Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Spin-state engineering of single titanium adsorbates on ultrathin magnesium oxide
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 January 2026

Spin-state engineering of single titanium adsorbates on ultrathin magnesium oxide

  • Soo-hyon Phark  ORCID: orcid.org/0000-0002-0541-50831,2,
  • Hong Thi Bui1,3,
  • We-hyo Seo1,2,
  • Yaowu Liu1,2,
  • Valeria Sheina1,2,
  • Curie Lee  ORCID: orcid.org/0009-0007-1296-02431,3,
  • Christoph Wolf  ORCID: orcid.org/0000-0002-9340-97821,2,
  • Andreas J. Heinrich  ORCID: orcid.org/0000-0001-6204-471X1,3,
  • Roberto Robles  ORCID: orcid.org/0000-0001-7808-03954 &
  • …
  • Nicolás Lorente  ORCID: orcid.org/0000-0003-0952-80314,5 

Nature Communications , Article number:  (2026) Cite this article

  • 1351 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Other nanotechnology
  • Surfaces, interfaces and thin films

Abstract

Single atomic adsorbates on ultrathin insulating films provide a promising route towards building bottom-up quantum architectures based on atomically identical yet individually addressable spin qubits on solid surfaces. A key challenge in engineering quantum-coherent spin nanostructures lies in understanding and controlling the spin state of individual adsorbates. In this work, we investigate single titanium (Ti) atoms adsorbed on MgO/Ag(100) surfaces using a combined scanning tunneling microscopy and electron spin resonance. Our measurements reveal two distinct spin states, S = 1/2 and S = 1, depending on the local adsorption site and the thickness of the MgO film. Density functional theory calculations suggest a Ti+ configuration for the Ti adsorbates with approximately 3 electrons in the 4s and 3d valence shells. Using multi-orbital magnetic multiplet calculations the site dependence of the spin can be rationalized as a charge redistribution between spin-polarizing and depolarizing orbitals. These findings underscore the potential of surface-supported single atoms as spin qubits with tunable spin and charge states, enabling atom-by-atom control in the realization of a versatile quantum platform on surfaces.

Similar content being viewed by others

Construction of topological quantum magnets from atomic spins on surfaces

Article 29 August 2024

A quantum sensor for atomic-scale electric and magnetic fields

Article Open access 25 July 2024

Universal quantum control of an atomic spin qubit on a surface

Article Open access 18 May 2023

Data availability

The data used and generated in this study have been deposited in the ZENODO repository47. The data are available at https://doi.org/10.5281/zenodo.17938903.

References

  1. Eigler, D. M., Lutz, C. P. & Rudg, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 352, 600–603 (1991).

    Google Scholar 

  2. Loth, S., Baumann, S., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 335, 196–199 (2012).

    Google Scholar 

  3. Choi, D.-J. et al. Building complex kondo impurities by manipulating entangled spin chains. Nano Lett. 17, 6203–6209 (2017).

    Google Scholar 

  4. Choi, D.-J. et al. Colloquium: atomic spin chains on surfaces. Rev. Mod. Phys. 91, 041001 (2019).

    Google Scholar 

  5. Mier, C. et al. Atomic manipulation of in-gap states in the β-Bi2Pd superconductor. Phys. Rev. B 104, 045406 (2021).

    Google Scholar 

  6. Trishin, S., Lotze, C., Bogdanoff, N., von Oppen, F. & Franke, K. J. Moiré tuning of spin excitations: individual Fe atoms on MoS2/au(111). Phys. Rev. Lett. 127, 236801 (2021).

    Google Scholar 

  7. Turanský, R. et al. Subatomic-scale resolution with spm: Co adatom on p(2  × 1)Cu(110):O. Nanotechnology 30, 095703 (2019).

    Google Scholar 

  8. Baumann, S. et al. Electron paramagnetic resonance of individual atoms on a surface. Science 350, 417–420 (2015).

    Google Scholar 

  9. Natterer, F. D. et al. Reading and writing single-atom magnets. Nature 543, 226–228 (2017).

    Google Scholar 

  10. Choi, T. et al. Atomic-scale sensing of the magnetic dipolar field from single atoms. Nat. Nanotechnol. 12, 420 (2017).

    Google Scholar 

  11. Willke, P. et al. Hyperfine interaction of individual atoms on a surface. Science 362, 336–339 (2018).

    Google Scholar 

  12. Heinrich, A. J. et al. Quantum-coherent nanoscience. Nat. Nanotechnol. 16, 1318–1329 (2021).

    Google Scholar 

  13. Wang, Y. et al. An atomic-scale multi-qubit platform. Science https://www.science.org/doi/10.1126/science.ade5050. (American Association for the Advancement of Science, 2023).

  14. Choi, D.-J., Phark, S. -h, Heinrich, A. J. & Lorente, N. Electron spin resonance with scanning tunneling microscopy: a tool for an on-surface quantum platform of identical qubits. Nanoscale Adv. 7, 4551–4558 (2025).

    Google Scholar 

  15. Yang, K. et al. Engineering the eigenstates of coupled spin-1/2 atoms on a surface. Phys. Rev. Lett. 119, 227206 (2017).

    Google Scholar 

  16. Zhang, X. et al. Electron spin resonance of single iron phthalocyanine molecules and role of their non-localized spins in magnetic interactions. Nat. Chem. 14, 59–65 (2022).

    Google Scholar 

  17. Willke, P. et al. Coherent spin control of single molecules on a surface. ACS Nano 15, 17959–17965 (2021).

    Google Scholar 

  18. Kovarik, S. et al. Electron paramagnetic resonance of alkali metal atoms and dimers on ultrathin MgO. Nano Lett. 22, 4176–4181 (2022).

    Google Scholar 

  19. Kovarik, S. & Stepanow, S. Spin torque driven electron paramagnetic resonance of a single spin in a pentacene molecule. Science 1384, 1368–1373 (2024).

  20. Czap, G., Wolf, C., Reina-Gálvez, J., Sherwood, M. H. & Lutz, C. P. Magnetic resonance imaging of single organic radicals with sub-molecular resolution. Preprint at https://arxiv.org/abs/2504.18043 (2025).

  21. Kawaguchi, R. et al. Spatially resolving electron spin resonance of π-radical in single-molecule magnet. Nano Lett. 23, 213–219 (2023).

    Google Scholar 

  22. Wang, Y. et al. Universal quantum control of an atomic spin qubit on a surface. npj Quantum Inf. 9, 48 (2023).

    Google Scholar 

  23. Veldman, L. M. et al. Free coherent evolution of a coupled atomic spin system initialized by electron scattering. Science 372, 964–968 (2021).

    Google Scholar 

  24. Yang, K. et al. Coherent spin manipulation of individual atoms on a surface. Science 366, 509–512 (2019).

    Google Scholar 

  25. Steinbrecher, M. et al. Quantifying the interplay between fine structure and geometry of an individual molecule on a surface. Phys. Rev. B 103, 155405 (2021).

    Google Scholar 

  26. Bae, Y. et al. Enhanced quantum coherence in exchange coupled spins via singlet-triplet transitions. Sci. Adv. 4, eaau4159 (2018).

    Google Scholar 

  27. Kim, J. et al. Spin resonance amplitude and frequency of a single atom on a surface in a vector magnetic field. Phys. Rev. B 104, 174408 (2021).

    Google Scholar 

  28. Seifert, T. S. et al. Longitudinal and transverse electron paramagnetic resonance in a scanning tunneling microscope. Sci. Adv. 6, eabc5511 (2020).

    Google Scholar 

  29. Hwang, J. et al. Development of a scanning tunneling microscope for variable temperature electron spin resonance. Rev. Sci. Instrum. 93, 093703 (2022).

    Google Scholar 

  30. Loth, S., Lutz, C. P. & Heinrich, A. J. Spin-polarized spin excitation spectroscopy. N. J. Phys. 12, 125021 (2010).

    Google Scholar 

  31. Phark, S. -h et al. Electric-field-driven spin resonance by on-surface exchange coupling to a single-atom magnet. Adv. Sci. 10, 2302033 (2023).

    Google Scholar 

  32. Reale, S. et al. Electrically driven spin resonance of 4f electrons in a single atom on a surface. Nat. Commun. 15, 5289 (2024).

    Google Scholar 

  33. Paul, W. et al. Control of the millisecond spin lifetime of an electrically probed atom. Nat. Phys. 13, 403–407 (2017).

    Google Scholar 

  34. Wolf, C., Delgado, F., Reina, J. & Lorente, N. Efficient ab initio multiplet calculations for magnetic adatoms on mgo. J. Phys. Chem. A 124, 2318–2327 (2020).

    Google Scholar 

  35. König, T., Simon, G. H., Rust, H.-P. & Heyde, M. Work function measurements of thin oxide films on metals-mgo on Ag (001). J. Phys. Chem. C. 113, 11301–11305 (2009).

    Google Scholar 

  36. Giannozzi, P. et al. Advanced capabilities for materials modelling with quantum espresso. J. Phys. Condens. Matter 29, 465901 (2017).

    Google Scholar 

  37. Giannozzi, P. et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (19pp) (2009).

    Google Scholar 

  38. Giannozzi, P. et al. Quantum espresso toward the exascale. J. Chem. Phys. 152, 154105 (2020).

    Google Scholar 

  39. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Google Scholar 

  40. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Google Scholar 

  41. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998).

    Google Scholar 

  42. Hu, Z. & Metiu, H. Choice of U for DFT+ U calculations for titanium oxides. J. Phys. Chem. C 115, 5841–5845 (2011).

    Google Scholar 

  43. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Google Scholar 

  44. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  45. Kim, J. et al. Anisotropic hyperfine interaction of surface-adsorbed single atoms. Nano Lett. 22, 9766–9772 (2022).

    Google Scholar 

  46. Reuter, K. & Scheffler, M. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 65, 035406 (2001).

    Google Scholar 

  47. Phark, S.-h. et al. Spin-state engineering of single titanium adsorbates on ultrathin magnesium oxide https://zenodo.org/records/17938903 (2025).

Download references

Acknowledgements

S.P., H.T.B., W.S., Y.L., C.W., and A.J.H. acknowledge financial support from the Institute for Basic Science (IBS-R027-D1). R.R. and N.L. thank projects PID2021-127917NB-I00 by MCIN/AEI/10.13039/501100011033, IT-1527-22 by the Basque Government, 202260I187 by CSIC, ESiM project 101046364 by the EU, and computational resources by Finisterrae III (CESGA). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU. Neither the EU nor the granting authority can be held responsible for them. C.W. thanks Fernando Delgado and Susanne Baumann for insightful discussions.

Author information

Authors and Affiliations

  1. Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea

    Soo-hyon Phark, Hong Thi Bui, We-hyo Seo, Yaowu Liu, Valeria Sheina, Curie Lee, Christoph Wolf & Andreas J. Heinrich

  2. Ewha Womans University, Seoul, Republic of Korea

    Soo-hyon Phark, We-hyo Seo, Yaowu Liu, Valeria Sheina & Christoph Wolf

  3. Department of Physics, Ewha Womans University, Seoul, Republic of Korea

    Hong Thi Bui, Curie Lee & Andreas J. Heinrich

  4. Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Donostia-San Sebastián, Spain

    Roberto Robles & Nicolás Lorente

  5. Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain

    Nicolás Lorente

Authors
  1. Soo-hyon Phark
    View author publications

    Search author on:PubMed Google Scholar

  2. Hong Thi Bui
    View author publications

    Search author on:PubMed Google Scholar

  3. We-hyo Seo
    View author publications

    Search author on:PubMed Google Scholar

  4. Yaowu Liu
    View author publications

    Search author on:PubMed Google Scholar

  5. Valeria Sheina
    View author publications

    Search author on:PubMed Google Scholar

  6. Curie Lee
    View author publications

    Search author on:PubMed Google Scholar

  7. Christoph Wolf
    View author publications

    Search author on:PubMed Google Scholar

  8. Andreas J. Heinrich
    View author publications

    Search author on:PubMed Google Scholar

  9. Roberto Robles
    View author publications

    Search author on:PubMed Google Scholar

  10. Nicolás Lorente
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.P. conceived the experiments. S.P., H.T.B., W.S., and Y.L. performed the experiments. N.L. and R.R. performed the VASP DFT calculations. C.W. and C.L. performed QE DFT and multiplet calculations. All authors discussed the results and prepared the manuscript.

Corresponding authors

Correspondence to Soo-hyon Phark, Christoph Wolf or Nicolás Lorente.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Krisztian Palotas, Renan Villarreal, and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phark, Sh., Bui, H.T., Seo, Wh. et al. Spin-state engineering of single titanium adsorbates on ultrathin magnesium oxide. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68314-6

Download citation

  • Received: 31 July 2025

  • Accepted: 04 January 2026

  • Published: 16 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68314-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing