Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Sequence-encoded layered heteroleptic metalla-[2]catenanes for programmable supramolecular function
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 January 2026

Sequence-encoded layered heteroleptic metalla-[2]catenanes for programmable supramolecular function

  • Ya-Wen Zhang1 na1,
  • Hai-Ning Zhang  ORCID: orcid.org/0000-0003-4967-45942 na1,
  • Ming-Xia Wang1,
  • Xin Li1 &
  • …
  • Ying-Feng Han  ORCID: orcid.org/0000-0002-9829-46701 

Nature Communications , Article number:  (2026) Cite this article

  • 1972 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Interlocked molecules
  • Ligands
  • Organic–inorganic nanostructures

Abstract

Molecular information encoded within supramolecular frameworks offers a powerful paradigm for directing emergent function beyond the genetic code, but systematic investigations into alternative spatial configurations and their consequences remain scarce. Here we use metalla-[2]catenanes to probe sequence–function relationships in layered architectures. By combining two or three size-matched N-heterocyclic carbene ligands with Ag(I) nodes, we selectively construct heteroleptic metalla-[2]catenanes through both direct assembly and supramolecular fusion pathways. X-ray crystallographic analysis unambiguously confirms the targeted sequences, while semiempirical and density functional theory calculations reveal their thermodynamic preference over alternative isomers. Photothermal conversion studies further demonstrate that sequence-specific charge-transfer interactions yield distinct macroscopic responses. Collectively, these results identify heteroleptic metalla-[2]catenanes as a robust model for elucidating how spatial arrangement governs system-level behavior and for advancing molecular coding principles in functional supramolecular design.

Similar content being viewed by others

PTML models of self assembled ligand free nanoparticle catalysts for cross coupling reactions

Article Open access 14 August 2025

On-surface synthesis of enetriynes

Article Open access 06 March 2023

High performance mechano-optoelectronic molecular switch

Article Open access 13 September 2023

Data availability

The authors declare that all data supporting the findings of this study are available within the article and Supplementary Information files, and are also available from the corresponding author upon request. The X-ray crystallographic coordinates for structures have been deposited at the Cambridge Crystallographic Data Center (CCDC) under deposition numbers CCDC-2483191 (MCATAAAA), CCDC-2483192 (MCATCAAC), CCDC-2483193 (MCATCABC), CCDC-2483194 (MCATCBBC), respectively. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif. Source data are provided with this paper.

References

  1. Lehn, J.-M. Toward complex matter: supramolecular chemistry and self-organization. Proc. Natl. Acad. Sci. USA. 99, 4763–4768 (2002).

    Google Scholar 

  2. Konar, M. & Govindaraju, T. Molecular Architectonics and Nanoarchitectonics Ch. 1 (Springer Press., Singapore, 2022).

  3. Lee, J. M. et al. Semiautomated synthesis of sequence-defined polymers for information storage. Sci. Adv. 8, eabl8614 (2022).

    Google Scholar 

  4. Bielecki, A. & Schmittel, M. The information encoded in structures: theory and application to molecular cybernetics. Found. Sci. 27, 1327–1345 (2022).

    Google Scholar 

  5. Wu, K. et al. Systematic construction of progressively larger capsules from a fivefold linking pyrrole-based subcomponent. Nat. Synth. 2, 789–797 (2023).

    Google Scholar 

  6. Qi, H. et al. Steric complementarity drives strong co-assembly of short peptide stereoisomers. J. Am. Chem. Soc. 147, 14231–14243 (2025).

    Google Scholar 

  7. Benchimol, E., Nguyen, B.-N. T., Ronson, T. K. & Nitschke, J. R. Transformation networks of metal–organic cages controlled by chemical stimuli. Chem. Soc. Rev. 51, 5101–5135 (2022).

    Google Scholar 

  8. McTernan, C. T., Davies, J. A. & Nitschke, J. R. Beyond platonic: how to build metal-organic polyhedra capable of binding low-symmetry, information-rich molecular cargoes. Chem. Rev. 122, 10393–10437 (2022).

    Google Scholar 

  9. Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    Google Scholar 

  10. Zhu, Y. et al. A general strategy for synthesizing biomacromolecular ionogel membranes via solvent-induced self-assembly. Nat. Synth. 2, 864–872 (2023).

    Google Scholar 

  11. Wu, H. et al. Photocatalytic and photoelectrochemical systems: similarities and differences. Adv. Mater. 32, 1904717 (2020).

    Google Scholar 

  12. Ma, B. & Bianco, A. Regulation of biological processes by intrinsically chiral engineered materials. Nat. Rev. Mater. 8, 403–413 (2023).

    Google Scholar 

  13. Dong, J., Liu, Y. & Cui, Y. Emerging chiral two-dimensional materials. Nat. Chem. 16, 1398–1407 (2024).

    Google Scholar 

  14. Raymond, D. M. & Nilsson, B. L. Multicomponent peptide assemblies. Chem. Soc. Rev. 47, 3659–3720 (2018).

    Google Scholar 

  15. Zhu, J. et al. Protein assembly by design. Chem. Rev. 121, 13701–13796 (2021).

    Google Scholar 

  16. Li, L., Zheng, R. & Sun, R. Understanding multicomponent low molecular weight gels from gelators to networks. J. Adv. Res. 69, 91–106 (2025).

    Google Scholar 

  17. Jin, T. et al. Exploring self-sorting in metallacycles: toward advanced supramolecular systems and materials. Supramol. Mater. 4, 100117 (2025).

    Google Scholar 

  18. Dong, X. Y., Domayer, M., Hudalla, G. A. & Hall, C. K. Modulating peptide co-assembly via macromolecular crowding: recipes for co-assembled structures. Nanoscale 17, 15478–15492 (2025).

    Google Scholar 

  19. Cui, H. & Tirrell, M. Self-assembling peptides, conjugates, and mimics: a versatile platform for materials and beyond. Acc. Chem. Res. 58, 163–164 (2025).

    Google Scholar 

  20. He, Z., Jiang, W. & Schalley, C. A. Integrative self-sorting: a versatile strategy for the construction of complex supramolecular architecture. Chem. Soc. Rev. 44, 779–789 (2015).

    Google Scholar 

  21. Pullen, S. & Clever, G. H. Mixed-ligand metal-organic frameworks and heteroleptic coordination cages as multifunctional scaffolds—a comparison. Acc. Chem. Res. 51, 3052–3064 (2018).

    Google Scholar 

  22. Wu, K., Benchimol, E., Baksi, A. & Clever, G. H. Non-statistical assembly of multicomponent [Pd2ABCD] cages. Nat. Chem. 16, 584–591 (2024).

    Google Scholar 

  23. Fujita, M., Tominaga, M., Hori, A. & Therrien, B. Coordination assemblies from a Pd(II)-cornered square complex. Acc. Chem. Res. 38, 369–378 (2005).

    Google Scholar 

  24. Yamashina, M., Yuki, T., Sei, Y., Akita, M. & Yoshizawa, M. Anisotropic expansion of an M2L4 coordination capsule: host capability and frame rearrangement. Chem. Eur. J. 21, 4200–4204 (2015).

    Google Scholar 

  25. Davies, J. A., Ronson, T. K. & Nitschke, J. R. Triamine and tetramine edge-length matching drives heteroleptic triangular and tetragonal prism assembly. J. Am. Chem. Soc. 146, 5215–5223 (2024).

    Google Scholar 

  26. Hou, Y., Zhang, Z. & Zhang, M. Multicomponent metallacages via the integrative self-assembly of Pt(II) nodes with multiple pyridyl and carboxylate ligands. Acc. Chem. Res. 58, 1644–1656 (2025).

    Google Scholar 

  27. Northrop, B. H., Zheng, Y.-R., Chi, K.-W. & Stang, P. J. Self-organization in coordination-driven self-assembly. Acc. Chem. Res. 42, 1554–1563 (2009).

    Google Scholar 

  28. Han, Y.-F. & Jin, G.-X. Half-sandwich iridium- and rhodium-based organometallic architectures: rational design, synthesis, characterization, and applications. Acc. Chem. Res. 47, 3571–3579 (2014).

    Google Scholar 

  29. Sinha, N. & Hahn, F. E. Metallosupramolecular architectures obtained from poly-N-heterocyclic carbene ligands. Acc. Chem. Res. 50, 2167–2184 (2017).

    Google Scholar 

  30. Lescop, C. Coordination-driven syntheses of compact supramolecular metallacycles toward extended metallo-organic stacked supramolecular assemblies. Acc. Chem. Res. 50, 885–894 (2017).

    Google Scholar 

  31. Zhang, Y.-Y., Gao, W.-X., Lin, L. & Jin, G.-X. Recent advances in the construction and applications of heterometallic macrocycles and cages. Coord. Chem. Rev. 344, 323–344 (2017).

    Google Scholar 

  32. Jayamurugan, G., Roberts, D. A., Ronson, T. K. & Nitschke, J. R. Selective endo and exo binding of mono- and ditopic ligands to a rhomboidal diporphyrin prism. Angew. Chem. Int. Ed. 54, 7539–7543 (2015).

    Google Scholar 

  33. García-Simón, C. et al. Enantioselective hydroformylation by a Rh-catalyst entrapped in a supramolecular metallocage. J. Am. Chem. Soc. 137, 2680–2687 (2015).

    Google Scholar 

  34. Chepelin, O., Ujma, J., Barran, P. E. & Lusby, P. J. Sequential, kinetically controlled synthesis of multicomponent stereoisomeric assemblies. Angew. Chem. Int. Ed. 51, 4194–4197 (2012).

    Google Scholar 

  35. Preston, D., Barnsley, J. E., Gordon, K. C. & Crowley, J. D. Controlled formation of heteroleptic [Pd2(La)2(Lb)2]4+ cages. J. Am. Chem. Soc. 138, 10578–10585 (2016).

    Google Scholar 

  36. Abe, T., Sanada, N., Takeuchi, K., Okazawa, A. & Hiraoka, S. Assembly of six types of heteroleptic Pd2L4 cages under kinetic control. J. Am. Chem. Soc. 145, 28061–28074 (2023).

    Google Scholar 

  37. Zhang, D., Ronson, T. K., Zou, Y.-Q. & Nitschke, J. R. Metal–organic cages for molecular separations. Nat. Rev. Chem. 5, 168–182 (2021).

    Google Scholar 

  38. Banerjee, R., Chakraborty, D. & Mukherjee, P. S. Molecular barrels as potential hosts: from synthesis to applications. J. Am. Chem. Soc. 145, 7692–7711 (2023).

    Google Scholar 

  39. Howlader, P., Das, P., Zangrando, E. & Mukherjee, P. S. Urea-functionalized self-assembled molecular prism for heterogeneous catalysis in water. J. Am. Chem. Soc. 138, 1668–1676 (2016).

    Google Scholar 

  40. Jiao, J. et al. Design and assembly of chiral coordination cages for asymmetric sequential reactions. J. Am. Chem. Soc. 140, 2251–2259 (2018).

    Google Scholar 

  41. Gao, W.-X., Zhang, H.-N. & Jin, G.-X. Supramolecular catalysis based on discrete heterometallic coordination-driven metallacycles and metallacages. Coord. Chem. Rev. 386, 69–84 (2019).

    Google Scholar 

  42. Liu, D. et al. Molecular co-catalyst confined within a etallacage for enhanced photocatalytic CO2 reduction. J. Am. Chem. Soc. 146, 2275–2285 (2024).

    Google Scholar 

  43. Gan, M.-M. et al. Preparation and post-assembly modification of metallosupramolecular assemblies from poly(N-heterocyclic carbene) ligands. Chem. Rev. 118, 9587–9641 (2018).

    Google Scholar 

  44. Bai, S. & Han, Y.-F. Metal-N-heterocyclic carbene chemistry directed toward metallosupramolecular synthesis and beyond. Acc. Chem. Res. 56, 1213–1227 (2023).

    Google Scholar 

  45. López-Moreno, A. et al. Single-walled carbon nanotubes encapsulated within metallacycles. Angew. Chem. Int. Ed. 61, e202208189 (2022).

    Google Scholar 

  46. Ibáñez, S., Poyatos, M. & Peris, E. N-heterocyclic carbenes: a door open to supramolecular organometallic chemistry. Acc. Chem. Res. 53, 1401–1413 (2020).

    Google Scholar 

  47. Zhang, Y.-W. et al. Unravelling the roles of solvophobic effects and π···π stacking interactions in the formation of [2]catenanes featuring di-(N heterocyclic carbene) building blocks. An. gew. Chem. Int. Ed. 62, e202312323 (2023).

    Google Scholar 

  48. Chang, J.-P. et al. Synthesis of a metalla[2]catenane, metallarectangles and polynuclear assemblies from di(N-heterocyclic carbene) ligands. Angew. Chem. Int. Ed. 63, e202409664 (2024).

    Google Scholar 

  49. Zhang, Y.-W., Bai, S., Wang, Y.-Y. & Han, Y.-F. A strategy for the construction of triply interlocked organometallic cages by rational design of poly-NHC precursor. J. Am. Chem. Soc. 142, 13614–13621 (2020).

    Google Scholar 

  50. Gao, X. et al. Synthesis and near-infrared photothermal conversion of discrete supramolecular topologies featuring half-sandwich [Cp*Rh] units. J. Am. Chem. Soc. 143, 17833–17842 (2021).

    Google Scholar 

  51. Wang, Y.-S., Feng, T., Wang, Y.-Y., Hahn, F. E. & Han, Y.-F. Homo- and heteroligand poly-NHC metal assemblies: synthesis by narcissistic and social self-sorting. Angew. Chem. Int. Ed. 57, 15767–15771 (2018).

    Google Scholar 

  52. Humphrey, W., Dalke, K. & Schulten, A. VMD: visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    Google Scholar 

  53. Lu, T. & Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Google Scholar 

  54. Lu, T. & Chen, Q. Independent gradient model based on hirshfeld partition: a new method for visual study of interactions in chemical systems. J. Comput. Chem. 43, 539–555 (2022).

    Google Scholar 

  55. Lu, T. & Chen, Q. Comprehensive Computational Chemistry Vol. 2 (Elsevier Press, Oxford, 2024).

  56. Liu, Z. et al. Molecular assembly with a figure-of-eight nanohoop as a strategy for the collection and stabilization of cyclo[18]carbon. Phys. Chem. Chem. Phys. 25, 16707–16711 (2023).

    Google Scholar 

  57. Liu, Z., Lu, T. & Chen, Q. Intermolecular interaction characteristics of the all-carboatomic ring, cyclo[18]carbon: focusing on molecular adsorption and stacking. Carbon 171, 514–523 (2021).

    Google Scholar 

  58. Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).

    Google Scholar 

  59. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Google Scholar 

  60. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Google Scholar 

  61. Sheldrick, G. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr. A 46, 467–473 (1990).

    Google Scholar 

  62. Sheldrick, G. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Google Scholar 

  63. Sheldrick, G. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Google Scholar 

  64. Gaussian 09 rev. E01 (Gaussian, Inc., 2009). http://www.gaussian.com.

  65. Caldeweyher, E. et al. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 150, 154122 (2019).

    Google Scholar 

  66. Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta. 28, 213–222 (1973).

    Google Scholar 

  67. Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985).

    Google Scholar 

  68. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk Dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009). 6620.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (22025107 (Y.-F.H.), 92461302 (Y.-F.H.), 22305190 (X.L.), 22301040 (H.-N.Z.)), the National Youth Topnotch Talent Support Program of China (Y.-F.H.), the China Postdoctoral Fellowship Program Grade A (BX20240288 (Y.-W.Z.)), the Shaanxi Postdoctoral Science Foundation Project (2024BSHSDZZ057 (Y.-W.Z.)), the Xi’an Key Laboratory of Functional Supramolecular Structure and Materials, and the FM&EM International Joint Laboratory of Northwest University.

Author information

Author notes
  1. These authors contributed equally: Ya-Wen Zhang, Hai-Ning Zhang.

Authors and Affiliations

  1. College of Chemistry and Materials Science, Northwest University, Xi’an, P. R. China

    Ya-Wen Zhang, Ming-Xia Wang, Xin Li & Ying-Feng Han

  2. College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China

    Hai-Ning Zhang

Authors
  1. Ya-Wen Zhang
    View author publications

    Search author on:PubMed Google Scholar

  2. Hai-Ning Zhang
    View author publications

    Search author on:PubMed Google Scholar

  3. Ming-Xia Wang
    View author publications

    Search author on:PubMed Google Scholar

  4. Xin Li
    View author publications

    Search author on:PubMed Google Scholar

  5. Ying-Feng Han
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.-F.H. conceived and supervised the project. Y.-W.Z. and H.-N.Z. performed the synthesis of ligands and silver(I)-N-heterocyclic carbene assemblies. Y.-W.Z., H.-N.Z., M.-X.W., and X.L. performed NMR analyses, X-ray crystallographic analysis, electrospray ionization mass spectrometry, theoretical study and near-infrared photothermal conversion study. Y.-W.Z., H.-N.Z. and Y.-F.H. wrote the paper. All authors contributed to the data analysis and discussion.

Corresponding author

Correspondence to Ying-Feng Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Mandeep Chahal, Jun-Hua Wan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YW., Zhang, HN., Wang, MX. et al. Sequence-encoded layered heteroleptic metalla-[2]catenanes for programmable supramolecular function. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68348-w

Download citation

  • Received: 24 September 2025

  • Accepted: 24 December 2025

  • Published: 12 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68348-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing