Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Versican expression from lung fibroblasts suppresses pulmonary fibrosis
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 January 2026

Versican expression from lung fibroblasts suppresses pulmonary fibrosis

  • Paraskevi Kanellopoulou  ORCID: orcid.org/0009-0003-5464-58321,
  • Ilianna Barbayianni1,
  • Dionysios Fanidis  ORCID: orcid.org/0000-0002-4053-20901,
  • Martina Samiotaki1,
  • Eleni Katsiouli1,
  • Dimitris Nastos1,
  • Stefanos Smyrniotis  ORCID: orcid.org/0009-0006-1210-68591,
  • Maria Shira1,
  • Apostolos Galaris1,
  • Vagelis Rinotas  ORCID: orcid.org/0000-0002-2390-31361,
  • Sofia Grammenoudi1,
  • Christiana Magkrioti  ORCID: orcid.org/0009-0006-8940-23221,
  • Ioannis Tomos2,
  • Africa Martinez Blanco3,
  • Ioanna Tremi4,
  • Ioannis Vamvakaris5,
  • Nuria Gavara3,
  • Sophia Havaki  ORCID: orcid.org/0000-0003-0660-21794,
  • Vassilis Gorgoulis  ORCID: orcid.org/0000-0001-9001-41124,6,7,8,9,
  • Hideto Watanabe  ORCID: orcid.org/0000-0001-5291-069610 &
  • …
  • Vassilis Aidinis  ORCID: orcid.org/0000-0001-9531-77291 

Nature Communications , Article number:  (2026) Cite this article

  • 2628 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Experimental models of disease
  • Extracellular matrix
  • Podosomes
  • Proteomics

Abstract

The activation and accumulation of lung fibroblasts, leading to excessive ECM deposition, is a pathogenic hallmark of Idiopathic Pulmonary Fibrosis, a lethal and currently untreatable disease. In this report, increased expression of Versican, a multifunctional ECM proteoglycan, is detected in both human and mouse pulmonary fibrosis, mainly in monocytic cells and fibroblasts. Ubiquitous genetic reduction of Versican expression in mice promotes collagen expression and polymerisation, alters pulmonary ECM composition and structure, and exacerbates pulmonary fibrosis, delaying its resolution. Moreover, the decrease in Versican in the ECM and the ensuing reorganisation stimulate Tenascin-C expression from fibroblasts, which is further shown to be a potent Toll-like receptor 4-dependent podosome inducer, promoting ECM invasion. Thus, fibroblast-expressed Versican regulates the underlying ECM composition and structure and suppresses autologous podosome formation, limiting ECM invasion and pulmonary fibrosis.

Similar content being viewed by others

Adipose-derived mesenchymal stem cell therapy for reverse bleomycin-induced experimental pulmonary fibrosis

Article Open access 14 August 2023

Lung extracellular matrix modulates KRT5+ basal cell activity in pulmonary fibrosis

Article Open access 27 September 2023

Lung endothelial cells regulate pulmonary fibrosis through FOXF1/R-Ras signaling

Article Open access 04 May 2023

Data availability

The scRNA-seq data utilised in this study are listed in Supplementary Table 2, including accession numbers and hyperlinks. The raw MS proteomics data generated in this study have been deposited in the ProteomeXchange Consortium via the PRIDE92 partner repository under the dataset identifiers PXD060583 and PXD063546. Source data are provided with this paper.

References

  1. Raghu, G. et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. Am. J. Respir. Crit. Care Med. 205, e18–e47 (2022).

    Google Scholar 

  2. Martinez, F. J. et al. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Prim. 3, 17074 (2017).

    Google Scholar 

  3. Upagupta, C., Shimbori, C., Alsilmi, R. & Kolb, M. Matrix abnormalities in pulmonary fibrosis. Eur Respir Rev. 27, 180033 (2018).

  4. Barbayianni, I. et al. SRC and TKS5 mediated podosome formation in fibroblasts promotes extracellular matrix invasion and pulmonary fibrosis. Nat. Commun. 14, 5882 (2023).

    Google Scholar 

  5. Tomos, I., Kanellopoulou, P., Nastos, D. & Aidinis, V. Pharmacological targeting of ECM homeostasis, fibroblast activation, and invasion for the treatment of pulmonary fibrosis. Expert Opin Ther Targets. 29, 43–57 (2025).

  6. Mouw, J. K., Ou, G. & Weaver, V. M. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15, 771–785 (2014).

    Google Scholar 

  7. Karamanos, N. K. et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 288, 6850–6912 (2021).

    Google Scholar 

  8. Tomos, I. P. et al. Extracellular matrix remodeling in idiopathic pulmonary fibrosis. It is the ‘bed’ that counts and not ‘the sleepers’. Expert Rev. Respir. Med. 11, 299–309 (2017).

    Google Scholar 

  9. Kanchanawong, P. & Calderwood, D. A. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nat. Rev. Mol. Cell Biol. 24, 142–161 (2023).

    Google Scholar 

  10. Theocharis, A. D., Skandalis, S. S., Gialeli, C. & Karamanos, N. K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 97, 4–27 (2016).

    Google Scholar 

  11. Wight, T. N. et al. Versican—a critical extracellular matrix regulator of immunity and inflammation. Front. Immunol. 11, 512 (2020).

  12. Karamanos, N. K. et al. Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics. Chem. Rev. 118, 9152–9232 (2018).

    Google Scholar 

  13. Tang, F. et al. Defining the versican interactome in lung health and disease. Am. J. Physiol. Cell Physiol. 323, C249–c276 (2022).

    Google Scholar 

  14. Andersson-Sjoland, A. et al. Versican in inflammation and tissue remodeling: the impact on lung disorders. Glycobiology 25, 243–251 (2015).

    Google Scholar 

  15. Chang, W. et al. Plasma versican and plasma exosomal versican as potential diagnostic markers for non-small cell lung cancer. Respir. Res. 24, 140 (2023).

    Google Scholar 

  16. Magkrioti, C. et al. The autotaxin—lysophosphatidic acid axis promotes lung carcinogenesis. Cancer Res. 78, 3634–3644 (2018).

    Google Scholar 

  17. Bensadoun, E. S., Burke, A. K., Hogg, J. C. & Roberts, C. R. Proteoglycan deposition in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 154, 1819–1828 (1996).

    Google Scholar 

  18. Roberts, C. R. & Burke, A. K. Synthesis of the proteoglycan versican in pulmonary fibrosis. Int. J. Exp. Pathol. 81, A21–A22 (2000).

    Google Scholar 

  19. Tashiro, J. et al. Exploring animal models that resemble idiopathic pulmonary fibrosis. Front. Med. 4, 118 (2017).

    Google Scholar 

  20. Mouratis, M. A. & Aidinis, V. Modeling pulmonary fibrosis with bleomycin. Curr. Opin. Pulm. Med. 17, 355–361 (2011).

    Google Scholar 

  21. Barbayianni, I., Ninou, I., Tzouvelekis, A. & Aidinis, V. Bleomycin revisited: a direct comparison of the intratracheal micro-spraying and the oropharyngeal aspiration routes of bleomycin administration in mice. Front. Med. 5, 269 (2018).

    Google Scholar 

  22. Fanidis, D., Moulos, P. & Aidinis, V. Fibromine is a multi-omics database and mining tool for target discovery in pulmonary fibrosis. Sci. Rep. 11, 21712 (2021).

    Google Scholar 

  23. Herrera, J. et al. Registration of the extracellular matrix components constituting the fibroblastic focus in idiopathic pulmonary fibrosis. JCI Insight. 4, e125185 (2019).

  24. Zannikou, M. et al. MAP3K8 regulates Cox-2-mediated prostaglandin E(2) production in the lung and suppresses pulmonary inflammation and fibrosis. J. Immunol. 206, 607–620 (2021).

    Google Scholar 

  25. Galaris, A. et al. Increased lipocalin-2 expression in pulmonary inflammation and fibrosis. Front. Med. 10, 1195501 (2023).

    Google Scholar 

  26. DeQuach, J. A. et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One 5, e13039 (2010).

    Google Scholar 

  27. Kawai, N. et al. Induction of lung-like cells from mouse embryonic stem cells by decellularized lung matrix. Biochem Biophys. Rep. 15, 33–38 (2018).

    Google Scholar 

  28. Choocheep, K. et al. Versican facilitates chondrocyte differentiation and regulates joint morphogenesis. J. Biol. Chem. 285, 21114–21125 (2010).

    Google Scholar 

  29. Segnani, C. et al. Histochemical detection of collagen fibers by sirius red/fast green is more sensitive than van gieson or sirius red alone in normal and inflamed rat colon. PLoS One 10, e0144630 (2015).

    Google Scholar 

  30. Júnior, C. et al. Multi-step extracellular matrix remodelling and stiffening in the development of idiopathic pulmonary fibrosis. Int. J. Mol. Sci. 24, 1708 (2023).

  31. Batasheva, S., Kotova, S., Frolova, A. & Fakhrullin, R. Atomic force microscopy for characterization of decellularized extracellular matrix (dECM) based materials. Sci. Technol. Adv. Mater. 25, 2421739 (2024).

    Google Scholar 

  32. Mjaatvedt, C. H., Yamamura, H., Capehart, A. A., Turner, D. & Markwald, R. R. The Cspg2 gene, disrupted in the hdf mutant, is required for right cardiac chamber and endocardial cushion formation. Dev. Biol. 202, 56–66 (1998).

    Google Scholar 

  33. Landolt, R. M., Vaughan, L., Winterhalter, K. H. & Zimmermann, D. R. Versican is selectively expressed in embryonic tissues that act as barriers to neural crest cell migration and axon outgrowth. Development 121, 2303–2312 (1995).

    Google Scholar 

  34. Hatano, S. et al. Versican/PG-M is essential for ventricular septal formation subsequent to cardiac atrioventricular cushion development. Glycobiology 22, 1268–1277 (2012).

    Google Scholar 

  35. Midwood, K. S., Chiquet, M., Tucker, R. P. & Orend, G. Tenascin-C at a glance. J. Cell Sci. 129, 4321–4327 (2016).

    Google Scholar 

  36. Estany, S. et al. Lung fibrotic tenascin-C upregulation is associated with other extracellular matrix proteins and induced by TGFβ1. BMC Pulm. Med. 14, 120 (2014).

    Google Scholar 

  37. Du, P. et al. Human lung fibroblast-derived matrix facilitates vascular morphogenesis in 3D environment and enhances skin wound healing. Acta Biomater. 54, 333–344 (2017).

    Google Scholar 

  38. Zhang, X., Flores, L. R., Keeling, M. C., Sliogeryte, K. & Gavara, N. Ezrin Phosphorylation at T567 modulates cell migration, mechanical properties, and cytoskeletal organization. Int. J. Mol. Sci. 21, 435 (2020).

    Google Scholar 

  39. Sansilvestri Morel, P. et al. Procollagen C-proteinase enhancer-1 (PCPE-1) deficiency in mice reduces liver fibrosis but not NASH progression. PLoS One 17, e0263828 (2022).

    Google Scholar 

  40. Chen, D. et al. Versican binds collagen via its G3 domain and regulates the organization and mechanics of collagenous matrices. J. Biol. Chem. 300, 107968 (2024).

    Google Scholar 

  41. Perissinotto, D. et al. Avian neural crest cell migration is diversely regulated by the two major hyaluronan-binding proteoglycans PG-M/versican and aggrecan. Development 127, 2823–2842 (2000).

    Google Scholar 

  42. Sand, J. M. B. et al. A serological biomarker of versican degradation is associated with mortality following acute exacerbations of idiopathic interstitial pneumonia. Respir. Res. 19, 82 (2018).

    Google Scholar 

  43. Watanabe, H. Versican and versikine: the dynamism of the extracellular matrix. Proteoglycan Res. 1, e13 (2023).

    Google Scholar 

  44. Gaggar, A. & Weathington, N. Bioactive extracellular matrix fragments in lung health and disease. J. Clin. Invest. 126, 3176–3184 (2016).

    Google Scholar 

  45. Maher, T. M. et al. Biomarkers of extracellular matrix turnover in patients with idiopathic pulmonary fibrosis given nintedanib (INMARK study): a randomised, placebo-controlled study. Lancet Respir. Med. 7, 771–779 (2019).

    Google Scholar 

  46. Li, Y. et al. Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. J. Exp. Med. 208, 1459–1471 (2011).

    Google Scholar 

  47. Ahangari, F. et al. Saracatinib, a selective Src kinase inhibitor, blocks fibrotic responses in preclinical models of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 206, 1463–1479 (2022).

  48. Jaeger, B. et al. Airway basal cells show a dedifferentiated KRT17(high) phenotype and promote fibrosis in idiopathic pulmonary fibrosis. Nat. Commun. 13, 5637 (2022).

    Google Scholar 

  49. Adams, T. S. et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci. Adv. 6, eaba1983 (2020).

    Google Scholar 

  50. Kellar, G. G. et al. Loss of versican and production of hyaluronan in lung epithelial cells are associated with airway inflammation during RSV infection. J. Biol. Chem. 296, 100076 (2021).

  51. Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    Google Scholar 

  52. Chang, M. Y. et al. Monocyte-to-macrophage differentiation: synthesis and secretion of a complex extracellular matrix. J. Biol. Chem. 287, 14122–14135 (2012).

    Google Scholar 

  53. Chang, M. Y. et al. Versican is produced by Trif- and type I interferon-dependent signaling in macrophages and contributes to fine control of innate immunity in lungs. Am. J. Physiol. Lung Cell Mol. Physiol. 313, L1069–l1086 (2017).

    Google Scholar 

  54. Chang, M. Y. et al. A rapid increase in macrophage-derived versican and hyaluronan in infectious lung disease. Matrix Biol. 34, 1–12 (2014).

    Google Scholar 

  55. Uhlin-Hansen, L. et al. Proteoglycan metabolism in normal and inflammatory human macrophages. Blood 82, 2880–2889 (1993).

    Google Scholar 

  56. Pappas, A. G. et al. Versican modulates tumor-associated macrophage properties to stimulate mesothelioma growth. Oncoimmunology 8, e1537427 (2019).

    Google Scholar 

  57. Papadas, A. et al. Emerging roles for tumor stroma in antigen presentation and anti-cancer immunity. Biochem. Soc. Trans. 51, 2017–2028 (2023).

    Google Scholar 

  58. Hirani, P. et al. Versican associates with tumor immune phenotype and limits T-cell trafficking via chondroitin sulfate. Cancer Res. Commun. 4, 970–985 (2024).

    Google Scholar 

  59. Emmerich, P. B. et al. Stromal versican accumulation and proteolysis regulate the infiltration of CD8(+) T cells in breast cancer. Cancers 17, 1435 (2025).

  60. Younesi, F. S., Miller, A. E., Barker, T. H., Rossi, F. M. V. & Hinz, B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev. Mol. Cell Biol. 25, 617–638 (2024).

    Google Scholar 

  61. Herrera, J., Henke, C. A. & Bitterman, P. B. Extracellular matrix as a driver of progressive fibrosis. J. Clin. Invest. 128, 45–53 (2018).

    Google Scholar 

  62. Nho, R. S., Ballinger, M. N., Rojas, M. M., Ghadiali, S. N. & Horowitz, J. C. Biomechanical force and cellular stiffness in lung fibrosis. Am. J. Pathol. 192, 750–761 (2022).

    Google Scholar 

  63. Artym, V. V. et al. Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network. J. Cell Biol. 208, 331–350 (2015).

    Google Scholar 

  64. Juin, A. et al. Discoidin domain receptor 1 controls linear invadosome formation via a Cdc42-Tuba pathway. J. Cell Biol. 207, 517–533 (2014).

    Google Scholar 

  65. Zhao, P. et al. The CD44s splice isoform is a central mediator for invadopodia activity. J. Cell Sci. 129, 1355–1365 (2016).

    Google Scholar 

  66. Tucić, M., Stamenković, V. & Andjus, P. The extracellular matrix glycoprotein tenascin C and adult neurogenesis. Front. Cell Dev. Biol. 9, 674199 (2021).

  67. Lowy, C. M. & Oskarsson, T. Tenascin C in metastasis: a view from the invasive front. Cell Adhes. Migr. 9, 112–124 (2015).

    Google Scholar 

  68. Tucker, R. P. & Degen, M. Revisiting the tenascins: Exploitable as cancer targets? Front. Oncol. 12, 908247 (2022).

  69. Selman, M., Pardo, A. & Kaminski, N. Idiopathic pulmonary fibrosis: aberrant recapitulation of developmental programs. PLoS Med. 5, e62 (2008).

    Google Scholar 

  70. Carey, W. A., Taylor, G. D., Dean, W. B. & Bristow, J. D. Tenascin-C deficiency attenuates TGF-ß-mediated fibrosis following murine lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 299, L785–L793 (2010).

    Google Scholar 

  71. Bhattacharyya, S. et al. Tenascin-C drives persistence of organ fibrosis. Nat. Commun. 7, 11703 (2016).

    Google Scholar 

  72. Hawkins, A. G. et al. Microenvironmental factors drive tenascin C and Src cooperation to promote invadopodia formation in ewing sarcoma. Neoplasia 21, 1063–1072 (2019).

    Google Scholar 

  73. Midwood, K. et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat. Med. 15, 774–780 (2009).

    Google Scholar 

  74. Bhattacharyya, S. et al. TLR4-dependent fibroblast activation drives persistent organ fibrosis in skin and lung. JCI Insight. 3, e98850 (2018).

  75. Penke, L. R. & Peters-Golden, M. Molecular determinants of mesenchymal cell activation in fibroproliferative diseases. Cell Mol. Life Sci. 76, 4179–4201 (2019).

    Google Scholar 

  76. Atabai, K. et al. Mfge8 diminishes the severity of tissue fibrosis in mice by binding and targeting collagen for uptake by macrophages. J. Clin. Invest. 119, 3713–3722 (2009).

    Google Scholar 

  77. Ghanem, M. et al. FGF21 signaling exerts anti-fibrotic properties during pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 211, 486–498 (2024).

  78. Barnes, J. W. et al. Role of fibroblast growth factor 23 and klotho cross talk in idiopathic pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 317, L141–L154 (2019).

    Google Scholar 

  79. Carthy, J. M. et al. Versican V1 overexpression induces a myofibroblast-like phenotype in cultured fibroblasts. PLoS One 10, e0133056 (2015).

  80. Spella, M. et al. Club cells form lung adenocarcinomas and maintain the alveoli of adult mice. Elife. 8, e45571 (2019).

  81. Flores, L. R., Keeling, M. C., Zhang, X., Sliogeryte, K. & Gavara, N. Lifeact-TagGFP2 alters F-actin organization, cellular morphology and biophysical behaviour. Sci. Rep. 9, 3241 (2019).

    Google Scholar 

  82. Narciso, M. et al. Lung micrometastases display ECM depletion and softening while macrometastases are 30-fold stiffer and enriched in fibronectin. Cancers 15, 2404 (2023).

    Google Scholar 

  83. Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 14, 68–85 (2019).

    Google Scholar 

  84. Papadopoulos, G. et al. Integrated omics analysis for characterization of the contribution of high fructose corn syrup to non-alcoholic fatty liver disease in obesity. Metabolism 144, 155552 (2023).

    Google Scholar 

  85. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Google Scholar 

  86. Keene, D. R. & Tufa, S. F. Ultrastructural analysis of the extracellular matrix. Methods Cell Biol. 143, 1–39 (2018).

    Google Scholar 

  87. Havaki, S. et al. Altered expression pattern of integrin alphavbeta3 correlates with actin cytoskeleton in primary cultures of human breast cancer. Cancer Cell Int. 7, 16 (2007).

    Google Scholar 

  88. Logotheti, S. et al. in Oncogene-Induced Senescence: Methods and Protocols (eds Vassilis G. Gorgoulis, Maria Cavinato, & Konstantinos Evangelou) 83–112 (Springer, 2025).

  89. Tremi, I. et al. A guide for using transmission electron microscopy for studying the radiosensitizing effects of gold nanoparticles in vitro. Nanomaterials 11, 859 (2021).

    Google Scholar 

  90. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

    Google Scholar 

  91. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. ClusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287 (2012).

    Google Scholar 

  92. Perez-Riverol, Y. et al. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 53, D543–d553 (2025).

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Hellenic Foundation for Research and Innovation (HFRI) under the “2nd Call for HFRI Research Projects to support Faculty Members & Researchers” (#3565 to V.A.). S.H., I.T., and V.G. were supported by an HFRI grant (#2906 to V.G.) under the “1st Call for HFRI Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment”. The funders had no role in the study’s design, data collection, analysis, or interpretation, nor in the writing of the manuscript or the decision to publish the results.

Author information

Authors and Affiliations

  1. Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece

    Paraskevi Kanellopoulou, Ilianna Barbayianni, Dionysios Fanidis, Martina Samiotaki, Eleni Katsiouli, Dimitris Nastos, Stefanos Smyrniotis, Maria Shira, Apostolos Galaris, Vagelis Rinotas, Sofia Grammenoudi, Christiana Magkrioti & Vassilis Aidinis

  2. 5th Department of Respiratory Medicine, Sotiria Chest Diseases Hospital, Athens, Greece

    Ioannis Tomos

  3. Biophysics and Bioengineering Unit, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain

    Africa Martinez Blanco & Nuria Gavara

  4. Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece

    Ioanna Tremi, Sophia Havaki & Vassilis Gorgoulis

  5. First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece

    Ioannis Vamvakaris

  6. Biomedical Research Foundation, Academy of Athens, Athens, Greece

    Vassilis Gorgoulis

  7. Ninewells Hospital and Medical School, University of Dundee, Dundee, UK

    Vassilis Gorgoulis

  8. Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK

    Vassilis Gorgoulis

  9. Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK

    Vassilis Gorgoulis

  10. Institute for Molecular Science of Medicine, Aichi Medical University, Aichi, Japan

    Hideto Watanabe

Authors
  1. Paraskevi Kanellopoulou
    View author publications

    Search author on:PubMed Google Scholar

  2. Ilianna Barbayianni
    View author publications

    Search author on:PubMed Google Scholar

  3. Dionysios Fanidis
    View author publications

    Search author on:PubMed Google Scholar

  4. Martina Samiotaki
    View author publications

    Search author on:PubMed Google Scholar

  5. Eleni Katsiouli
    View author publications

    Search author on:PubMed Google Scholar

  6. Dimitris Nastos
    View author publications

    Search author on:PubMed Google Scholar

  7. Stefanos Smyrniotis
    View author publications

    Search author on:PubMed Google Scholar

  8. Maria Shira
    View author publications

    Search author on:PubMed Google Scholar

  9. Apostolos Galaris
    View author publications

    Search author on:PubMed Google Scholar

  10. Vagelis Rinotas
    View author publications

    Search author on:PubMed Google Scholar

  11. Sofia Grammenoudi
    View author publications

    Search author on:PubMed Google Scholar

  12. Christiana Magkrioti
    View author publications

    Search author on:PubMed Google Scholar

  13. Ioannis Tomos
    View author publications

    Search author on:PubMed Google Scholar

  14. Africa Martinez Blanco
    View author publications

    Search author on:PubMed Google Scholar

  15. Ioanna Tremi
    View author publications

    Search author on:PubMed Google Scholar

  16. Ioannis Vamvakaris
    View author publications

    Search author on:PubMed Google Scholar

  17. Nuria Gavara
    View author publications

    Search author on:PubMed Google Scholar

  18. Sophia Havaki
    View author publications

    Search author on:PubMed Google Scholar

  19. Vassilis Gorgoulis
    View author publications

    Search author on:PubMed Google Scholar

  20. Hideto Watanabe
    View author publications

    Search author on:PubMed Google Scholar

  21. Vassilis Aidinis
    View author publications

    Search author on:PubMed Google Scholar

Contributions

V.A. conceptualised, supervised and funded the study. P.K. performed most of the experiments presented, assisted by I.B., E.K., D.N., S.S., M.S., and C.M. A.G. and S.G. performed FACS analyses. V.R. performed and analysed μCT. D.F. analysed transcriptomics data. M.Sa. performed and analysed MS proteomics. A.M.B. and N.G. performed and analysed AFM and F-actin image analysis. I.T., S.H., and V.G. performed and analysed TEM. I.T. and I.V. provided human lung samples and analysed related IHC. H.W. provided resources and co-evaluated results. P.K. and V.A. wrote the manuscript, which was then critically read and edited by all authors.

Corresponding author

Correspondence to Vassilis Aidinis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Fuquan Yang, Libang Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary File

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplemenary Data 6

Supplementary Data 7

Supplementary Movie 1.

Supplementary Movie 2.

Supplementary Movie 3.

Reporting summary

Transparent Peer Review file

Source data

source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanellopoulou, P., Barbayianni, I., Fanidis, D. et al. Versican expression from lung fibroblasts suppresses pulmonary fibrosis. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68377-5

Download citation

  • Received: 09 April 2025

  • Accepted: 02 January 2026

  • Published: 21 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68377-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research