Abstract
The quantum boomerang effect is a counterintuitive phenomenon in which a wave packet launched with finite momentum in a disordered medium returns to its origin. However, up to now, the experimental exploration of this boomerang effect remains largely unexplored. Here, we report the observation of this effect with light in an on-chip, one-dimensional (1D) disordered waveguide lattice. After benchmarking the system through Anderson localization, we launch a kinetic light beam into the system and track its center of mass (COM): it first moves away from its starting point, arrives at a maximum-valued point, reverses its direction, and returns to its original position over time, revealing the real-space observation of the photonic quantum boomerang effect. We also show two methods to accelerate and control the return: a symmetric gradient loss and time-varying coupling control to effectively increase the return velocity. Both strategies are realized experimentally and captured by our model. These results establish a controllable photonic platform for boomerang physics and open an avenue for future study in nonlinear and many-photon regimes.
Similar content being viewed by others
Data availability
The data supporting the findings of this study are presented within the article and Supplementary Information. Source data are provided with this paper.
References
Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).
John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).
Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000).
Chen, H., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010).
Lewenstein, M., Zakrzewski, J. & Mossberg, T. W. Spontaneous emission of atoms coupled to frequency-dependent reservoirs. Phys. Rev. A 38, 808–819 (1988).
Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).
Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).
Cai, W., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with metamaterials. Nat. Photonics 1, 224–227 (2007).
Haldane, F. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904–013904 (2008).
Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).
Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics 6, 782–787 (2012).
Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).
Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013).
Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photonics 7, 1001–1005 (2013).
Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. photonics 8, 821–829 (2014).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Kim, M., Jacob, Z. & Rho, J. Recent advances in 2d, 3d and higher-order topological photonics. Light Sci. Appl. 9, 130 (2020).
Biesenthal, T. et al. Fractal photonic topological insulators. Science 376, 1114–1119 (2022).
Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).
Shao, Z.-K. et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol. 15, 67–72 (2020).
Yang, Z. et al. Mode-locked topological insulator laser utilizing synthetic dimensions. Phys. Rev. X 10, 011059 (2020).
Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018).
Dai, T. et al. Topologically protected quantum entanglement emitters. Nat. Photonics 16, 248–257 (2022).
Yao, S., Song, F. & Wang, Z. Non-hermitian chern bands. Phys. Rev. Lett. 121, 136802 (2018).
Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-hermitian physics. Phys. Rev. X 9, 041015 (2019).
Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).
Guo, A. et al. Observation of pt-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).
Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).
Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).
Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time–symmetric microring lasers. Science 346, 975–978 (2014).
Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).
Zhen, B. et al. Spawning rings of exceptional points out of dirac cones. Nature 525, 354–358 (2015).
Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-hermitian system. Phys. Rev. Lett. 115, 040402 (2015).
Weimann, S. et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).
Ni, X. et al. Pt phase transitions of edge states at pt symmetric interfaces in non-hermitian topological insulators. Phys. Rev. B 98, 165129 (2018).
El-Ganainy, R. et al. Non-hermitian physics and pt symmetry. Nat. Phys. 14, 11–19 (2018).
Özdemir, ŞK., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).
Miri, M.-A. & Alu, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).
Zhao, H. et al. Non-hermitian topological light steering. Science 365, 1163–1166 (2019).
Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-hermitian bands. Nature 598, 59–64 (2021).
Yao, S. & Wang, Z. Edge states and topological invariants of non-hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).
Song, F., Yao, S. & Wang, Z. Non-hermitian skin effect and chiral damping in open quantum systems. Phys. Rev. Lett. 123, 170401 (2019).
Song, F., Yao, S. & Wang, Z. Non-hermitian topological invariants in real space. Phys. Rev. Lett. 123, 246801 (2019).
Yokomizo, K. & Murakami, S. Non-bloch band theory of non-hermitian systems. Phys. Rev. Lett. 123, 066404 (2019).
Yi, Y. & Yang, Z. Non-hermitian skin modes induced by on-site dissipations and chiral tunneling effect. Phys. Rev. Lett. 125, 186802 (2020).
Zhang, K., Yang, Z. & Fang, C. Correspondence between winding numbers and skin modes in non-hermitian systems. Phys. Rev. Lett. 125, 126402 (2020).
Yang, Z., Zhang, K., Fang, C. & Hu, J. Non-hermitian bulk-boundary correspondence and auxiliary generalized brillouin zone theory. Phys. Rev. Lett. 125, 226402 (2020).
Xiao, L. et al. Non-hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).
Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).
Helbig, T. et al. Generalized bulk–boundary correspondence in non-hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).
Sun, Y. et al. Photonic floquet skin-topological effect. Phys. Rev. Lett. 132, 063804 (2024).
Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).
Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).
De Raedt, H., Lagendijk, A. & de Vries, P. Transverse localization of light. Phys. Rev. Lett. 62, 47 (1989).
Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673 (1997).
Chabanov, A. A., Stoytchev, M. & Genack, A. Z. Statistical signatures of photon localization. Nature 404, 850–853 (2000).
Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).
Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).
Lahini, Y. et al. Observation of a localization transition in quasiperiodic photonic lattices. Phys. Rev. Lett. 103, 013901 (2009).
Levi, L. et al. Disorder-enhanced transport in photonic quasicrystals. Science 332, 1541–1544 (2011).
Levi, L., Krivolapov, Y., Fishman, S. & Segev, M. Hyper-transport of light and stochastic acceleration by evolving disorder. Nat. Phys. 8, 912–917 (2012).
Sperling, T., Bührer, W., Aegerter, C. M. & Maret, G. Direct determination of the transition to localization of light in three dimensions. Nat. Photonics 7, 48–52 (2013).
Vardeny, Z. V., Nahata, A. & Agrawal, A. Optics of photonic quasicrystals. Nat. Photonics 7, 177–184 (2013).
Segev, M., Silberberg, Y. & Christodoulides, D. N. Anderson localization of light. Nat. Photonics 7, 197–204 (2013).
Roati, G. et al. Anderson localization of a non-interacting bose-einstein condensate. Nature 453, 895–898 (2008).
Billy, J. et al. Direct observation of anderson localization of matter waves in a controlled disorder. Nature 453, 891–894 (2008).
Kondov, S. S., McGehee, W. R., Zirbel, J. J. & DeMarco, B. Three-dimensional anderson localization of ultracold matter. Science 334, 66–68 (2011).
Jendrzejewski, F. et al. Three-dimensional localization of ultracold atoms in an optical disordered potential. Nat. Phys. 8, 398–403 (2012).
Prat, T., Delande, D. & Cherroret, N. Quantum boomeranglike effect of wave packets in random media. Phys. Rev. A 99, 023629 (2019).
Janarek, J., Delande, D., Cherroret, N. & Zakrzewski, J. Quantum boomerang effect for interacting particles. Phys. Rev. A 102, 013303 (2020).
Tessieri, L., Akdeniz, Z., Cherroret, N., Delande, D. & Vignolo, P. Quantum boomerang effect: Beyond the standard anderson model. Phys. Rev. A 103, 063316 (2021).
Janarek, J., Grémaud, B., Zakrzewski, J. & Delande, D. Quantum boomerang effect in systems without time-reversal symmetry. Phys. Rev. B 105, L180202 (2022).
Noronha, F., Lourenço, J. A. & Macrì, T. Robust quantum boomerang effect in non-hermitian systems. Phys. Rev. B 106, 104310 (2022).
Noronha, F. & Macrì, T. Ubiquity of the quantum boomerang effect in hermitian anderson-localized systems. Phys. Rev. B 106, L060301 (2022).
Janarek, J., Zakrzewski, J. & Delande, D. Many-body quantum boomerang effect. Phys. Rev. B 107, 094204 (2023).
Sajjad, R. et al. Observation of the quantum boomerang effect. Phys. Rev. X 12, 011035 (2022).
Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).
Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).
Griniasty, M. & Fishman, S. Localization by pseudorandom potentials in one dimension. Phys. Rev. Lett. 60, 1334 (1988).
Mo, Q., Sun, Y., Li, J., Ruan, Z. & Yang, Z. Imaginary-disorder-induced topological phase transitions. Phys. Rev. Appl. 18, 064079 (2022).
Li, J., Ying, L. & Yang, Z. Imaginary disorder-induced many-body localization and dynamical jumping. Phys. Rev. B 110, 165101 (2024).
Jürgensen, M., Mukherjee, S., Jörg, C. & Rechtsman, M. C. Quantized fractional thouless pumping of solitons. Nat. Phys. 19, 420–426 (2023).
Lahini, Y., Bromberg, Y., Christodoulides, D. N. & Silberberg, Y. Quantum correlations in two-particle anderson localization. Phys. Rev. Lett. 105, 163905 (2010).
Crespi, A. et al. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics 7, 322–328 (2013).
Acknowledgements
This research is supported by the National Key R&D Program of China (Grant No. 2023YFA1406703 and 2022YFA1404203), National Natural Science Foundation of China (Grant No. 12174339), Zhejiang Provincial Natural Science Foundation of China (Grant No. LR23A040003), the Fundamental Research Funds for the Central Universities (Grant No. 226-2025-00124), and Excellent Youth Science Foundation Project (Overseas). Z.Y. thanks C.G. and F.S. for helpful discussions.
Author information
Authors and Affiliations
Contributions
X.H. and F.W. fabricated the sample and conducted the measurements. Z.W. and X.H. carried out the theoretical modeling and numerical simulations. Z.Y. conceived and supervised this project. Z.Y., Z.W., and X.H. wrote the manuscript with input from B.Y. and S.Z. All authors discussed the results and contributed to the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Hou, X., Wu, Z., Wang, F. et al. Quantum boomerang effect of light. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68293-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-68293-8


