Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Quantum boomerang effect of light
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 January 2026

Quantum boomerang effect of light

  • Xiangrui Hou1 na1,
  • Zhaoxin Wu1 na1,
  • Fangyu Wang1,
  • Shiyao Zhu1,
  • Bo Yan  ORCID: orcid.org/0000-0002-5708-24601 &
  • …
  • Zhaoju Yang  ORCID: orcid.org/0000-0002-9880-26551 

Nature Communications , Article number:  (2026) Cite this article

  • 2802 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atomic and molecular physics
  • Optical physics
  • Optics and photonics

Abstract

The quantum boomerang effect is a counterintuitive phenomenon in which a wave packet launched with finite momentum in a disordered medium returns to its origin. However, up to now, the experimental exploration of this boomerang effect remains largely unexplored. Here, we report the observation of this effect with light in an on-chip, one-dimensional (1D) disordered waveguide lattice. After benchmarking the system through Anderson localization, we launch a kinetic light beam into the system and track its center of mass (COM): it first moves away from its starting point, arrives at a maximum-valued point, reverses its direction, and returns to its original position over time, revealing the real-space observation of the photonic quantum boomerang effect. We also show two methods to accelerate and control the return: a symmetric gradient loss and time-varying coupling control to effectively increase the return velocity. Both strategies are realized experimentally and captured by our model. These results establish a controllable photonic platform for boomerang physics and open an avenue for future study in nonlinear and many-photon regimes.

Similar content being viewed by others

Non-classical photonic spin texture of quantum structured light

Article Open access 30 September 2021

Bound state in a giant atom-modulated resonators system

Article Open access 07 July 2022

Experimental demonstration of spatiotemporal analog computation in ultrafast optics

Article Open access 22 January 2026

Data availability

The data supporting the findings of this study are presented within the article and Supplementary Information. Source data are provided with this paper.

References

  1. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Google Scholar 

  2. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Google Scholar 

  3. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000).

    Google Scholar 

  4. Chen, H., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010).

    Google Scholar 

  5. Lewenstein, M., Zakrzewski, J. & Mossberg, T. W. Spontaneous emission of atoms coupled to frequency-dependent reservoirs. Phys. Rev. A 38, 808–819 (1988).

    Google Scholar 

  6. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Google Scholar 

  7. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Google Scholar 

  8. Cai, W., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with metamaterials. Nat. Photonics 1, 224–227 (2007).

    Google Scholar 

  9. Haldane, F. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904–013904 (2008).

    Google Scholar 

  10. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Google Scholar 

  11. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics 6, 782–787 (2012).

    Google Scholar 

  12. Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    Google Scholar 

  13. Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013).

    Google Scholar 

  14. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photonics 7, 1001–1005 (2013).

    Google Scholar 

  15. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. photonics 8, 821–829 (2014).

    Google Scholar 

  16. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Google Scholar 

  17. Kim, M., Jacob, Z. & Rho, J. Recent advances in 2d, 3d and higher-order topological photonics. Light Sci. Appl. 9, 130 (2020).

    Google Scholar 

  18. Biesenthal, T. et al. Fractal photonic topological insulators. Science 376, 1114–1119 (2022).

    Google Scholar 

  19. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    Google Scholar 

  20. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Google Scholar 

  21. Shao, Z.-K. et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol. 15, 67–72 (2020).

    Google Scholar 

  22. Yang, Z. et al. Mode-locked topological insulator laser utilizing synthetic dimensions. Phys. Rev. X 10, 011059 (2020).

    Google Scholar 

  23. Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018).

    Google Scholar 

  24. Dai, T. et al. Topologically protected quantum entanglement emitters. Nat. Photonics 16, 248–257 (2022).

    Google Scholar 

  25. Yao, S., Song, F. & Wang, Z. Non-hermitian chern bands. Phys. Rev. Lett. 121, 136802 (2018).

    Google Scholar 

  26. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-hermitian physics. Phys. Rev. X 9, 041015 (2019).

    Google Scholar 

  27. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Google Scholar 

  28. Guo, A. et al. Observation of pt-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    Google Scholar 

  29. Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Google Scholar 

  30. Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).

    Google Scholar 

  31. Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time–symmetric microring lasers. Science 346, 975–978 (2014).

    Google Scholar 

  32. Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

    Google Scholar 

  33. Zhen, B. et al. Spawning rings of exceptional points out of dirac cones. Nature 525, 354–358 (2015).

    Google Scholar 

  34. Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    Google Scholar 

  35. Weimann, S. et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).

    Google Scholar 

  36. Ni, X. et al. Pt phase transitions of edge states at pt symmetric interfaces in non-hermitian topological insulators. Phys. Rev. B 98, 165129 (2018).

    Google Scholar 

  37. El-Ganainy, R. et al. Non-hermitian physics and pt symmetry. Nat. Phys. 14, 11–19 (2018).

    Google Scholar 

  38. Özdemir, ŞK., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

    Google Scholar 

  39. Miri, M.-A. & Alu, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    Google Scholar 

  40. Zhao, H. et al. Non-hermitian topological light steering. Science 365, 1163–1166 (2019).

    Google Scholar 

  41. Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-hermitian bands. Nature 598, 59–64 (2021).

    Google Scholar 

  42. Yao, S. & Wang, Z. Edge states and topological invariants of non-hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    Google Scholar 

  43. Song, F., Yao, S. & Wang, Z. Non-hermitian skin effect and chiral damping in open quantum systems. Phys. Rev. Lett. 123, 170401 (2019).

    Google Scholar 

  44. Song, F., Yao, S. & Wang, Z. Non-hermitian topological invariants in real space. Phys. Rev. Lett. 123, 246801 (2019).

    Google Scholar 

  45. Yokomizo, K. & Murakami, S. Non-bloch band theory of non-hermitian systems. Phys. Rev. Lett. 123, 066404 (2019).

    Google Scholar 

  46. Yi, Y. & Yang, Z. Non-hermitian skin modes induced by on-site dissipations and chiral tunneling effect. Phys. Rev. Lett. 125, 186802 (2020).

    Google Scholar 

  47. Zhang, K., Yang, Z. & Fang, C. Correspondence between winding numbers and skin modes in non-hermitian systems. Phys. Rev. Lett. 125, 126402 (2020).

    Google Scholar 

  48. Yang, Z., Zhang, K., Fang, C. & Hu, J. Non-hermitian bulk-boundary correspondence and auxiliary generalized brillouin zone theory. Phys. Rev. Lett. 125, 226402 (2020).

    Google Scholar 

  49. Xiao, L. et al. Non-hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

    Google Scholar 

  50. Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).

    Google Scholar 

  51. Helbig, T. et al. Generalized bulk–boundary correspondence in non-hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).

    Google Scholar 

  52. Sun, Y. et al. Photonic floquet skin-topological effect. Phys. Rev. Lett. 132, 063804 (2024).

    Google Scholar 

  53. Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).

    Google Scholar 

  54. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Google Scholar 

  55. De Raedt, H., Lagendijk, A. & de Vries, P. Transverse localization of light. Phys. Rev. Lett. 62, 47 (1989).

    Google Scholar 

  56. Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673 (1997).

    Google Scholar 

  57. Chabanov, A. A., Stoytchev, M. & Genack, A. Z. Statistical signatures of photon localization. Nature 404, 850–853 (2000).

    Google Scholar 

  58. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    Google Scholar 

  59. Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).

    Google Scholar 

  60. Lahini, Y. et al. Observation of a localization transition in quasiperiodic photonic lattices. Phys. Rev. Lett. 103, 013901 (2009).

    Google Scholar 

  61. Levi, L. et al. Disorder-enhanced transport in photonic quasicrystals. Science 332, 1541–1544 (2011).

    Google Scholar 

  62. Levi, L., Krivolapov, Y., Fishman, S. & Segev, M. Hyper-transport of light and stochastic acceleration by evolving disorder. Nat. Phys. 8, 912–917 (2012).

    Google Scholar 

  63. Sperling, T., Bührer, W., Aegerter, C. M. & Maret, G. Direct determination of the transition to localization of light in three dimensions. Nat. Photonics 7, 48–52 (2013).

    Google Scholar 

  64. Vardeny, Z. V., Nahata, A. & Agrawal, A. Optics of photonic quasicrystals. Nat. Photonics 7, 177–184 (2013).

    Google Scholar 

  65. Segev, M., Silberberg, Y. & Christodoulides, D. N. Anderson localization of light. Nat. Photonics 7, 197–204 (2013).

    Google Scholar 

  66. Roati, G. et al. Anderson localization of a non-interacting bose-einstein condensate. Nature 453, 895–898 (2008).

    Google Scholar 

  67. Billy, J. et al. Direct observation of anderson localization of matter waves in a controlled disorder. Nature 453, 891–894 (2008).

    Google Scholar 

  68. Kondov, S. S., McGehee, W. R., Zirbel, J. J. & DeMarco, B. Three-dimensional anderson localization of ultracold matter. Science 334, 66–68 (2011).

    Google Scholar 

  69. Jendrzejewski, F. et al. Three-dimensional localization of ultracold atoms in an optical disordered potential. Nat. Phys. 8, 398–403 (2012).

    Google Scholar 

  70. Prat, T., Delande, D. & Cherroret, N. Quantum boomeranglike effect of wave packets in random media. Phys. Rev. A 99, 023629 (2019).

    Google Scholar 

  71. Janarek, J., Delande, D., Cherroret, N. & Zakrzewski, J. Quantum boomerang effect for interacting particles. Phys. Rev. A 102, 013303 (2020).

    Google Scholar 

  72. Tessieri, L., Akdeniz, Z., Cherroret, N., Delande, D. & Vignolo, P. Quantum boomerang effect: Beyond the standard anderson model. Phys. Rev. A 103, 063316 (2021).

    Google Scholar 

  73. Janarek, J., Grémaud, B., Zakrzewski, J. & Delande, D. Quantum boomerang effect in systems without time-reversal symmetry. Phys. Rev. B 105, L180202 (2022).

    Google Scholar 

  74. Noronha, F., Lourenço, J. A. & Macrì, T. Robust quantum boomerang effect in non-hermitian systems. Phys. Rev. B 106, 104310 (2022).

    Google Scholar 

  75. Noronha, F. & Macrì, T. Ubiquity of the quantum boomerang effect in hermitian anderson-localized systems. Phys. Rev. B 106, L060301 (2022).

    Google Scholar 

  76. Janarek, J., Zakrzewski, J. & Delande, D. Many-body quantum boomerang effect. Phys. Rev. B 107, 094204 (2023).

    Google Scholar 

  77. Sajjad, R. et al. Observation of the quantum boomerang effect. Phys. Rev. X 12, 011035 (2022).

    Google Scholar 

  78. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Google Scholar 

  79. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Google Scholar 

  80. Griniasty, M. & Fishman, S. Localization by pseudorandom potentials in one dimension. Phys. Rev. Lett. 60, 1334 (1988).

    Google Scholar 

  81. Mo, Q., Sun, Y., Li, J., Ruan, Z. & Yang, Z. Imaginary-disorder-induced topological phase transitions. Phys. Rev. Appl. 18, 064079 (2022).

    Google Scholar 

  82. Li, J., Ying, L. & Yang, Z. Imaginary disorder-induced many-body localization and dynamical jumping. Phys. Rev. B 110, 165101 (2024).

    Google Scholar 

  83. Jürgensen, M., Mukherjee, S., Jörg, C. & Rechtsman, M. C. Quantized fractional thouless pumping of solitons. Nat. Phys. 19, 420–426 (2023).

    Google Scholar 

  84. Lahini, Y., Bromberg, Y., Christodoulides, D. N. & Silberberg, Y. Quantum correlations in two-particle anderson localization. Phys. Rev. Lett. 105, 163905 (2010).

    Google Scholar 

  85. Crespi, A. et al. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics 7, 322–328 (2013).

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Key R&D Program of China (Grant No. 2023YFA1406703 and 2022YFA1404203), National Natural Science Foundation of China (Grant No. 12174339), Zhejiang Provincial Natural Science Foundation of China (Grant No. LR23A040003), the Fundamental Research Funds for the Central Universities (Grant No. 226-2025-00124), and Excellent Youth Science Foundation Project (Overseas). Z.Y. thanks C.G. and F.S. for helpful discussions.

Author information

Author notes
  1. These authors contributed equally: Xiangrui Hou, Zhaoxin Wu.

Authors and Affiliations

  1. School of Physics and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, Zhejiang, China

    Xiangrui Hou, Zhaoxin Wu, Fangyu Wang, Shiyao Zhu, Bo Yan & Zhaoju Yang

Authors
  1. Xiangrui Hou
    View author publications

    Search author on:PubMed Google Scholar

  2. Zhaoxin Wu
    View author publications

    Search author on:PubMed Google Scholar

  3. Fangyu Wang
    View author publications

    Search author on:PubMed Google Scholar

  4. Shiyao Zhu
    View author publications

    Search author on:PubMed Google Scholar

  5. Bo Yan
    View author publications

    Search author on:PubMed Google Scholar

  6. Zhaoju Yang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

X.H. and F.W. fabricated the sample and conducted the measurements. Z.W. and X.H. carried out the theoretical modeling and numerical simulations. Z.Y. conceived and supervised this project. Z.Y., Z.W., and X.H. wrote the manuscript with input from B.Y. and S.Z. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Zhaoju Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Wu, Z., Wang, F. et al. Quantum boomerang effect of light. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68293-8

Download citation

  • Received: 30 January 2025

  • Accepted: 02 January 2026

  • Published: 16 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68293-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing