Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Central amygdala single-nucleus atlas reveals chromatin and gene transcription dynamics in human alcohol use disorder
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 19 January 2026

Central amygdala single-nucleus atlas reveals chromatin and gene transcription dynamics in human alcohol use disorder

  • Che Yu Lee  ORCID: orcid.org/0000-0002-3039-48941 na1,
  • Ahyeon Hwang1,2 na1,
  • Delaney McRiley3 na1,
  • Jaywon Lee  ORCID: orcid.org/0009-0007-8432-77383,
  • Genevieve Thibodeau3,
  • Catharine Duman3,
  • Xiangyu Zhang4,
  • Mario Skarica  ORCID: orcid.org/0000-0002-2478-014X3,
  • Jensine Coudriet3,
  • Siwei Xu  ORCID: orcid.org/0000-0002-2828-37061,
  • Rosemarie Terwilliger3,
  • Alexa-Nicole Sliby3,
  • Jiawei Wang  ORCID: orcid.org/0000-0003-2627-48973,
  • Tuan Nguyen  ORCID: orcid.org/0000-0002-1703-04043,
  • Yujing Liu3,
  • Hongyu Li  ORCID: orcid.org/0000-0001-6525-93104,
  • Yi Dai  ORCID: orcid.org/0009-0004-1018-59311,
  • Ziheng Duan1,
  • Yutong Lei1,
  • Yingxin Lin  ORCID: orcid.org/0000-0002-4299-73264,
  • Jill R. Glausier  ORCID: orcid.org/0000-0001-9838-34145,
  • David A. Lewis  ORCID: orcid.org/0000-0002-3225-67785,
  • Joel Gelernter  ORCID: orcid.org/0000-0002-4067-18593,
  • Paul E. Holtzheimer6,
  • Ke Xu  ORCID: orcid.org/0000-0002-6472-70523,6,
  • Hang Zhou  ORCID: orcid.org/0000-0002-7694-63914,
  • Hongyu Zhao  ORCID: orcid.org/0000-0003-1195-96074,
  • Summer Thompson  ORCID: orcid.org/0000-0003-1922-12013,
  • John H. Krystal  ORCID: orcid.org/0000-0001-6952-17263,
  • Alicia Che  ORCID: orcid.org/0000-0002-7530-85313,
  • Jane R. Taylor3,
  • Jing Zhang  ORCID: orcid.org/0000-0002-5970-05091,2 &
  • …
  • Matthew J. Girgenti  ORCID: orcid.org/0000-0003-1647-326X3 

Nature Communications , Article number:  (2026) Cite this article

  • 2704 Accesses

  • 19 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Addiction
  • Medical genomics

Abstract

Regulation of gene expression is a highly coordinated process in both the healthy and pathological brain with unique patterns across a multitude of cell types. Here we present a multi-omic single nucleus study of ~175,000 nuclei from 50 donors with alcohol use disorder (AUD) and control donors without AUD, profiling cell type specific gene expression and chromatin accessibility in the human central amygdala. We identify all major CNS cell types and neuronal subtypes and find inhibitory neurons are particularly affected by AUD. We find high numbers of differentially expressed genes (DEGs) including GABRA2, GRM8, and NCAM1 and show significant enrichment for AUD risk genes within these DEGs. We identified 51,431 cell type-specific, disease associated candidate cis-regulatory elements including an interneuron-associated set of chromatin loops at the AUD risk gene CALN1. Transcription factor footprinting identified Kruppel-like factors upstream of AUD GWAS genes and DEGs. Finally, we also perform cell type-specific fine mapping for AUD GWAS to prioritize variants within functional genomic elements.

Similar content being viewed by others

A systematic review and meta-analysis on the transcriptomic signatures in alcohol use disorder

Article Open access 06 September 2024

Gene expression differences associated with alcohol use disorder in human brain

Article Open access 12 October 2024

Multi-omics signatures of alcohol use disorder in the dorsal and ventral striatum

Article Open access 06 May 2022

Data availability

The snMultiome data generated in this study have been deposited in the Zenodo database [https://doi.org/10.5281/zenodo.17656668]. Datasets are available from the corresponding author and requests may also be submitted to https://www.research.va.gov/programs/tissue_banking/ptsd/ and referencing this paper. The processed data generated in this study are provided in the Supplementary Information/Source Data file. Source data are provided with this paper.

Code availability

All code used in this study is freely available online and can be found at https://github.com/mjgirgenti/AUDsnCEA.

References

  1. Hart, A. B. & Kranzler, H. R. Alcohol Dependence Genetics: Lessons Learned From Genome-Wide Association Studies (GWAS) and Post-GWAS Analyses. Alcohol. Clin. Exp. Res. 39, 1312–1327 (2015).

    Google Scholar 

  2. Reilly, M. T., Noronha, A., Goldman, D. & Koob, G. F. Genetic studies of alcohol dependence in the context of the addiction cycle. Neuropharmacology 122, 3–21 (2017).

    Google Scholar 

  3. Enoch, M. A. & Goldman, D. The genetics of alcoholism and alcohol abuse. Curr. Psychiatry Rep. 3, 144–151 (2001).

    Google Scholar 

  4. Agrawal, A. & Lynskey, M. T. Are there genetic influences on addiction: evidence from family, adoption and twin studies. Addiction 103, 1069–1081 (2008).

    Google Scholar 

  5. Verhulst, B., Neale, M. C. & Kendler, K. S. The heritability of alcohol use disorders: a meta-analysis of twin and adoption studies. Psychol. Med. 45, 1061–1072 (2015).

    Google Scholar 

  6. Tawa, E. A., Hall, S. D. & Lohoff, F. W. Overview of the Genetics of Alcohol Use Disorder. Alcohol Alcohol 51, 507–514 (2016).

    Google Scholar 

  7. Augier, E. et al. A molecular mechanism for choosing alcohol over an alternative reward. Science 360, 1321–1326 (2018).

    Google Scholar 

  8. Yang, W., Singla, R., Maheshwari, O., Fontaine, C. J. & Gil-Mohapel, J. Alcohol Use Disorder: Neurobiology and Therapeutics. Biomedicines 10, 1192 (2022).

  9. Koob, G. F. Dynamics of neuronal circuits in addiction: reward, antireward, and emotional memory. Pharmacopsychiatry 42, S32–S41 (2009).

    Google Scholar 

  10. Goodman, J. & Packard, M. G. Memory Systems and the Addicted Brain. Front. Psychiatry 7, 24 (2016).

    Google Scholar 

  11. Robbins, T. W., Ersche, K. D. & Everitt, B. J. Drug addiction and the memory systems of the brain. Ann. N. Y. Acad. Sci. 1141, 1–21 (2008).

    Google Scholar 

  12. Farris, S. P., Arasappan, D., Hunicke-Smith, S., Harris, R. A. & Mayfield, R. D. Transcriptome organization for chronic alcohol abuse in human brain. Mol. Psychiatry 20, 1438–1447 (2015).

    Google Scholar 

  13. Walters, R. K. et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat. Neurosci. 21, 1656–1669 (2018).

    Google Scholar 

  14. Kranzler, H. R. et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat. Commun. 10, 1499 (2019).

    Google Scholar 

  15. Zhou, H. et al. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nat. Neurosci. 23, 809–818 (2020).

    Google Scholar 

  16. Zhou, H. et al. Multi-ancestry study of the genetics of problematic alcohol use in over 1 million individuals. Nat. Med. 29, 3184–3192 (2023).

    Google Scholar 

  17. Gelernter, J. & Polimanti, R. Genetics of substance use disorders in the era of big data. Nat. Rev. Genet. 22, 712–729 (2021).

    Google Scholar 

  18. Andrade-Brito, D. E. et al. Neuronal-specific methylome and hydroxymethylome analysis reveal significant loci associated with alcohol use disorder. Front. Genet. 15, 1345410 (2024).

    Google Scholar 

  19. Nestler, E. J. & Lüscher, C. The Molecular Basis of Drug Addiction: Linking Epigenetic to Synaptic and Circuit Mechanisms. Neuron 102, 48–59 (2019).

    Google Scholar 

  20. Lüscher, C. The Emergence of a Circuit Model for Addiction. Annu. Rev. Neurosci. 39, 257–276 (2016).

    Google Scholar 

  21. Kapoor, M. et al. Analysis of whole genome-transcriptomic organization in brain to identify genes associated with alcoholism. Transl. Psychiatry 9, 89 (2019).

    Google Scholar 

  22. Hitzemann, R. et al. Sex Differences in the Brain Transcriptome Related to Alcohol Effects and Alcohol Use Disorder. Biol. Psychiatry 91, 43–52 (2022).

    Google Scholar 

  23. Ponomarev, I., Wang, S., Zhang, L., Harris, R. A. & Mayfield, R. D. Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J. Neurosci. 32, 1884–1897 (2012).

    Google Scholar 

  24. Zhang, H. et al. Differentially co-expressed genes in postmortem prefrontal cortex of individuals with alcohol use disorders: influence on alcohol metabolism-related pathways. Hum. Genet. 133, 1383–1394 (2014).

    Google Scholar 

  25. Ducci, F. & Goldman, D. Genetic approaches to addiction: genes and alcohol. Addiction 103, 1414–1428 (2008).

    Google Scholar 

  26. Spanagel, R. Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol. Rev. 89, 649–705 (2009).

    Google Scholar 

  27. Abernathy, K., Chandler, L. J. & Woodward, J. J. Alcohol and the prefrontal cortex. Int. Rev. Neurobiol. 91, 289–320 (2010).

    Google Scholar 

  28. Moorman, D. E. The role of the orbitofrontal cortex in alcohol use, abuse, and dependence. Prog. Neuropsychopharmacol. Biol. Psychiatry 87, 85–107 (2018).

    Google Scholar 

  29. Gorka, S. M., Fitzgerald, D. A., King, A. C. & Phan, K. L. Alcohol attenuates amygdala-frontal connectivity during processing social signals in heavy social drinkers: a preliminary pharmaco-fMRI study. Psychopharmacology 229, 141–154 (2013).

    Google Scholar 

  30. Mbarek, H. et al. The genetics of alcohol dependence: Twin and SNP-based heritability, and genome-wide association study based on AUDIT scores. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168, 739–748 (2015).

    Google Scholar 

  31. Sanchez-Roige, S. et al. Genome-wide association study of alcohol use disorder identification test (AUDIT) scores in 20 328 research participants of European ancestry. Addict. Biol. 24, 121–131 (2019).

    Google Scholar 

  32. Sanchez-Roige, S. et al. Genome-Wide Association Study Meta-Analysis of the Alcohol Use Disorders Identification Test (AUDIT) in Two Population-Based Cohorts. Am. J. Psychiatry 176, 107–118 (2019).

    Google Scholar 

  33. Yang, C. et al. Exploring the genetic architecture of alcohol dependence in African-Americans via analysis of a genomewide set of common variants. Hum. Genet. 133, 617–624 (2014).

    Google Scholar 

  34. Hwang, A. et al. Single-cell transcriptomic and chromatin dynamics of the human brain in PTSD. Nature 643, 744–754 (2025).

  35. Xu, S., Lee, C. Y., Zhang, J. & Girgenti, M. J. Central amygdala single-nucleus atlas reveals chromatin and gene transcription dynamics in human alcohol use disorder. Zenodo https://doi.org/10.5281/zenodo.17656668 (2025).

  36. Beyeler, A. & Dabrowska, J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. Handb Behav Neurosci 26, 63–100 (2020).

    Google Scholar 

  37. Yu, B. et al. Molecular and cellular evolution of the amygdala across species analyzed by single-nucleus transcriptome profiling. Cell Discov 9, 19 (2023).

    Google Scholar 

  38. Tran, M. N. et al. Single-nucleus transcriptome analysis reveals cell-type-specific molecular signatures across reward circuitry in the human brain. Neuron 109, 3088–3103.e5 (2021).

    Google Scholar 

  39. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16, 278 (2015).

    Google Scholar 

  40. Li, B. et al. Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq. Nat Methods 17, 793–798 (2020).

    Google Scholar 

  41. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014).

    Google Scholar 

  42. Flores-Bonilla, A. & Richardson, H. N. Sex Differences in the Neurobiology of Alcohol Use Disorder. Alcohol Res 40, 04 (2020).

    Google Scholar 

  43. Grace, S. et al. Sex differences in the neuroanatomy of alcohol dependence: hippocampus and amygdala subregions in a sample of 966 people from the ENIGMA Addiction Working Group. Transl. Psychiatry 11, 156 (2021).

    Google Scholar 

  44. Varodayan, F. P. & Harrison, N. L. HSF1 transcriptional activity mediates alcohol induction of Vamp2 expression and GABA release. Front. Integr. Neurosci. 7, 89 (2013).

    Google Scholar 

  45. Krystal, J. H., Petrakis, I. L., Mason, G., Trevisan, L. & D’Souza, D. C. N-methyl-D-aspartate glutamate receptors and alcoholism: reward, dependence, treatment, and vulnerability. Pharmacol. Ther. 99, 79–94 (2003).

    Google Scholar 

  46. Burnett, E. J., Chandler, L. J. & Trantham-Davidson, H. Glutamatergic plasticity and alcohol dependence-induced alterations in reward, affect and cognition. Prog. Neuropsychopharmacol. Biol. Psychiatry 65, 309–320 (2016).

    Google Scholar 

  47. Joffe, M. E., Centanni, S. W., Jaramillo, A. A., Winder, D. G. & Conn, P. J. Metabotropic Glutamate Receptors in Alcohol Use Disorder: Physiology, Plasticity, and Promising Pharmacotherapies. ACS Chem. Neurosci. 9, 2188–2204 (2018).

    Google Scholar 

  48. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137 (2008).

    Google Scholar 

  49. Fullard, J. F. et al. An atlas of chromatin accessibility in the adult human brain. Genome Res 28, 1243–1252 (2018).

    Google Scholar 

  50. Przybycien-Szymanska, M. M., Rao, Y. S., Prins, S. A. & Pak, T. R. Parental binge alcohol abuse alters F1 generation hypothalamic gene expression in the absence of direct fetal alcohol exposure. PLoS One 9, e89320 (2014).

    Google Scholar 

  51. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).

    Google Scholar 

  52. Dilly, G. A., Kittleman, C. W., Kerr, T. M., Messing, R. O. & Mayfield, R. D. Cell-type specific changes in PKC-delta neurons of the central amygdala during alcohol withdrawal. Transl. Psychiatry 12, 289 (2022).

    Google Scholar 

  53. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Series B Stat. Methodol. 82, 1273–1300 (2020).

    Google Scholar 

  54. Zhou, H. et al. Multi-ancestry study of the genetics of problematic alcohol use in >1 million individuals. medRxiv (2023) https://doi.org/10.1101/2023.01.24.23284960.

  55. Squair, J. W. et al. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12, 5692 (2021).

    Google Scholar 

  56. Lee, M. R. et al. Striatal adenosine signaling regulates EAAT2 and astrocytic AQP4 expression and alcohol drinking in mice. Neuropsychopharmacology 38, 437–445 (2013).

    Google Scholar 

  57. Roland, A. V. et al. Acute and chronic alcohol modulation of extended amygdala calcium dynamics. Alcohol 116, 53–64 (2024).

    Google Scholar 

  58. Tanaka, A. et al. Heavy Alcohol Consumption is Associated with Impaired Endothelial Function. J. Atheroscler. Thromb. 23, 1047–1054 (2016).

    Google Scholar 

  59. Erickson, E. K., Blednov, Y. A., Harris, R. A. & Mayfield, R. D. Glial gene networks associated with alcohol dependence. Scientific Reports 9, 1–13 (2019).

    Google Scholar 

  60. Astrocytes and Alcohol Throughout the Lifespan. Biological Psychiatry (2025) https://doi.org/10.1016/j.biopsych.2025.04.013.

  61. Drug dependence stress and dysregulation of brain reward pathways. Drug and Alcohol Dependence 51, 23–47 (1998).

    Google Scholar 

  62. Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. Nature Reviews Cancer 10, 116–129 (2010).

    Google Scholar 

  63. Giardino, W. J. & Pomrenze, M. B. Extended Amygdala Neuropeptide Circuitry of Emotional Arousal: Waking Up on the Wrong Side of the Bed Nuclei of Stria Terminalis. Front. Behav. Neurosci. 15, 613025 (2021).

    Google Scholar 

  64. Ehrlich, I. et al. Amygdala inhibitory circuits and the control of fear memory. Neuron 62, 757–771 (2009).

    Google Scholar 

  65. Racz, I. et al. The opioid peptides enkephalin and beta-endorphin in alcohol dependence. Biol. Psychiatry 64, 989–997 (2008).

    Google Scholar 

  66. de Laat, B. et al. The Kappa Opioid Receptor Is Associated With Naltrexone-Induced Reduction of Drinking and Craving. Biol. Psychiatry 86, 864–871 (2019).

    Google Scholar 

  67. Volpicelli, J. R., Clay, K. L., Watson, N. T. & Volpicelli, L. A. Naltrexone and the Treatment of Alcohol Dependence. Alcohol Health Res. World 18, 272–278 (1994).

    Google Scholar 

  68. Roberto, M., Gilpin, N. W. & Siggins, G. R. The central amygdala and alcohol: role of γ-aminobutyric acid, glutamate, and neuropeptides. Cold Spring Harb. Perspect. Med. 2, a012195 (2012).

    Google Scholar 

  69. Xiong, X. et al. Epigenomic dissection of Alzheimer’s disease pinpoints causal variants and reveals epigenome erosion. Cell 186, 4422–4437.e21 (2023).

    Google Scholar 

  70. Hsieh, P. N., Fan, L., Sweet, D. R. & Jain, M. K. The Krüppel-Like Factors and Control of Energy Homeostasis. Endocr. Rev. 40, 137–152 (2019).

    Google Scholar 

  71. Oishi, Y. & Manabe, I. Krüppel-Like Factors in Metabolic Homeostasis and Cardiometabolic Disease. Front Cardiovasc Med 5, 69 (2018).

    Google Scholar 

  72. MacDonald, M. et al. Divergent gene expression patterns in alcohol and opioid use disorders lead to consistent alterations in functional networks within the Dorsolateral Prefrontal Cortex. bioRxiv (2024) https://doi.org/10.1101/2024.04.29.591734.

  73. Lu, X.-J., Shi, Y., Chen, J.-L. & Ma, S. Krüppel-like factors in hepatocellular carcinoma. Tumour Biol 36, 533–541 (2015).

    Google Scholar 

  74. Green, N. C. et al. Integrated single-cell multiomic profiling of caudate nucleus suggests key mechanisms in alcohol use disorder. Nat. Commun. 16, 9070 (2025).

  75. Van Booven, D. et al. Alcohol use disorder causes global changes in splicing in the human brain. Transl. Psychiatry 11, 2 (2021).

    Google Scholar 

  76. Farris, S. P. et al. Applying the new genomics to alcohol dependence. Alcohol 49, 825–836 (2015).

    Google Scholar 

  77. van den Oord, E. J. C. G., Xie, L. Y., Zhao, M., Aberg, K. A. & Clark, S. L. A single-nucleus transcriptomics study of alcohol use disorder in the nucleus accumbens. Addict. Biol. 28, e13250 (2023).

    Google Scholar 

  78. Brenner, E. et al. Single cell transcriptome profiling of the human alcohol-dependent brain. Hum. Mol. Genet. 29, 1144–1153 (2020).

    Google Scholar 

  79. Mai, J. K., Majtanik, M. & Paxinos, G. Atlas of the Human Brain. (Elsevier Science, 2015).

  80. Ma, S. et al. Molecular and cellular evolution of the primate dorsolateral prefrontal cortex. Science 377, eabo7257 (2022).

    Google Scholar 

  81. Andrijevic, D. et al. Cellular recovery after prolonged warm ischaemia of the whole body. Nature 608, 405–412 (2022).

    Google Scholar 

  82. Franjic, D. et al. Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells. Neuron 110, 452–469.e14 (2022).

    Google Scholar 

  83. Franklin, K. B. J. & Paxinos, G. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates, Compact: The Coronal Plates and Diagrams. (Academic Press, 2019).

  84. Lim, M. M., Hammock, E. A. D. & Young, L. J. A method for acetylcholinesterase staining of brain sections previously processed for receptor autoradiography. Biotech. Histochem. 79, 11–16 (2004).

    Google Scholar 

  85. Maynard, K. R. et al. dotdotdot: an automated approach to quantify multiplex single molecule fluorescent in situ hybridization (smFISH) images in complex tissues. Nucleic Acids Res 48, e66 (2020).

    Google Scholar 

  86. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods 18, 1333–1341 (2021).

    Google Scholar 

  87. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. Cell Syst 8, 281–291.e9 (2019).

    Google Scholar 

  88. Xi, N. M. & Li, J. J. Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA Sequencing Data. Cell Syst 12, 176–194.e6 (2021).

    Google Scholar 

  89. Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).

    Google Scholar 

  90. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Google Scholar 

  91. Zhang, X., Jiang, W. & Zhao, H. Integration of Expression QTLs with fine mapping via SuSiE. medRxiv (2023) https://doi.org/10.1101/2023.10.03.23294486.

  92. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Google Scholar 

  93. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Google Scholar 

  94. Kent, W. J. et al. The human genome browser at UCSC. Genome Res 12, 996–1006 (2002).

    Google Scholar 

  95. Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res 32, D493–496 (2004).

    Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the National Center for PTSD Brain Bank, the University of Pittsburgh Brain Tissue Donation Program, and the NIH NeuroBioBank whose efforts led to the donation of the postmortem tissue used in these studies. We are also indebted to the generosity of the families of the decedents, who donated the brain tissue used in these studies. The research reported here was supported by the Department of Veterans Affairs, Veteran Health Administration, VISN1 Career Development Award, a Brain and Behavior Research Foundation Young Investigator Award, an American Foundation for Suicide Prevention Young Investigator Award, NIH grants R01AA031017 and DP1DA060811 to M.J.G., R01HG012572, R01DA063316 to J.Z. and P50AA012870 J.H.K. We thank the Keck Microarray Shared Resource (KMSR) and Yale Center for Genome Analysis (YCGA) at Yale university for their assistance with snMultiome sequencing. This work was supported with resources and use of facilities at the VA Connecticut Health Care System, West Haven, CT, the Durham VA Healthcare System, Durham NC, and the VA Boston Healthcare System, Boston, MA, USA and the National Center for PTSD, U.S. Department of Veterans Affairs. This work was funded in part by the State of Connecticut, Department of Mental Health and Addiction Services. The views expressed here are those of the authors and do not necessarily reflect the position or policy of the US Department of Veterans Affairs (VA) or the U.S. government or the views of the Department of Mental Health and Addiction Services or the State of Connecticut.

Author information

Author notes
  1. These authors contributed equally: Che Yu Lee, Ahyeon Hwang, Delaney McRiley.

Authors and Affiliations

  1. Department of Computer Science, University of California, Irvine, CA, USA

    Che Yu Lee, Ahyeon Hwang, Siwei Xu, Yi Dai, Ziheng Duan, Yutong Lei & Jing Zhang

  2. Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA, USA

    Ahyeon Hwang & Jing Zhang

  3. Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA

    Delaney McRiley, Jaywon Lee, Genevieve Thibodeau, Catharine Duman, Mario Skarica, Jensine Coudriet, Rosemarie Terwilliger, Alexa-Nicole Sliby, Jiawei Wang, Tuan Nguyen, Yujing Liu, Joel Gelernter, Ke Xu, Summer Thompson, John H. Krystal, Alicia Che, Jane R. Taylor & Matthew J. Girgenti

  4. Department of Biostatistics, Yale University School of Public Health, New Haven, CT, 06510, USA

    Xiangyu Zhang, Hongyu Li, Yingxin Lin, Hang Zhou & Hongyu Zhao

  5. Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA

    Jill R. Glausier & David A. Lewis

  6. Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA

    Paul E. Holtzheimer & Ke Xu

Authors
  1. Che Yu Lee
    View author publications

    Search author on:PubMed Google Scholar

  2. Ahyeon Hwang
    View author publications

    Search author on:PubMed Google Scholar

  3. Delaney McRiley
    View author publications

    Search author on:PubMed Google Scholar

  4. Jaywon Lee
    View author publications

    Search author on:PubMed Google Scholar

  5. Genevieve Thibodeau
    View author publications

    Search author on:PubMed Google Scholar

  6. Catharine Duman
    View author publications

    Search author on:PubMed Google Scholar

  7. Xiangyu Zhang
    View author publications

    Search author on:PubMed Google Scholar

  8. Mario Skarica
    View author publications

    Search author on:PubMed Google Scholar

  9. Jensine Coudriet
    View author publications

    Search author on:PubMed Google Scholar

  10. Siwei Xu
    View author publications

    Search author on:PubMed Google Scholar

  11. Rosemarie Terwilliger
    View author publications

    Search author on:PubMed Google Scholar

  12. Alexa-Nicole Sliby
    View author publications

    Search author on:PubMed Google Scholar

  13. Jiawei Wang
    View author publications

    Search author on:PubMed Google Scholar

  14. Tuan Nguyen
    View author publications

    Search author on:PubMed Google Scholar

  15. Yujing Liu
    View author publications

    Search author on:PubMed Google Scholar

  16. Hongyu Li
    View author publications

    Search author on:PubMed Google Scholar

  17. Yi Dai
    View author publications

    Search author on:PubMed Google Scholar

  18. Ziheng Duan
    View author publications

    Search author on:PubMed Google Scholar

  19. Yutong Lei
    View author publications

    Search author on:PubMed Google Scholar

  20. Yingxin Lin
    View author publications

    Search author on:PubMed Google Scholar

  21. Jill R. Glausier
    View author publications

    Search author on:PubMed Google Scholar

  22. David A. Lewis
    View author publications

    Search author on:PubMed Google Scholar

  23. Joel Gelernter
    View author publications

    Search author on:PubMed Google Scholar

  24. Paul E. Holtzheimer
    View author publications

    Search author on:PubMed Google Scholar

  25. Ke Xu
    View author publications

    Search author on:PubMed Google Scholar

  26. Hang Zhou
    View author publications

    Search author on:PubMed Google Scholar

  27. Hongyu Zhao
    View author publications

    Search author on:PubMed Google Scholar

  28. Summer Thompson
    View author publications

    Search author on:PubMed Google Scholar

  29. John H. Krystal
    View author publications

    Search author on:PubMed Google Scholar

  30. Alicia Che
    View author publications

    Search author on:PubMed Google Scholar

  31. Jane R. Taylor
    View author publications

    Search author on:PubMed Google Scholar

  32. Jing Zhang
    View author publications

    Search author on:PubMed Google Scholar

  33. Matthew J. Girgenti
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.L., J.Z., and M.J.G. conceived the project and designed the experiments. C.L. and M.J.G. wrote the manuscript. C.D., M.S., R.T., D.M., J.L., G.T., J.C., and A-N.S., generated all of the data. C.L., A.H., X.Z., S.X., J.W., T.N., Y.Liu., H.L., Y.D., Z.D., Y.Lei., Y. Lin, K.X., H.Z., J.Z., and M.J.G. oversaw all bioinformatics analyses. H.Zhou and J.G. contributed GWAS summary data and analysis. J.R.G., D.A.L, P.E.H., J.H.K., H.Zhou, S.T., J.T. and A.C. contributed to study design. All authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Jing Zhang or Matthew J. Girgenti.

Ethics declarations

Competing interests

J.H.K. has consulting agreements (less than US$10,000 per year) with the following: Aptinyx, Inc. Biogen, Idec, MA, Bionomics, Limited (Australia), Boehringer Ingelheim International, Epiodyne, Inc., EpiVario, Inc., Janssen Research & Development, Jazz Pharmaceuticals, Inc., Otsuka America Pharmaceutical, Inc., Spring Care, Inc., Sunovion Pharmaceuticals, Inc.; is the co-founder for Freedom Biosciences, Inc.; serves on the scientific advisory boards of Biohaven Pharmaceuticals, BioXcel Therapeutics, Inc. (Clinical Advisory Board), Cerevel Therapeutics, LLC, Delix Therapeutics, Inc., Eisai, Inc., EpiVario, Inc., Jazz Pharmaceuticals, Inc., Neumora Therapeutics, Inc., Neurocrine Biosciences, Inc., Novartis Pharmaceuticals Corporation, PsychoGenics, Inc., Takeda Pharmaceuticals, Tempero Bio, Inc., Terran Biosciences, Inc..; has stock options with Biohaven Pharmaceuticals Medical Sciences, Cartego Therapeutics, Damona Pharmaceuticals, Delix Therapeutics, EpiVario, Inc., Neumora Therapeutics, Inc., Rest Therapeutics, Tempero Bio, Inc., Terran Biosciences, Inc., Tetricus, Inc.; and is editor of Biological Psychiatry with income greater than $10,000. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1-37

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C.Y., Hwang, A., McRiley, D. et al. Central amygdala single-nucleus atlas reveals chromatin and gene transcription dynamics in human alcohol use disorder. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68351-1

Download citation

  • Received: 06 November 2024

  • Accepted: 05 January 2026

  • Published: 19 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68351-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing