Abstract
Molecular information encoded within supramolecular frameworks offers a powerful paradigm for directing emergent function beyond the genetic code, but systematic investigations into alternative spatial configurations and their consequences remain scarce. Here we use metalla-[2]catenanes to probe sequence–function relationships in layered architectures. By combining two or three size-matched N-heterocyclic carbene ligands with Ag(I) nodes, we selectively construct heteroleptic metalla-[2]catenanes through both direct assembly and supramolecular fusion pathways. X-ray crystallographic analysis unambiguously confirms the targeted sequences, while semiempirical and density functional theory calculations reveal their thermodynamic preference over alternative isomers. Photothermal conversion studies further demonstrate that sequence-specific charge-transfer interactions yield distinct macroscopic responses. Collectively, these results identify heteroleptic metalla-[2]catenanes as a robust model for elucidating how spatial arrangement governs system-level behavior and for advancing molecular coding principles in functional supramolecular design.
Similar content being viewed by others
Data availability
The authors declare that all data supporting the findings of this study are available within the article and Supplementary Information files, and are also available from the corresponding author upon request. The X-ray crystallographic coordinates for structures have been deposited at the Cambridge Crystallographic Data Center (CCDC) under deposition numbers CCDC-2483191 (MCATAAAA), CCDC-2483192 (MCATCAAC), CCDC-2483193 (MCATCABC), CCDC-2483194 (MCATCBBC), respectively. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif. Source data are provided with this paper.
References
Lehn, J.-M. Toward complex matter: supramolecular chemistry and self-organization. Proc. Natl. Acad. Sci. USA. 99, 4763–4768 (2002).
Konar, M. & Govindaraju, T. Molecular Architectonics and Nanoarchitectonics Ch. 1 (Springer Press., Singapore, 2022).
Lee, J. M. et al. Semiautomated synthesis of sequence-defined polymers for information storage. Sci. Adv. 8, eabl8614 (2022).
Bielecki, A. & Schmittel, M. The information encoded in structures: theory and application to molecular cybernetics. Found. Sci. 27, 1327–1345 (2022).
Wu, K. et al. Systematic construction of progressively larger capsules from a fivefold linking pyrrole-based subcomponent. Nat. Synth. 2, 789–797 (2023).
Qi, H. et al. Steric complementarity drives strong co-assembly of short peptide stereoisomers. J. Am. Chem. Soc. 147, 14231–14243 (2025).
Benchimol, E., Nguyen, B.-N. T., Ronson, T. K. & Nitschke, J. R. Transformation networks of metal–organic cages controlled by chemical stimuli. Chem. Soc. Rev. 51, 5101–5135 (2022).
McTernan, C. T., Davies, J. A. & Nitschke, J. R. Beyond platonic: how to build metal-organic polyhedra capable of binding low-symmetry, information-rich molecular cargoes. Chem. Rev. 122, 10393–10437 (2022).
Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).
Zhu, Y. et al. A general strategy for synthesizing biomacromolecular ionogel membranes via solvent-induced self-assembly. Nat. Synth. 2, 864–872 (2023).
Wu, H. et al. Photocatalytic and photoelectrochemical systems: similarities and differences. Adv. Mater. 32, 1904717 (2020).
Ma, B. & Bianco, A. Regulation of biological processes by intrinsically chiral engineered materials. Nat. Rev. Mater. 8, 403–413 (2023).
Dong, J., Liu, Y. & Cui, Y. Emerging chiral two-dimensional materials. Nat. Chem. 16, 1398–1407 (2024).
Raymond, D. M. & Nilsson, B. L. Multicomponent peptide assemblies. Chem. Soc. Rev. 47, 3659–3720 (2018).
Zhu, J. et al. Protein assembly by design. Chem. Rev. 121, 13701–13796 (2021).
Li, L., Zheng, R. & Sun, R. Understanding multicomponent low molecular weight gels from gelators to networks. J. Adv. Res. 69, 91–106 (2025).
Jin, T. et al. Exploring self-sorting in metallacycles: toward advanced supramolecular systems and materials. Supramol. Mater. 4, 100117 (2025).
Dong, X. Y., Domayer, M., Hudalla, G. A. & Hall, C. K. Modulating peptide co-assembly via macromolecular crowding: recipes for co-assembled structures. Nanoscale 17, 15478–15492 (2025).
Cui, H. & Tirrell, M. Self-assembling peptides, conjugates, and mimics: a versatile platform for materials and beyond. Acc. Chem. Res. 58, 163–164 (2025).
He, Z., Jiang, W. & Schalley, C. A. Integrative self-sorting: a versatile strategy for the construction of complex supramolecular architecture. Chem. Soc. Rev. 44, 779–789 (2015).
Pullen, S. & Clever, G. H. Mixed-ligand metal-organic frameworks and heteroleptic coordination cages as multifunctional scaffolds—a comparison. Acc. Chem. Res. 51, 3052–3064 (2018).
Wu, K., Benchimol, E., Baksi, A. & Clever, G. H. Non-statistical assembly of multicomponent [Pd2ABCD] cages. Nat. Chem. 16, 584–591 (2024).
Fujita, M., Tominaga, M., Hori, A. & Therrien, B. Coordination assemblies from a Pd(II)-cornered square complex. Acc. Chem. Res. 38, 369–378 (2005).
Yamashina, M., Yuki, T., Sei, Y., Akita, M. & Yoshizawa, M. Anisotropic expansion of an M2L4 coordination capsule: host capability and frame rearrangement. Chem. Eur. J. 21, 4200–4204 (2015).
Davies, J. A., Ronson, T. K. & Nitschke, J. R. Triamine and tetramine edge-length matching drives heteroleptic triangular and tetragonal prism assembly. J. Am. Chem. Soc. 146, 5215–5223 (2024).
Hou, Y., Zhang, Z. & Zhang, M. Multicomponent metallacages via the integrative self-assembly of Pt(II) nodes with multiple pyridyl and carboxylate ligands. Acc. Chem. Res. 58, 1644–1656 (2025).
Northrop, B. H., Zheng, Y.-R., Chi, K.-W. & Stang, P. J. Self-organization in coordination-driven self-assembly. Acc. Chem. Res. 42, 1554–1563 (2009).
Han, Y.-F. & Jin, G.-X. Half-sandwich iridium- and rhodium-based organometallic architectures: rational design, synthesis, characterization, and applications. Acc. Chem. Res. 47, 3571–3579 (2014).
Sinha, N. & Hahn, F. E. Metallosupramolecular architectures obtained from poly-N-heterocyclic carbene ligands. Acc. Chem. Res. 50, 2167–2184 (2017).
Lescop, C. Coordination-driven syntheses of compact supramolecular metallacycles toward extended metallo-organic stacked supramolecular assemblies. Acc. Chem. Res. 50, 885–894 (2017).
Zhang, Y.-Y., Gao, W.-X., Lin, L. & Jin, G.-X. Recent advances in the construction and applications of heterometallic macrocycles and cages. Coord. Chem. Rev. 344, 323–344 (2017).
Jayamurugan, G., Roberts, D. A., Ronson, T. K. & Nitschke, J. R. Selective endo and exo binding of mono- and ditopic ligands to a rhomboidal diporphyrin prism. Angew. Chem. Int. Ed. 54, 7539–7543 (2015).
García-Simón, C. et al. Enantioselective hydroformylation by a Rh-catalyst entrapped in a supramolecular metallocage. J. Am. Chem. Soc. 137, 2680–2687 (2015).
Chepelin, O., Ujma, J., Barran, P. E. & Lusby, P. J. Sequential, kinetically controlled synthesis of multicomponent stereoisomeric assemblies. Angew. Chem. Int. Ed. 51, 4194–4197 (2012).
Preston, D., Barnsley, J. E., Gordon, K. C. & Crowley, J. D. Controlled formation of heteroleptic [Pd2(La)2(Lb)2]4+ cages. J. Am. Chem. Soc. 138, 10578–10585 (2016).
Abe, T., Sanada, N., Takeuchi, K., Okazawa, A. & Hiraoka, S. Assembly of six types of heteroleptic Pd2L4 cages under kinetic control. J. Am. Chem. Soc. 145, 28061–28074 (2023).
Zhang, D., Ronson, T. K., Zou, Y.-Q. & Nitschke, J. R. Metal–organic cages for molecular separations. Nat. Rev. Chem. 5, 168–182 (2021).
Banerjee, R., Chakraborty, D. & Mukherjee, P. S. Molecular barrels as potential hosts: from synthesis to applications. J. Am. Chem. Soc. 145, 7692–7711 (2023).
Howlader, P., Das, P., Zangrando, E. & Mukherjee, P. S. Urea-functionalized self-assembled molecular prism for heterogeneous catalysis in water. J. Am. Chem. Soc. 138, 1668–1676 (2016).
Jiao, J. et al. Design and assembly of chiral coordination cages for asymmetric sequential reactions. J. Am. Chem. Soc. 140, 2251–2259 (2018).
Gao, W.-X., Zhang, H.-N. & Jin, G.-X. Supramolecular catalysis based on discrete heterometallic coordination-driven metallacycles and metallacages. Coord. Chem. Rev. 386, 69–84 (2019).
Liu, D. et al. Molecular co-catalyst confined within a etallacage for enhanced photocatalytic CO2 reduction. J. Am. Chem. Soc. 146, 2275–2285 (2024).
Gan, M.-M. et al. Preparation and post-assembly modification of metallosupramolecular assemblies from poly(N-heterocyclic carbene) ligands. Chem. Rev. 118, 9587–9641 (2018).
Bai, S. & Han, Y.-F. Metal-N-heterocyclic carbene chemistry directed toward metallosupramolecular synthesis and beyond. Acc. Chem. Res. 56, 1213–1227 (2023).
López-Moreno, A. et al. Single-walled carbon nanotubes encapsulated within metallacycles. Angew. Chem. Int. Ed. 61, e202208189 (2022).
Ibáñez, S., Poyatos, M. & Peris, E. N-heterocyclic carbenes: a door open to supramolecular organometallic chemistry. Acc. Chem. Res. 53, 1401–1413 (2020).
Zhang, Y.-W. et al. Unravelling the roles of solvophobic effects and π···π stacking interactions in the formation of [2]catenanes featuring di-(N heterocyclic carbene) building blocks. An. gew. Chem. Int. Ed. 62, e202312323 (2023).
Chang, J.-P. et al. Synthesis of a metalla[2]catenane, metallarectangles and polynuclear assemblies from di(N-heterocyclic carbene) ligands. Angew. Chem. Int. Ed. 63, e202409664 (2024).
Zhang, Y.-W., Bai, S., Wang, Y.-Y. & Han, Y.-F. A strategy for the construction of triply interlocked organometallic cages by rational design of poly-NHC precursor. J. Am. Chem. Soc. 142, 13614–13621 (2020).
Gao, X. et al. Synthesis and near-infrared photothermal conversion of discrete supramolecular topologies featuring half-sandwich [Cp*Rh] units. J. Am. Chem. Soc. 143, 17833–17842 (2021).
Wang, Y.-S., Feng, T., Wang, Y.-Y., Hahn, F. E. & Han, Y.-F. Homo- and heteroligand poly-NHC metal assemblies: synthesis by narcissistic and social self-sorting. Angew. Chem. Int. Ed. 57, 15767–15771 (2018).
Humphrey, W., Dalke, K. & Schulten, A. VMD: visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).
Lu, T. & Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
Lu, T. & Chen, Q. Independent gradient model based on hirshfeld partition: a new method for visual study of interactions in chemical systems. J. Comput. Chem. 43, 539–555 (2022).
Lu, T. & Chen, Q. Comprehensive Computational Chemistry Vol. 2 (Elsevier Press, Oxford, 2024).
Liu, Z. et al. Molecular assembly with a figure-of-eight nanohoop as a strategy for the collection and stabilization of cyclo[18]carbon. Phys. Chem. Chem. Phys. 25, 16707–16711 (2023).
Liu, Z., Lu, T. & Chen, Q. Intermolecular interaction characteristics of the all-carboatomic ring, cyclo[18]carbon: focusing on molecular adsorption and stacking. Carbon 171, 514–523 (2021).
Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).
Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).
Sheldrick, G. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr. A 46, 467–473 (1990).
Sheldrick, G. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).
Sheldrick, G. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).
Gaussian 09 rev. E01 (Gaussian, Inc., 2009). http://www.gaussian.com.
Caldeweyher, E. et al. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 150, 154122 (2019).
Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta. 28, 213–222 (1973).
Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985).
Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk Dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009). 6620.
Acknowledgements
The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (22025107 (Y.-F.H.), 92461302 (Y.-F.H.), 22305190 (X.L.), 22301040 (H.-N.Z.)), the National Youth Topnotch Talent Support Program of China (Y.-F.H.), the China Postdoctoral Fellowship Program Grade A (BX20240288 (Y.-W.Z.)), the Shaanxi Postdoctoral Science Foundation Project (2024BSHSDZZ057 (Y.-W.Z.)), the Xi’an Key Laboratory of Functional Supramolecular Structure and Materials, and the FM&EM International Joint Laboratory of Northwest University.
Author information
Authors and Affiliations
Contributions
Y.-F.H. conceived and supervised the project. Y.-W.Z. and H.-N.Z. performed the synthesis of ligands and silver(I)-N-heterocyclic carbene assemblies. Y.-W.Z., H.-N.Z., M.-X.W., and X.L. performed NMR analyses, X-ray crystallographic analysis, electrospray ionization mass spectrometry, theoretical study and near-infrared photothermal conversion study. Y.-W.Z., H.-N.Z. and Y.-F.H. wrote the paper. All authors contributed to the data analysis and discussion.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Mandeep Chahal, Jun-Hua Wan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Zhang, YW., Zhang, HN., Wang, MX. et al. Sequence-encoded layered heteroleptic metalla-[2]catenanes for programmable supramolecular function. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68348-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-68348-w


