri J. Stavropoulos

  44. VECT’UB, TBMCore, CNRS UAR 3427, INSERM US005, Université de Bordeaux, Bordeaux, France

    Jennifer Gillibert-Duplantier

  45. Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada

    Arnaud Droit

  46. Service d’hématologie biologique, CHU de Brest, Brest, France

    Eric Lippert

  47. CRB Santé du CHU de Brest, Brest, France

    Eric Lippert & Delphine G. Bernard

Authors
  1. Kevin Uguen
    View author publications

    Search author on:PubMed Google Scholar

  2. Tiffany Bergot
    View author publications

    Search author on:PubMed Google Scholar

  3. Marie-Pier Scott-Boyer
    View author publications

    Search author on:PubMed Google Scholar

  4. Solène Chapalain
    View author publications

    Search author on:PubMed Google Scholar

  5. Camille Desdouets
    View author publications

    Search author on:PubMed Google Scholar

  6. Séverine Commet
    View author publications

    Search author on:PubMed Google Scholar

  7. Changlian Zhu
    View author publications

    Search author on:PubMed Google Scholar

  8. Yiran Xu
    View author publications

    Search author on:PubMed Google Scholar

  9. Yangong Wang
    View author publications

    Search author on:PubMed Google Scholar

  10. Tony Roscioli
    View author publications

    Search author on:PubMed Google Scholar

  11. Frederic Tran-Mau-Them
    View author publications

    Search author on:PubMed Google Scholar

  12. Laurence Faivre
    View author publications

    Search author on:PubMed Google Scholar

  13. Julien Maraval
    View author publications

    Search author on:PubMed Google Scholar

  14. Julian Delanne
    View author publications

    Search author on:PubMed Google Scholar

  15. Anne-Sophie Denommé-Pichon
    View author publications

    Search author on:PubMed Google Scholar

  16. Antonio Vitobello
    View author publications

    Search author on:PubMed Google Scholar

  17. Céline Jost
    View author publications

    Search author on:PubMed Google Scholar

  18. Marc Planes
    View author publications

    Search author on:PubMed Google Scholar

  19. Susan Hiatt
    View author publications

    Search author on:PubMed Google Scholar

  20. Patricia Wheeler
    View author publications

    Search author on:PubMed Google Scholar

  21. Claudia Gonzaga-Jauregui
    View author publications

    Search author on:PubMed Google Scholar

  22. Heng Wang
    View author publications

    Search author on:PubMed Google Scholar

  23. Baozhong Xin
    View author publications

    Search author on:PubMed Google Scholar

  24. Valerie Sency
    View author publications

    Search author on:PubMed Google Scholar

  25. Michael C. Kruer
    View author publications

    Search author on:PubMed Google Scholar

  26. Somayeh Bakhtiari
    View author publications

    Search author on:PubMed Google Scholar

  27. Patrick Sulem
    View author publications

    Search author on:PubMed Google Scholar

  28. Cynthia Curry
    View author publications

    Search author on:PubMed Google Scholar

  29. Trine Prescott
    View author publications

    Search author on:PubMed Google Scholar

  30. Gertrud Strobl-Wildemann
    View author publications

    Search author on:PubMed Google Scholar

  31. Theresa Brunet
    View author publications

    Search author on:PubMed Google Scholar

  32. Martine Doco Fenzy
    View author publications

    Search author on:PubMed Google Scholar

  33. Thomas Courtin
    View author publications

    Search author on:PubMed Google Scholar

  34. Céline Poirsier
    View author publications

    Search author on:PubMed Google Scholar

  35. Trine Bjørg Hammer
    View author publications

    Search author on:PubMed Google Scholar

  36. Christina D. Fenger
    View author publications

    Search author on:PubMed Google Scholar

  37. Melissa MacPherson
    View author publications

    Search author on:PubMed Google Scholar

  38. Kosuke Izumi
    View author publications

    Search author on:PubMed Google Scholar

  39. Jacqueline Leonard
    View author publications

    Search author on:PubMed Google Scholar

  40. Dong Li
    View author publications

    Search author on:PubMed Google Scholar

  41. Elaine H. Zackai
    View author publications

    Search author on:PubMed Google Scholar

  42. Ian A. Glass
    View author publications

    Search author on:PubMed Google Scholar

  43. Scott Ward
    View author publications

    Search author on:PubMed Google Scholar

  44. Philippe M. Campeau
    View author publications

    Search author on:PubMed Google Scholar

  45. Maria Carla Hermida Borroto
    View author publications

    Search author on:PubMed Google Scholar

  46. Laurence Le Moigno
    View author publications

    Search author on:PubMed Google Scholar

  47. Hilde Van Esch
    View author publications

    Search author on:PubMed Google Scholar

  48. Liesbeth De Waele
    View author publications

    Search author on:PubMed Google Scholar

  49. Daniel G. Calame
    View author publications

    Search author on:PubMed Google Scholar

  50. James R. Lupski
    View author publications

    Search author on:PubMed Google Scholar

  51. Giulia Barcia
    View author publications

    Search author on:PubMed Google Scholar

  52. Cristina Peduto
    View author publications

    Search author on:PubMed Google Scholar

  53. Pauline Planté-Bordeneuve
    View author publications

    Search author on:PubMed Google Scholar

  54. Lucie Dupuis
    View author publications

    Search author on:PubMed Google Scholar

  55. Roberto Mendoza-Londono
    View author publications

    Search author on:PubMed Google Scholar

  56. Dimitri J. Stavropoulos
    View author publications

    Search author on:PubMed Google Scholar

  57. Jennifer Gillibert-Duplantier
    View author publications

    Search author on:PubMed Google Scholar

  58. Thomas Besnard
    View author publications

    Search author on:PubMed Google Scholar

  59. Laura Do Souto Ferreira
    View author publications

    Search author on:PubMed Google Scholar

  60. Benjamin Cogné
    View author publications

    Search author on:PubMed Google Scholar

  61. Stéphane Bézieau
    View author publications

    Search author on:PubMed Google Scholar

  62. Arnaud Droit
    View author publications

    Search author on:PubMed Google Scholar

  63. Laurent Corcos
    View author publications

    Search author on:PubMed Google Scholar

  64. Eric Lippert
    View author publications

    Search author on:PubMed Google Scholar

  65. Claude Férec
    View author publications

    Search author on:PubMed Google Scholar

  66. Sebastien Küry
    View author publications

    Search author on:PubMed Google Scholar

  67. Delphine G. Bernard
    View author publications

    Search author on:PubMed Google Scholar

Contributions

K.U. and T.B. contributed equally. K.U., T.B., and S.K. contributed to the design of the study; T.B., S.Ch., C.D., S.C. performed the experiments; M.P.S.-B. performed the bioinformatic analysis (RNAseq); D.G.B. and K.U. contributed to the bioinformatic analysis; T.Be., L.D.S.F and B. Co. provided data on human samples; K.U., T.B., S.K., S.Ch. and D.G.B. contributed to data interpretation; M.P., S.H., P.W., H.W., B.X., V.S., M.C., C.Z., C.C., T.P., S.G., B.T., T.C., C.P., T.H., T.R., M.M., K.I., J.L., E.Z., I.G., S.W., M.B., L.F., J.M., J.D., C.J., L.LM., H.VE., D.C., L.DW., G.B., C.Pe. and L.D. contributed to the clinical data collection; K.U., S.K., C.G., M.C., S.B., P.S., Y.X., Y.W., M.D-F., D.L., P.C., F.T-M-T., A.D-P., A.V., J. Lu., P.P-B., R.M. and D.S. contributed to the exome/genome data analysis; C.F. supported the study; K.U., S.K., T.B. and D.B wrote the manuscript; E.L., L.C. reviewed the manuscript; D.G.B. designed and supervised the research. All authors read the manuscript.

Corresponding author

Correspondence to Delphine G. Bernard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Juan Valcárcel Juarez, Christel Depienne, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uguen, K., Bergot, T., Scott-Boyer, MP. et al. De novo variants in the splicing factor gene SF3B1 are associated with neurodevelopmental disorders. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68284-9

Download citation

  • Received: 18 December 2024

  • Accepted: 31 December 2025

  • Published: 23 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68284-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing