Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Reversible lipid-mediated pH-gating of connexin-46/50 by cryo-EM
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 January 2026

Reversible lipid-mediated pH-gating of connexin-46/50 by cryo-EM

  • Joshua M. Jarodsky1,2,
  • Janette B. Myers1,2,3 &
  • Steve L. Reichow  ORCID: orcid.org/0000-0001-5276-76901,2,3 

Nature Communications , Article number:  (2026) Cite this article

  • 2665 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cryoelectron microscopy
  • Ion transport
  • Membrane lipids

Abstract

Gap junctions, formed by connexin proteins, establish direct electrical and metabolic coupling between cells, enabling coordinated tissue responses. These channels universally respond to intracellular pH changes, closing under acidic conditions to limit the spread of cytotoxic signals during cellular stress, such as ischemia. Using cryo-electron microscopy (cryo-EM), we uncover insights into the structural mechanism of pH-gating in native lens connexin-46/50 (Cx46/50) gap junctions. Mild acidification drives lipid infiltration into the channel pore, displacing the N-terminal (NT) domain and stabilizing pore closure. Lipid involvement is shown to be both essential and fully reversible. Structural transitions involve an ensemble of gated states formed through non-cooperative NT domain movement as well as minor populations of a distinct destabilized open-state. These findings provide molecular insights into pH-gating dynamics, illustrating how structural changes may regulate gap junction function under cellular stress and linking Cx46/50 dysregulation to age-related cataract formation.

Similar content being viewed by others

Cryo-EM structures of prokaryotic ligand-gated ion channel GLIC provide insights into gating in a lipid environment

Article Open access 05 April 2024

Cryo-EM structures of human Cx36/GJD2 neuronal gap junction channel

Article Open access 11 March 2023

Lipid dependence of connexin-32 gap junction channel conformations

Article Open access 05 December 2025

Data availability

Cryo-EM density maps have been deposited to the Electron Microscopy Data Bank (EMDB) under accession numbers: EMD-73962; EMD-73957; EMD-73942; EMD-73965; EMD-73876; EMD-73900; EMD-73896; and EMD-73885. Coordinates for atomic models have been deposited to Protein Data Bank (PDB) under accession numbers: 9Z9X; 9Z9Y; 9Z9S; 9Z9W; 9Z9G; 9Z9H; 9ZA3; 9ZA4; 9Z7P; 9Z7W; 9Z8M; 9Z9B; 9Z8F; 9Z8L; 9Z81; and 9Z82. The original raw multi-frame micrographs have been deposited to EMPIAR under accession numbers: EMPIAR-13117; EMPIAR-13114; EMPIAR-13131; EMPIAR-13130; EMPIAR-13122; and EMPIAR-13116. Previously published models used for modeling and comparative analysis can be found at: 7JKC; 7JJP; 6UVT; 7QEQ; 8QA0; 7XKT; 8IYG; 7XNH; 7F92; 7F93; 7XQF; and 7XQB. The source data underlying Figs. 1i, 5b, 6e, 6f and 7b are provided as a Source Data file. Source data are provided with this paper.

Code availability

In-house code developed for the analysis of image processing meta data have been deposited to the Reichow Lab GitHub [https://github.com/reichow-lab] and Zenodo [https://zenodo.org/records/17634922] and [https://zenodo.org/records/17634918].

References

  1. Goodenough, D. A. & Paul, D. L. Gap junctions. Cold Spring Harb. Perspect. Biol. 1, a002576 (2009).

    Google Scholar 

  2. Lucaciu, S. A., Leighton, S. E., Hauser, A., Yee, R. & Laird, D. W. Diversity in connexin biology. J. Biol. Chem. 299, 105263 (2023).

    Google Scholar 

  3. Delmar, M. et al. Connexins and Disease. Cold Spring Harb. Perspect. Biol. 10, a029348 (2018).

  4. Garcia, I. E. et al. Connexinopathies: a structural and functional glimpse. BMC Cell Biol. 17, 17 (2016).

  5. Aasen, T., Mesnil, M., Naus, C. C., Lampe, P. D. & Laird, D. W. Gap junctions and cancer: communicating for 50 years. Nat. Rev. Cancer 16, 775–788 (2016).

    Google Scholar 

  6. Andrade-Rozental, A. F. et al. Gap junctions: the "kiss of death" and the "kiss of life". Brain Res. Brain Res. Rev. 32, 308–315 (2000).

    Google Scholar 

  7. Spray, D. C. et al. Gap junctions and Bystander effects: Good Samaritans and executioners. Wiley Interdiscip. Rev.: Membr. Transp. Signal. 2, 1–15 (2013).

    Google Scholar 

  8. Harris, A. L., Spray, D. C. & Bennett, M. V. Kinetic properties of a voltage-dependent junctional conductance. J. Gen. Physiol. 77, 95–117 (1981).

    Google Scholar 

  9. Spray, D. C., Harris, A. L. & Bennett, M. V. Equilibrium properties of a voltage-dependent junctional conductance. J. Gen. Physiol. 77, 77–93 (1981).

    Google Scholar 

  10. Turin, L. & Warner, A. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature 270, 56–57 (1977).

    Google Scholar 

  11. Spray, D. C., Harris, A. L. & Bennett, M. V. Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211, 712–715 (1981).

    Google Scholar 

  12. Rose, B. & Loewenstein, W. R. Permeability of cell junction depends on local cytoplasmic calcium activity. Nature 254, 250–252 (1975).

    Google Scholar 

  13. Oliveira-Castro, G. M. & Loewenstein, W. R. Junctional membrane permeability: Effects of divalent cations. J. Membr. Biol. 5, 51–77 (1971).

    Google Scholar 

  14. Loewenstein, W. R., Nakas, M. & Socolar, S. J. Junctional membrane uncoupling. Permeab. Transform. Cell Membr. Junction J. Gen. Physiol. 50, 1865–1891 (1967).

    Google Scholar 

  15. Contreras, J. E. et al. Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res Brain Res Rev. 47, 290–303 (2004).

    Google Scholar 

  16. Dhein, S. Cardiac ischemia and uncoupling: gap junctions in ischemia and infarction. Adv. Cardiol. 42, 198–212 (2006).

    Google Scholar 

  17. Mathias, R. T., White, T. W. & Gong, X. Lens gap junctions in growth, differentiation, and homeostasis. Physiol. Rev. 90, 179–206 (2010).

    Google Scholar 

  18. Kistler, J. et al. Connexins in the lens: are they to blame in diabetic cataractogenesis? Novartis Found Symp 219, 97–108; discussion 108–112 (1999).

  19. Khan, A. K. et al. A Steric "Ball-and-Chain" Mechanism for pH-Mediated Regulation of Gap Junction Channels. Cell Rep. 31, 107482 (2020).

    Google Scholar 

  20. Sohl, G. & Willecke, K. Gap junctions and the connexin protein family. Cardiovasc Res 62, 228–232 (2004).

    Google Scholar 

  21. Sosinsky, G. E. & Nicholson, B. J. Structural organization of gap junction channels. Biochim. Biophys. Acta 1711, 99–125 (2005).

  22. Harris, A. L. Connexin channel permeability to cytoplasmic molecules. Prog. Biophys. Mol. Biol. 94, 120–143 (2007).

    Google Scholar 

  23. Verselis, V. K., Ginter, C. S. & Bargiello, T. A. Opposite voltage gating polarities of two closely related connexins. Nature 368, 348–351 (1994).

    Google Scholar 

  24. Kronengold, J., Srinivas, M. & Verselis, V. K. The N-terminal half of the connexin protein contains the core elements of the pore and voltage gates. J. Membr. Biol. 245, 453–463 (2012).

    Google Scholar 

  25. Xin, L., Gong, X. Q. & Bai, D. The role of amino terminus of mouse Cx50 in determining transjunctional voltage-dependent gating and unitary conductance. Biophys. J. 99, 2077–2086 (2010).

    Google Scholar 

  26. Yue, B. et al. Connexin 46 and connexin 50 gap junction channel properties are shaped by structural and dynamic features of their N-terminal domains. J. Physiol. 599, 3313–3335 (2021).

    Google Scholar 

  27. Liu, S. et al. A structural basis for the unequal sensitivity of the major cardiac and liver gap junctions to intracellular acidification: the carboxyl tail length. Biophys. J. 64, 1422–1433 (1993).

    Google Scholar 

  28. Ek-Vitorin, J. F. et al. PH regulation of connexin43: molecular analysis of the gating particle. Biophys. J. 71, 1273–1284 (1996).

    Google Scholar 

  29. Morley, G. E., Taffet, S. M. & Delmar, M. Intramolecular interactions mediate pH regulation of connexin43 channels. Biophys. J. 70, 1294–1302 (1996).

    Google Scholar 

  30. Lin, J. S., Eckert, R., Kistler, J. & Donaldson, P. Spatial differences in gap junction gating in the lens are a consequence of connexin cleavage. Eur. J. Cell Biol. 76, 246–250 (1998).

    Google Scholar 

  31. Xu, X., Berthoud, V. M., Beyer, E. C. & Ebihara, L. Functional role of the carboxyl terminal domain of human connexin 50 in gap junctional channels. J. Membr. Biol. 186, 101–112 (2002).

    Google Scholar 

  32. Stergiopoulos, K. et al. Hetero-domain interactions as a mechanism for the regulation of connexin channels. Circ. Res 84, 1144–1155 (1999).

    Google Scholar 

  33. Trexler, E. B., Bukauskas, F. F., Bennett, M. V., Bargiello, T. A. & Verselis, V. K. Rapid and direct effects of pH on connexins revealed by the connexin46 hemichannel preparation. J. Gen. Physiol. 113, 721–742 (1999).

    Google Scholar 

  34. Eckert, R. pH gating of lens fibre connexins. Pflug. Arch. 443, 843–851 (2002).

    Google Scholar 

  35. DeRosa, A. M., Mui, R., Srinivas, M. & White, T. W. Functional characterization of a naturally occurring Cx50 truncation. Invest. Ophthalmol. Vis. Sci. 47, 4474–4481 (2006).

    Google Scholar 

  36. Oh, S., Abrams, C. K., Verselis, V. K. & Bargiello, T. A. Stoichiometry of transjunctional voltage-gating polarity reversal by a negative charge substitution in the amino terminus of a connexin32 chimera. J. Gen. Physiol. 116, 13–31 (2000).

    Google Scholar 

  37. Peracchia, C. & Peracchia, L. L. Inversion of both gating polarity and CO2 sensitivity of voltage gating with D3N mutation of Cx50. Am. J. Physiol. Cell Physiol. 288, C1381–9, (2005).

  38. Bargiello, T. A., Tang, Q., Oh, S. & Kwon, T. Voltage-dependent conformational changes in connexin channels. Biochim Biophys Acta 1818, 1807–1822 (2012).

  39. Jagielnicki, M., Kucharska, I., Bennett, B. C., Harris, A. L. & Yeager, M. Connexin gap junction channels and hemichannels: insights from high-resolution structures. Biology 13(2024).

  40. Myers, J. B. et al. Structure of native lens connexin 46/50 intercellular channels by cryo-EM. Nature 564, 372–377 (2018).

    Google Scholar 

  41. Flores, J. A. et al. Connexin-46/50 in a dynamic lipid environment resolved by CryoEM at 1.9 A. Nat. Commun. 11, 4331 (2020).

    Google Scholar 

  42. Kistler, J., Schaller, J. & Sigrist, H. MP38 contains the membrane-embedded domain of the lens fiber gap junction protein MP70. J. Biol. Chem. 265, 13357–13361 (1990).

    Google Scholar 

  43. Wang, Z. & Schey, K. L. Phosphorylation and truncation sites of bovine lens connexin 46 and connexin 50. Exp. Eye Res. 89, 898–904 (2009).

    Google Scholar 

  44. Sanchez, H. A., Bienkowski, R., Slavi, N., Srinivas, M. & Verselis, V. K. Altered inhibition of Cx26 hemichannels by pH and Zn2+ in the A40V mutation associated with keratitis-ichthyosis-deafness syndrome. J. Biol. Chem. 289, 21519–21532 (2014).

    Google Scholar 

  45. Gonzalez-Nieto, D. et al. Regulation of neuronal connexin-36 channels by pH. Proc. Natl. Acad. Sci. USA 105, 17169–17174 (2008).

    Google Scholar 

  46. Ek, J. F., Delmar, M., Perzova, R. & Taffet, S. M. Role of histidine 95 on pH gating of the cardiac gap junction protein connexin43. Circ. Res. 74, 1058–1064 (1994).

    Google Scholar 

  47. Bukauskas, F. F. & Peracchia, C. Two distinct gating mechanisms in gap junction channels: CO2-sensitive and voltage-sensitive. Biophys. J. 72, 2137–2142 (1997).

    Google Scholar 

  48. Srinivas, M. et al. Voltage dependence of macroscopic and unitary currents of gap junction channels formed by mouse connexin50 expressed in rat neuroblastoma cells. J. Physiol. 517 (Pt 3), 673–689 (1999).

  49. Hopperstad, M. G., Srinivas, M. & Spray, D. C. Properties of gap junction channels formed by Cx46 alone and in combination with Cx50. Biophys. J. 79, 1954–1966 (2000).

    Google Scholar 

  50. Srinivas, M., Kronengold, J., Bukauskas, F. F., Bargiello, T. A. & Verselis, V. K. Correlative studies of gating in Cx46 and Cx50 hemichannels and gap junction channels. Biophys. J. 88, 1725–1739 (2005).

    Google Scholar 

  51. Punjani, A. & Fleet, D. J. 3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).

    Google Scholar 

  52. Evans, L. et al. Counting particles could give wrong probabilities in Cryo-Electron Microscopy. bioRxiv 2025.03.27.644168 (2025).

  53. Brotherton, D. H., Savva, C. G., Ragan, T. J., Dale, N. & Cameron, A. D. Conformational changes and CO(2)-induced channel gating in connexin26. Structure 30, 697–706 e4 (2022).

    Google Scholar 

  54. Brotherton, D. H., Nijjar, S., Savva, C. G., Dale, N. & Cameron, A. D. Structures of wild-type and a constitutively closed mutant of connexin26 shed light on channel regulation by CO(2). Elife 13(2024).

  55. Lee, H. J. et al. Conformational changes in the human Cx43/GJA1 gap junction channel visualized using cryo-EM. Nat. Commun. 14, 931 (2023).

    Google Scholar 

  56. Lee, S. N. et al. Cryo-EM structures of human Cx36/GJD2 neuronal gap junction channel. Nat. Commun. 14, 1347 (2023).

    Google Scholar 

  57. Mao, W. & Chen, S. Assembly mechanisms of the neuronal gap junction channel connexin 36 elucidated by Cryo-EM. Arch. Biochem. Biophys. 754, 109959 (2024).

    Google Scholar 

  58. Burendei, B. et al. Cryo-EM structures of undocked innexin-6 hemichannels in phospholipids. Sci. Adv. 6, eaax3157 (2020).

    Google Scholar 

  59. Kuzuya, M. et al. Structures of human pannexin-1 in nanodiscs reveal gating mediated by dynamic movement of the N terminus and phospholipids. Sci. Signal 15, eabg6941 (2022).

    Google Scholar 

  60. Kern, D. M. et al. Structural basis for assembly and lipid-mediated gating of LRRC8A:C volume-regulated anion channels. Nat. Struct. Mol. Biol. 30, 841–852 (2023).

    Google Scholar 

  61. Laird, D. W. & Lampe, P. D. Therapeutic strategies targeting connexins. Nat. Rev. Drug Discov. 17, 905–921 (2018).

    Google Scholar 

  62. Flores, J. A., O'Neill, S. E., Jarodsky, J. M. & Reichow, S. L. Calcium induced N-terminal gating and pore collapse in connexin-46/50 gap junctions. bioRxiv 2025.02.12.637955 (2025).

  63. Shiels, A. et al. A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant "zonular pulverulent" cataract, on chromosome 1q. Am. J. Hum. Genet. 62, 526–532 (1998).

    Google Scholar 

  64. Jin, A. et al. Identification of a new mutation p.P88L in Connexin 50 associated with dominant congenital cataract. Front. Cell Dev. Biol. 10, 794837 (2022).

    Google Scholar 

  65. Suchyna, T. M., Xu, L. X., Gao, F., Fourtner, C. R. & Nicholson, B. J. Identification of a proline residue as a transduction element involved in voltage gating of gap junctions. Nature 365, 847–849 (1993).

    Google Scholar 

  66. Ri, Y. et al. The role of a conserved proline residue in mediating conformational changes associated with voltage gating of Cx32 gap junctions. Biophys. J. 76, 2887–2898 (1999).

    Google Scholar 

  67. Qi, C. et al. Structures of wild-type and selected CMT1X mutant connexin 32 gap junction channels and hemichannels. Sci. Adv. 9, eadh4890 (2023).

  68. Rimkute, L. et al. Modulation of Connexin-36 gap junction channels by intracellular pH and magnesium ions. Front Physiol. 9, 362 (2018).

    Google Scholar 

  69. Wang, X. et al. pH-dependent channel gating in connexin26 hemichannels involves conformational changes in N-terminus. Biochim. Biophys. Acta 1818, 1148–1157 (2012).

  70. Denisov, I. G., Grinkova, Y. V., Lazarides, A. A. & Sligar, S. G. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J. Am. Chem. Soc. 126, 3477–3487 (2004).

    Google Scholar 

  71. Ritchie, T. K. et al. Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231 (2009).

    Google Scholar 

  72. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Google Scholar 

  73. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Google Scholar 

  74. Casanal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of Electron Cryo-microscopy and Crystallographic Data. Protein Sci. 29, 1069–1078 (2020).

    Google Scholar 

  75. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D66, 213–221 (2010).

    Google Scholar 

  76. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D. Struct. Biol. 74, 519–530 (2018).

    Google Scholar 

  77. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 66, 12–21 (2010).

    Google Scholar 

  78. Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Google Scholar 

  79. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–60, 376 (1996).

    Google Scholar 

  80. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Google Scholar 

  81. Procter, J. B. et al. Alignment of Biological Sequences with Jalview. Methods Mol. Biol. 2231, 203–224 (2021).

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Thomas White for helpful discussions. We are grateful for the instrumentation access and training provided by Dr. Claudia López and the staff at the OHSU Multiscale Microscopy Core, the OHSU Advanced Computing Center (supported by NIH Grant S10OD034224), and the Pacific Northwest Cryo-EM Center (supported by NIH Grant R24GM154185). The research was funded by NIH grant R35GM124779 (to S.L.R.)

Author information

Authors and Affiliations

  1. Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA

    Joshua M. Jarodsky, Janette B. Myers & Steve L. Reichow

  2. Vollum Institute, Oregon Health and Science University, Portland, OR, USA

    Joshua M. Jarodsky, Janette B. Myers & Steve L. Reichow

  3. Pacific Northwest Cryo-EM Center, Oregon Health and Science University, Portland, OR, USA

    Janette B. Myers & Steve L. Reichow

Authors
  1. Joshua M. Jarodsky
    View author publications

    Search author on:PubMed Google Scholar

  2. Janette B. Myers
    View author publications

    Search author on:PubMed Google Scholar

  3. Steve L. Reichow
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.M.J. designed and executed the nanodisc experiments. J.B.M. designed and executed the amphipol experiments. J.M.J. and J.B.M. collected the cryo-EM data. J.M.J. performed image processing and model building. J.M.J. and S.L.R. contributed to data analysis and prepared the initial manuscript. All authors contributed to the final revision of the manuscript.

Corresponding author

Correspondence to Steve L. Reichow.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplemental Movie 1

Supplemental Movie 2

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarodsky, J.M., Myers, J.B. & Reichow, S.L. Reversible lipid-mediated pH-gating of connexin-46/50 by cryo-EM. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68311-9

Download citation

  • Received: 23 February 2025

  • Accepted: 18 December 2025

  • Published: 12 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68311-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing