Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Biochemical principles of miRNA targeting in flies
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 January 2026

Biochemical principles of miRNA targeting in flies

  • Joel Vega-Badillo  ORCID: orcid.org/0000-0002-7110-63771,
  • Phillip D. Zamore  ORCID: orcid.org/0000-0002-4505-96181,2 &
  • Karina Jouravleva  ORCID: orcid.org/0000-0003-2591-31163 

Nature Communications , Article number:  (2026) Cite this article

  • 2580 Accesses

  • 3 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • miRNAs
  • RNA

Abstract

MicroRNAs direct Argonaute proteins to repress complementary target mRNAs via mRNA degradation or translational inhibition. While mammalian miRNA targeting has been well studied, the principles by which Drosophila miRNAs bind their target RNAs remain to be fully characterized. Here, we use RNA Bind-n-Seq to systematically identify binding sites and measure their affinities for five highly expressed Drosophila miRNAs. Our results reveal a narrower range of binding site diversity in flies compared to mammals, with fly miRNAs favoring canonical seed-matched sites and exhibiting limited tolerance for imperfections within these sites. We also identified non-canonical site types, including nucleation-bulged and 3′-only sites, whose binding affinities are comparable to canonical sites. These findings establish a foundation for future computational models of Drosophila miRNA targeting, enabling predictions of regulatory outcomes in response to cellular signals, and advancing our understanding of miRNA-mediated regulation in flies.

Similar content being viewed by others

The biogenesis and regulation of animal microRNAs

Article 19 December 2024

Utilizing partial information decomposition to evaluate the complex interplay between microRNA and RNA-binding protein in regulating the shared target mRNA

Article Open access 26 September 2025

A unifying model for microRNA-guided silencing of messenger RNAs

Article Open access 08 December 2025

Data availability

The data supporting the findings of this study are available from the corresponding authors upon request. RBNS sequencing data have been deposited at National Center for Biotechnology Information Sequence Read Archive and are publicly available using accession number PRJNA1185003. The source data underlying Figs. 1c, 2b–c, and 5b, Supplementary Figs. 2b and 5c–d are provided as a Source Data file. Source data are provided with this paper.

Code availability

This study did not generate new code. To estimate KD values, we used the code previously published25 (https://figshare.com/articles/software/MicroRNA-binding_thermodynamics_and_kinetics_by_RNA_Bind-n-Seq/19180952).

References

  1. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    Google Scholar 

  2. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    Google Scholar 

  3. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    Google Scholar 

  4. Bazzini, A. A., Lee, M. T. & Giraldez, A. J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012).

    Google Scholar 

  5. Doench, J. G. siRNAs can function as miRNAs. Genes Dev. 17, 438–442 (2003).

    Google Scholar 

  6. Doench, J. G. & Sharp, P. A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004).

    Google Scholar 

  7. Hendrickson, D. G. et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 7, e1000238 (2009).

    Google Scholar 

  8. Cottrell, K. A., Szczesny, P. & Djuranovic, S. Translation efficiency is a determinant of the magnitude of miRNA-mediated repression. Sci. Rep. 7, 14884 (2017).

    Google Scholar 

  9. Chapat, C. et al. Cap-binding protein 4EHP effects translation silencing by microRNAs. Proc. Natl. Acad. Sci. USA 114, 5425–5430 (2017).

    Google Scholar 

  10. Bologna, N. G. & Voinnet, O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in arabidopsis. Annu. Rev. Plant Biol. 65, 473–503 (2014).

    Google Scholar 

  11. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    Google Scholar 

  12. Lai, E. C. Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363–364 (2002).

    Google Scholar 

  13. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Google Scholar 

  14. Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification of Drosophila microRNA targets. PLoS Biol. 1, E60 (2003).

    Google Scholar 

  15. Lai, E. C., Tam, B. & Rubin, G. M. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev. 19, 1067–1080 (2005).

    Google Scholar 

  16. Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005).

    Google Scholar 

  17. Vella, M. C., Choi, E. Y., Lin, S. Y., Reinert, K. & Slack, F. J. T. heC. elegans microRNA let−7 binds to imperfect let-7 complementary sites from the lin-41 3’UTR. Genes Dev. 18, 132–137 (2004).

    Google Scholar 

  18. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Google Scholar 

  19. Broughton, J. P., Lovci, M. T., Huang, J. L., Yeo, G. W. & Pasquinelli, A. E. Pairing beyond the seed supports MicroRNA targeting specificity. Mol. Cell 64, 320–333 (2016).

    Google Scholar 

  20. Brancati, G. & Großhans, H. An interplay of miRNA abundance and target site architecture determines miRNA activity and specificity. Nucleic Acids Res. 46, 3259–3269 (2018).

    Google Scholar 

  21. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Google Scholar 

  22. Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    Google Scholar 

  23. Becker, W. R. et al. High-throughput analysis reveals rules for target RNA binding and cleavage by AGO2. Mol. Cell 75, 741–755.e11 (2019).

    Google Scholar 

  24. McGeary, S. E. et al. The biochemical basis of microRNA targeting efficacy. Science 366, eaav1741 (2019).

    Google Scholar 

  25. Jouravleva, K., Vega-Badillo, J. & Zamore, P. D. Principles and pitfalls of high-throughput analysis of microRNA-binding thermodynamics and kinetics by RNA bind-n-seq. Cell Rep. Methods 2, 100185 (2022).

    Google Scholar 

  26. Shin, C. et al. Expanding the microRNA targeting code: functional sites with centered pairing. Mol. Cell 38, 789–802 (2010).

    Google Scholar 

  27. Agarwal, V., Subtelny, A. O., Thiru, P., Ulitsky, I. & Bartel, D. P. Predicting microRNA targeting efficacy in Drosophila. Genome Biol. 19, 152 (2018).

    Google Scholar 

  28. Kim, D. et al. General rules for functional microRNA targeting. Nat. Genet. 48, 1517–1526 (2016).

    Google Scholar 

  29. Schnall-Levin, M., Zhao, Y., Perrimon, N. & Berger, B. Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3’UTRs. Proc. Natl. Acad. Sci. USA 107, 15751–15756 (2010).

    Google Scholar 

  30. Lee, R. C., Feinbaum, R. L. & Ambros, V. T. heC. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Google Scholar 

  31. Hipfner, D. R., Weigmann, K. & Cohen, S. M. The bantam gene regulates Drosophila growth. Genetics 161, 1527–1537 (2002).

    Google Scholar 

  32. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003).

    Google Scholar 

  33. Kadener, S. et al. A role for microRNAs in the Drosophila circadian clock. Genes Dev. 23, 2179–2191 (2009).

    Google Scholar 

  34. Zhao, C., Sun, G., Li, S. & Shi, Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat. Struct. Mol. Biol. 16, 365–371 (2009).

    Google Scholar 

  35. McGeary, S. E., Bisaria, N., Pham, T. M., Wang, P. Y. & Bartel, D. P. MicroRNA 3’-compensatory pairing occurs through two binding modes, with affinity shaped by nucleotide identity and position. eLife 11, e69803 (2022).

    Google Scholar 

  36. Lambert, N. et al. RNA bind-n-seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. Mol. Cell 54, 887–900 (2014).

    Google Scholar 

  37. Gainetdinov, I. et al. Relaxed targeting rules help PIWI proteins silence transposons. Nature 619, 394–402 (2023).

    Google Scholar 

  38. Van Nostrand, E. L. et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020).

    Google Scholar 

  39. Jarmoskaite, I. et al. A quantitative and predictive model for rna binding by human pumilio proteins. Mol. Cell 74, 966–981.e18 (2019).

    Google Scholar 

  40. Zamore, P. D., Bartel, D. P., Lehmann, R. & Williamson, J. R. The PUMILIO−RNA interaction:  a single RNA-binding domain monomer recognizes a bipartite target sequence. Biochemistry 38, 596–604 (1999).

    Google Scholar 

  41. Sadée, C. et al. A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4. Nat. Commun. 13, 4522 (2022).

    Google Scholar 

  42. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let−7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    Google Scholar 

  43. Sempere, L. F., Dubrovsky, E. B., Dubrovskaya, V. A., Berger, E. M. & Ambros, V. The expression of the let−7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster. Dev. Biol. 244, 170–179 (2002).

    Google Scholar 

  44. Sokol, N. S., Xu, P., Jan, Y. N. & Ambros, V. Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev. 22, 1591–1596 (2008).

    Google Scholar 

  45. Chen, W. et al. Regulation of Drosophila circadian rhythms by miRNA let-7 is mediated by a regulatory cycle. Nat. Commun. 5, 5549 (2014).

    Google Scholar 

  46. Iovino, N., Pane, A. & Gaul, U. miR-184 has multiple roles in Drosophila female germline development. Dev. Cell 17, 123–133 (2009).

    Google Scholar 

  47. Li, P. et al. Localized expression pattern of miR-184 in Drosophila. Mol. Biol. Rep. 38, 355–358 (2011).

    Google Scholar 

  48. Leaman, D. et al. Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121, 1097–1108 (2005).

    Google Scholar 

  49. Weng, R. & Cohen, S. M. Drosophila miR-124 regulates neuroblast proliferation through its target anachronism. Development 139, 1427–1434 (2012).

    Google Scholar 

  50. Garaulet, D. L. et al. miR-124 regulates diverse aspects of rhythmic behavior in drosophila. J. Neurosci. 36, 3414–3421 (2016).

    Google Scholar 

  51. Wee, L. M., Flores-Jasso, C. F., Salomon, W. E. & Zamore, P. D. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151, 1055–1067 (2012).

    Google Scholar 

  52. Schirle, N. T., Sheu-Gruttadauria, J. & MacRae, I. J. Structural basis for microRNA targeting. Science 346, 608–613 (2014).

    Google Scholar 

  53. Salomon, W. E., Jolly, S. M., Moore, M. J., Zamore, P. D. & Serebrov, V. Single-molecule imaging reveals that argonaute reshapes the binding properties of its nucleic acid guides. Cell 162, 84–95 (2015).

    Google Scholar 

  54. Sheu-Gruttadauria, J., Xiao, Y., Gebert, L. F. & MacRae, I. J. Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. EMBO J. 38, e101153 (2019).

    Google Scholar 

  55. Chi, S. W., Hannon, G. J. & Darnell, R. B. An alternative mode of microRNA target recognition. Nat. Struct. Mol. Biol. 19, 321–327 (2012).

    Google Scholar 

  56. Zykovich, A., Korf, I. & Segal, D. J. Bind-n-Seq: high-throughput analysis of in vitro protein-DNA interactions using massively parallel sequencing. Nucleic Acids Res. 37, e151 (2009).

    Google Scholar 

  57. Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004).

    Google Scholar 

  58. Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M. C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev. 19, 2837–2848 (2005).

    Google Scholar 

  59. Förstemann, K., Horwich, M. D., Wee, L., Tomari, Y. & Zamore, P. D. Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell 130, 287–297 (2007).

    Google Scholar 

  60. Grubbs, R. D. Intracellular magnesium and magnesium buffering. Biometals 15, 251–259 (2002).

    Google Scholar 

  61. Nielsen, C. B. et al. Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13, 1894–1910 (2007).

    Google Scholar 

  62. Tafer, H. et al. The impact of target site accessibility on the design of effective siRNAs. Nat. Biotechnol. 26, 578–583 (2008).

    Google Scholar 

  63. Wessels, H. H. et al. Global identification of functional microRNA-mRNA interactions in Drosophila. Nat. Commun. 10, 1626 (2019).

    Google Scholar 

  64. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Google Scholar 

  65. Flores-Jasso, C. F., Salomon, W. E. & Zamore, P. D. Rapid and specific purification of Argonaute-small RNA complexes from crude cell lysates. RNA 19, 271–279 (2013).

    Google Scholar 

  66. Haley, B. In vitro analysis of RNA interference in Drosophila melanogaster. Methods 30, 330–336 (2003).

    Google Scholar 

  67. Pall, G. S. & Hamilton, A. J. Improved northern blot method for enhanced detection of small RNA. Nat. Protoc. 3, 1077–1084 (2008).

    Google Scholar 

  68. Rambo, R. P. & Doudna, J. A. Assembly of an active group II intron− maturase complex by protein dimerization. Biochemistry 43, 6486–6497 (2004).

  69. Lin, S. -y & Riggs, A. D. Lac represser binding to non-operator DNA: detailed studies and a comparison of equilibrium and rate competition methods. J. Mol. Biol. 72, 671–690 (1972).

    Google Scholar 

  70. Weeks, K. M. & Crothers, D. M. RNA binding assays for Tat-derived peptides: implications for specificity. Biochemistry 31, 10281–10287 (1992).

    Google Scholar 

  71. Vega-Badillo, J., Zamore, P. D. & Jouravleva, K. Protocol to measure protein-RNA binding using double filter-binding assays followed by phosphorimaging or high-throughput sequencing. STAR Protoc. 4, 102336 (2023).

    Google Scholar 

  72. Smolarsky, M. & Tal, M. Novel method for measuring polyuridylic acid binding to ribosomes. Biochim. Biophys. Acta 199, 447–452 (1970).

    Google Scholar 

  73. Wong, I. & Lohman, T. M. A double-filter method for nitrocellulose-filter binding: application to protein-nucleic acid interactions. Proc. Natl. Acad. Sci. USA 90, 5428–5432 (1993).

    Google Scholar 

  74. Hall, M. H., Wang, P. Y., Pham, T. M. & Bartel, D. P. Functional microRNA targeting without seed pairing. Nucleic Acids Res. 53, gkaf1018 (2025).

Download references

Acknowledgements

We thank members of the Zamore and Jouravleva laboratories for critical comments on the manuscript. We thank the KYOTO Drosophila Stock Center (Drosophila Genomics and Genetic Resources, Kyoto Institute of Technology) for providing fly stocks used in this study. This work was supported in part by National Institutes of Health grant R35 GM136275 to P.D.Z. and by ATIP-Avenir funding (CNRS Biology) to K.J.

Author information

Authors and Affiliations

  1. RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA

    Joel Vega-Badillo & Phillip D. Zamore

  2. Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA

    Phillip D. Zamore

  3. Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France

    Karina Jouravleva

Authors
  1. Joel Vega-Badillo
    View author publications

    Search author on:PubMed Google Scholar

  2. Phillip D. Zamore
    View author publications

    Search author on:PubMed Google Scholar

  3. Karina Jouravleva
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, J.V.B, K.J., and P.D.Z.; Methodology, J.V.B. and K.J.; Investigation, J.V.B. and K.J.; Formal analysis, K.J. and J.V.B.; Writing—original draft, K.J. and J.V.B.; Writing—review and editing, K.J., J.V.B., and P.D.Z.; Supervision, K.J. and P.D.Z.; Funding acquisition, K.J. and P.D.Z.

Corresponding authors

Correspondence to Joel Vega-Badillo or Karina Jouravleva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega-Badillo, J., Zamore, P.D. & Jouravleva, K. Biochemical principles of miRNA targeting in flies. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68360-0

Download citation

  • Received: 16 November 2024

  • Accepted: 05 January 2026

  • Published: 20 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68360-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing