Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Mechanism of SARS-CoV-2 resistance to nucleotide analog-based antivirals
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 January 2026

Mechanism of SARS-CoV-2 resistance to nucleotide analog-based antivirals

  • Chang Liu  ORCID: orcid.org/0000-0003-1829-01171,
  • Yu Li2,
  • Xiaocong Cao1,
  • Ryan J. Gleason1,
  • Bin Liu  ORCID: orcid.org/0000-0002-6581-780X3 &
  • …
  • Yang Yang  ORCID: orcid.org/0000-0001-9061-38282 

Nature Communications , Article number:  (2026) Cite this article

  • 2332 Accesses

  • 8 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Antivirals
  • Cryoelectron microscopy
  • Enzyme mechanisms
  • SARS-CoV-2

Abstract

The remarkable ability of SARS-CoV-2 to resist many nucleotide analog (NA)-based antivirals represents a formidable challenge to therapeutic efforts. Here, we reveal fundamental insights into how its unique proofreading exoribonuclease (ExoN) counteracts two representative NA antivirals, bemnifosbuvir and sofosbuvir, which are designed to inhibit the viral RNA polymerase (RdRp). Our findings unveil that NA incorporation alters RNA-binding dynamics, significantly increasing the affinity of RNA to ExoN while weakening its interaction with RdRp. This shift likely facilitates RNA dissociation from RdRp, subsequent recognition by ExoN, and excision of NAs. Strikingly, we elucidate the mechanism underlying varied levels of resilience of different NAs to ExoN excision. Our cryo-EM structures of ExoN in complex with either of the two NA-incorporated RNAs reveal previously unknown ExoN-NA interactions mediated by the functional groups on the modified ribose rings of NAs, illuminating the key determinants of their recognition and excision. Furthermore, we identify an allosteric regulatory loop of ExoN that promotes the full activation of ExoN but is displaced by the binding of NAs exhibiting resilience to ExoN excision. These discoveries provide a molecular framework for understanding SARS-CoV-2 resistance to NA-based antivirals and highlight mechanisms that could be exploited to improve anti-coronavirus drug design.

Similar content being viewed by others

Structural basis for substrate selection by the SARS-CoV-2 replicase

Article 01 February 2023

The NSP14/NSP10 RNA repair complex as a Pan-coronavirus therapeutic target

Article Open access 03 December 2021

Structural and catalytic diversity of coronavirus proofreading exoribonuclease

Article Open access 08 December 2025

Data availability

Atomic coordinates of the four structures determined in this study have been deposited in the Protein Data Bank with accession codes 9YRK (SARS-CoV-2 ExoN•T20P14-B complex, dimeric form), 9YRL (SARS-CoV-2 ExoN•T20P14-B complex, protomer A), 9YRN (SARS-CoV-2 ExoN•T20P14-S complex, tetrameric form), and 9YRO (SARS-CoV-2 ExoN•T20P14-S complex, monomeric form). The cryo-EM maps have been deposited in the Electron Microscopy Data Bank with accession numbers EMD-73369 (SARS-CoV-2 ExoN•T20P14-B complex, dimeric form), EMD-73370 (SARS-CoV-2 ExoN•T20P14-B complex, protomer A focus-refined map), EMD-73371 (SARS-CoV-2 ExoN•T20P14-S complex, tetrameric form), and EMD-73372 (SARS-CoV-2 ExoN•T20P14-S complex, monomeric form). Source data are provided with this paper.

References

  1. Gorbalenya, A. E., Enjuanes, L., Ziebuhr, J. & Snijder, E. J. Nidovirales: evolving the largest RNA virus genome. Virus Res. 117, 17–37 (2006).

    Google Scholar 

  2. V’Kovski, P., Kratzel, A., Steiner, S., Stalder, H. & Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19, 155–170 (2021).

    Google Scholar 

  3. Malone, B., Urakova, N., Snijder, E. J. & Campbell, E. A. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat. Rev. Mol. Cell Biol. 23, 21–39 (2022).

    Google Scholar 

  4. Sola, I., Almazan, F., Zuniga, S. & Enjuanes, L. Continuous and discontinuous RNA synthesis in coronaviruses. Annu. Rev. Virol. 2, 265–288 (2015).

    Google Scholar 

  5. Yang, H. & Rao, Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat. Rev. Microbiol. 19, 685–700 (2021).

    Google Scholar 

  6. Dolgin, E. The race for antiviral drugs to beat COVID - and the next pandemic. Nature 592, 340–343 (2021).

    Google Scholar 

  7. Robson, F. et al. Coronavirus RNA proofreading: molecular basis and therapeutic targeting. Mol. Cell 79, 710–727 (2020).

    Google Scholar 

  8. Cannalire, R., Cerchia, C., Beccari, A. R., Di Leva, F. S. & Summa, V. Targeting SARS-CoV-2 proteases and polymerase for COVID-19 treatment: state of the art and future opportunities. J. Med. Chem. 65, 2716–2746 (2022).

    Google Scholar 

  9. Minskaia, E. et al. Discovery of an RNA virus 3’->5’ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc. Natl. Acad. Sci. USA 103, 5108–5113 (2006).

    Google Scholar 

  10. Bouvet, M. et al. RNA 3’-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc. Natl. Acad. Sci. USA 109, 9372–9377 (2012).

    Google Scholar 

  11. Shannon, A. et al. Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis. Nat. Commun. 11, 4682 (2020).

    Google Scholar 

  12. Jones, A. N. et al. Characterization of SARS-CoV-2 replication complex elongation and proofreading activity. Sci. Rep. 12, 9593 (2022).

    Google Scholar 

  13. Ferron, F., Sama, B., Decroly, E. & Canard, B. The enzymes for genome size increase and maintenance of large (+) RNA viruses. Trends Biochem. Sci. 46, 866–877 (2021).

  14. Ferron, F. et al. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc. Natl. Acad. Sci. USA 115, E162–E171 (2018).

    Google Scholar 

  15. Jockusch, S. et al. Sofosbuvir terminated RNA is more resistant to SARS-CoV-2 proofreader than RNA terminated by Remdesivir. Sci. Rep. 10, 16577 (2020).

    Google Scholar 

  16. Smith, E. C., Blanc, H., Surdel, M. C., Vignuzzi, M. & Denison, M. R. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLoS Pathog. 9, e1003565 (2013).

    Google Scholar 

  17. Cuevas, J. M., Gonzalez-Candelas, F., Moya, A. & Sanjuan, R. Effect of ribavirin on the mutation rate and spectrum of hepatitis C virus in vivo. J. Virol. 83, 5760–5764 (2009).

    Google Scholar 

  18. Baranovich, T. et al. T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J. Virol. 87, 3741–3751 (2013).

    Google Scholar 

  19. Jin, Z., Smith, L. K., Rajwanshi, V. K., Kim, B. & Deval, J. The ambiguous base-pairing and high substrate efficiency of T-705 (Favipiravir) Ribofuranosyl 5’-triphosphate towards influenza A virus polymerase. PLoS ONE 8, e68347 (2013).

    Google Scholar 

  20. Foster, G. R. et al. Sofosbuvir and Velpatasvir for HCV genotype 2 and 3 infection. N. Engl. J. Med. 373, 2608–2617 (2015).

    Google Scholar 

  21. Warren, T. K. et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 531, 381–385 (2016).

    Google Scholar 

  22. Chien, M. et al. Nucleotide analogues as inhibitors of SARS-CoV-2 polymerase, a key drug target for COVID-19. J. Proteome Res. 19, 4690–4697 (2020).

    Google Scholar 

  23. Gordon, C. J. et al. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem. 295, 6785–6797 (2020).

    Google Scholar 

  24. Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269–271 (2020).

    Google Scholar 

  25. Yin, W. et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368, 1499–1504 (2020).

    Google Scholar 

  26. Sacramento, C. Q. et al. In vitro antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19. J. Antimicrob. Chemother. 76, 1874–1885 (2021).

    Google Scholar 

  27. Seifert, M. et al. Inhibition of SARS-CoV-2 polymerase by nucleotide analogs from a single-molecule perspective. Elife 10, e70968 (2021).

  28. Good, S. S. et al. AT-527, a double prodrug of a guanosine nucleotide analog, is a potent inhibitor of SARS-CoV-2 in vitro and a promising oral antiviral for treatment of COVID-19. Antimicrob. Agents Chemother. 65, e02479-20 (2021).

  29. Shannon, A. et al. A dual mechanism of action of AT-527 against SARS-CoV-2 polymerase. Nat. Commun. 13, 621 (2022).

    Google Scholar 

  30. Agostini, M. L. et al. Small-molecule antiviral beta-d-N(4)-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance. J. Virol. 93, e01348-19 (2019).

  31. Sheahan, T. P. et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med. 12, eabb5883 (2020).

  32. Kabinger, F. et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat. Struct. Mol. Biol. 28, 740–746 (2021).

    Google Scholar 

  33. Hassanipour, S. et al. The efficacy and safety of Favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials. Sci. Rep. 11, 11022 (2021).

    Google Scholar 

  34. Crotty, S. et al. The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat. Med. 6, 1375–1379 (2000).

    Google Scholar 

  35. Crotty, S., Cameron, C. E. & Andino, R. RNA virus error catastrophe: direct molecular test by using ribavirin. Proc. Natl. Acad. Sci. USA 98, 6895–6900 (2001).

    Google Scholar 

  36. Moeller, N. H. et al. Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN. Proc. Natl. Acad. Sci. USA 119, e2106379119 (2022).

  37. Wang, X. et al. Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture. Commun. Biol. 5, 154 (2022).

    Google Scholar 

  38. Yang, Y. et al. Molecular basis of SARS-CoV-2 proofreading enzyme-mediated resistance to remdesivir. Proc. Natl. Acad. Sci. USA 122, e2519755122 (2025).

    Google Scholar 

  39. Agostini, M. L. et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) Is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 9, e00221-18 (2018).

  40. Murakami, E. et al. Mechanism of activation of PSI-7851 and its diastereoisomer PSI-7977. J. Biol. Chem. 285, 34337–34347 (2010).

    Google Scholar 

  41. Good, S. S., Moussa, A., Zhou, X. J., Pietropaolo, K. & Sommadossi, J. P. Preclinical evaluation of AT-527, a novel guanosine nucleotide prodrug with potent, pan-genotypic activity against hepatitis C virus. PLoS ONE 15, e0227104 (2020).

    Google Scholar 

  42. Peng, J.-Y. et al. The impact of SARS-CoV-2 nsp14 proofreading on nucleoside antiviral activity: insights from genetic and pharmacological investigations. Preprint at bioRxiv, https://doi.org/10.1101/2024.07.24.604948 (2024).

  43. Pietrus, W., Kafel, R., Bojarski, A. J. & Kurczab, R. Hydrogen bonds with fluorine in ligand-protein complexes-the PDB analysis and energy calculations. Molecules 27, 1005 (2022).

  44. Howard, J. A. K., Hoy, V. J., O’Hagan, D. & Smith, G. T. How good is fluorine as a hydrogen bond acceptor? Tetrahedron 52, 12613–12622 (1996).

    Google Scholar 

  45. Liu, C. et al. Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Science 373, 1142–1146 (2021).

    Google Scholar 

  46. Ma, Y. et al. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc. Natl. Acad. Sci. USA 112, 9436–9441 (2015).

    Google Scholar 

  47. Casanal, A., Lohkamp, B. & Emsley, P. Current developments in coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci. 29, 1069–1078 (2020).

    Google Scholar 

  48. Cihlar, T. & Ray, A. S. Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Antivir. Res. 85, 39–58 (2010).

    Google Scholar 

  49. Jordheim, L. P., Durantel, D., Zoulim, F. & Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 12, 447–464 (2013).

    Google Scholar 

  50. Wang, J. et al. Structural basis and rational design of nucleotide analogue inhibitor evading the SARS-CoV-2 proofreading enzyme. J. Am. Chem. Soc. 147, 21896–21906 (2025).

  51. Shannon, A. et al. An exonuclease-resistant chain-terminating nucleotide analogue targeting the SARS-CoV-2 replicase complex. Nucleic Acids Res. 52, 1325–1340 (2024).

    Google Scholar 

  52. Kao, C., Zheng, M. & Rudisser, S. A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA 5, 1268–1272 (1999).

    Google Scholar 

  53. Esler, M. A. et al. A compact stem-loop DNA aptamer targets a uracil-binding pocket in the SARS-CoV-2 nucleocapsid RNA-binding domain. Nucleic Acids Res. 52, 13138–13151 (2024).

    Google Scholar 

  54. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Google Scholar 

  55. Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    Google Scholar 

  56. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Google Scholar 

  57. Fernandez-Leiro, R. & Scheres, S. H. W. A pipeline approach to single-particle processing in RELION. Acta Crystallogr. D Struct. Biol. 73, 496–502 (2017).

    Google Scholar 

  58. Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020).

    Google Scholar 

  59. Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).

    Google Scholar 

  60. Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 A reconstruction of rotavirus VP6. Elife 4, e06980 (2015).

    Google Scholar 

  61. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Google Scholar 

  62. Terwilliger, T. C., Ludtke, S. J., Read, R. J., Adams, P. D. & Afonine, P. V. Improvement of cryo-EM maps by density modification. Nat. Methods 17, 923–927 (2020).

    Google Scholar 

  63. Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Google Scholar 

  64. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Google Scholar 

  65. Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

    Google Scholar 

  66. Baldwin, P. R. & Lyumkis, D. Non-uniformity of projection distributions attenuates resolution in Cryo-EM. Prog. Biophys. Mol. Biol. 150, 160–183 (2020).

    Google Scholar 

  67. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519–530 (2018).

    Google Scholar 

  68. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Google Scholar 

  69. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Google Scholar 

Download references

Acknowledgements

We thank P. Juneja for support with cryo-EM sample screening at the Iowa State University cryo-EM facility, cryo-EM facility staff at the Hormel Institute and G. Nye at the Stanford-SLAC Cryo-EM Center (S2C2) for support during the collection of cryo-EM datasets. The S2C2 is supported by a National Institutes of Health grant R24GM154186. This work was supported by a National Institutes of Health grant DP2AI177906 to C.L., an award from the Searle Scholars Program SSP-2024-106 to C.L., a grant from the Hormel Institute, University of Minnesota, to B.L., and a National Institutes of Health grant R35GM150607 to Y.Y.

Author information

Authors and Affiliations

  1. Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA

    Chang Liu, Xiaocong Cao & Ryan J. Gleason

  2. Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA

    Yu Li & Yang Yang

  3. Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA

    Bin Liu

Authors
  1. Chang Liu
    View author publications

    Search author on:PubMed Google Scholar

  2. Yu Li
    View author publications

    Search author on:PubMed Google Scholar

  3. Xiaocong Cao
    View author publications

    Search author on:PubMed Google Scholar

  4. Ryan J. Gleason
    View author publications

    Search author on:PubMed Google Scholar

  5. Bin Liu
    View author publications

    Search author on:PubMed Google Scholar

  6. Yang Yang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.Y. and C.L. conceived and designed the experiments. C.L., Y.Y., Y.L., X.C., and R.J.G. performed protein and RNA purifications. C.L., Y.L., and Y.Y. conducted biochemical characterizations. Y.Y. and C.L. prepared the cryo-EM samples. B.L. and C.L. collected cryo-EM data. C.L. and Y.Y. processed the cryo-EM data and performed model building and structural analyses. Y.Y. and C.L. wrote the manuscript with input from B.L.

Corresponding authors

Correspondence to Chang Liu, Bin Liu or Yang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review File

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, Y., Cao, X. et al. Mechanism of SARS-CoV-2 resistance to nucleotide analog-based antivirals. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68304-8

Download citation

  • Received: 25 June 2025

  • Accepted: 02 January 2026

  • Published: 13 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68304-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing