Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Guardian ubiquitin E3 ligases target cancer-associated APOBEC3 deaminases for degradation to promote human genome integrity
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 19 January 2026

Guardian ubiquitin E3 ligases target cancer-associated APOBEC3 deaminases for degradation to promote human genome integrity

  • Irene Schwartz1,2,3 na1,
  • Valentina Budroni  ORCID: orcid.org/0000-0002-6606-20311,2,3 na1,
  • Mathilde Meyenberg1,4,5,
  • Zuzana Hodakova  ORCID: orcid.org/0000-0002-2599-03336,
  • Harald Hornegger1,3,7,
  • Kathrin Hacker1,2,
  • Siegfried Schwartz8,
  • Daniel B. Grabarczyk  ORCID: orcid.org/0000-0003-0216-70856,
  • Julian F. Ehrmann  ORCID: orcid.org/0000-0003-2518-56813,6 nAff11 nAff12,
  • Sara Scinicariello1,2,3,
  • David Haselbach  ORCID: orcid.org/0000-0002-5276-56336,9,
  • Jörg Menche  ORCID: orcid.org/0000-0002-1583-64041,2,4,5,10,
  • Tim Clausen  ORCID: orcid.org/0000-0003-1582-69246,9,
  • G. Elif Karagöz1,7 &
  • …
  • Gijs A. Versteeg  ORCID: orcid.org/0000-0002-6150-21651,2 

Nature Communications , Article number:  (2026) Cite this article

  • 1397 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ubiquitin ligases
  • Ubiquitylation

Abstract

APOBEC family members play crucial roles in antiviral restriction. However, certain APOBEC3 (A3) proteins drive harmful hypermutation in humans, contributing to cancer. The cancer-associated A3 proteins are capable of transiting from the cytosol to the nucleus, where they can cause genome mutations. Here, we uncover a specific set of cellular pathways that protect genomic DNA from the major cancer-associated A3 proteins. Through genetic and proteomic screening, we identify UBR4, UBR5, and HUWE1 as key ubiquitin E3 ligases marking cancer-associated A3B and A3H-I for degradation, thereby limiting A3-driven hypermutation. Mechanistically, UBR5 and HUWE1 recognize A3s in the absence of their RNA binding partner, thus promoting proteasomal degradation of APOBEC3 protein that is not engaged in its antiviral cellular function. Depletion or mutation of the E3 ligases in cells and human cancer samples increases A3-driven genome mutagenesis. Our findings reveal that UBR4, UBR5, and HUWE1 are crucial factors in a ubiquitination cascade that maintains human genome stability.

Similar content being viewed by others

Mechanisms of APOBEC3 mutagenesis in human cancer cells

Article Open access 20 July 2022

Structure-guided inhibition of the cancer DNA-mutating enzyme APOBEC3A

Article Open access 11 October 2023

Ubiquitin specific peptidase 3: an emerging deubiquitinase that regulates physiology and diseases

Article Open access 21 May 2024

Data availability

Cancer genetic analysis data are available from the ICGC Data portal and through granted access of the TCGA Research Network (https://www.cancer.gov/ccg/research/genome-sequencing/tcga). The mass-spectrometry data generated in this study are available in Supplementary Data 2 and have been deposited to the ProteomeXchange consortium via the PRIDE partner repository with the accession code PXD051267

Public cancer whole-genome sequencing data from ICGC are available through the ICGC Data Portal (public) (https://dcc.icgc.org/releases/PCAWG). The NCBI dbGaP data are under restricted access as per NIH policy, access can be obtained through (https://dbgap.ncbi.nlm.nih.gov/home/).The genetic screen data generated in this study are provided as Supplementary Data 1 and in the Source Data file. Source data are provided with this paper.

Code availability

Data and code pertaining to cancer genome analysis and sequence context analysis can be found on GitHub (https://github.com/menchelab/apobex)154.

References

  1. Refsland, E. W. & Harris, R. S. The APOBEC3 family of retroelement restriction factors. Curr. Top. Microbiol. Immunol. 371, 1–27 (2013).

    Google Scholar 

  2. Sheehy, A. M., Gaddis, N. C., Choi, J. D. & Malim, M. H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).

    Google Scholar 

  3. Hultquist, J. F. et al. Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1. J. Virol. 85, 11220–11234 (2011).

    Google Scholar 

  4. Harris, R. S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809 (2003).

    Google Scholar 

  5. Lecossier, D., Bouchonnet, F., Clavel, F. & Hance, A. J. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300, 1112 (2003).

    Google Scholar 

  6. Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103 (2003).

    Google Scholar 

  7. Zhang, H. et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424, 94–98 (2003).

    Google Scholar 

  8. Rogozin, I. B. et al. Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. Nat. Immunol. 8, 647–656 (2007).

    Google Scholar 

  9. Conticello, S. G. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 9, 229 (2008).

    Google Scholar 

  10. Wang, X. et al. Analysis of human APOBEC3H haplotypes and anti-human immunodeficiency virus type 1 activity. J. Virol. 85, 3142–3152 (2011).

    Google Scholar 

  11. Harari, A., Ooms, M., Mulder, L. C. F. & Simon, V. Polymorphisms and splice variants influence the antiretroviral activity of human APOBEC3H. J. Virol. 83, 295–303 (2009).

    Google Scholar 

  12. OhAinle, M., Kerns, J. A., Li, M. M. H., Malik, H. S. & Emerman, M. Antiretroelement activity of APOBEC3H was lost twice in recent human evolution. Cell Host Microbe 4, 249–259 (2008).

    Google Scholar 

  13. Ooms, M., Majdak, S., Seibert, C. W., Harari, A. & Simon, V. The localization of APOBEC3H variants in HIV-1 virions determines their antiviral activity. J. Virol. 84, 7961–7969 (2010).

    Google Scholar 

  14. Li, M. M. H. & Emerman, M. Polymorphism in human APOBEC3H affects a phenotype dominant for subcellular localization and antiviral activity. J. Virol. 85, 8197–8207 (2011).

    Google Scholar 

  15. DeWeerd, R. A. et al. Prospectively defined patterns of APOBEC3A mutagenesis are prevalent in human cancers. Cell Rep. 38, 110555 (2022).

    Google Scholar 

  16. Law, E. K. et al. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. J. Exp. Med 217, e20200261 (2020).

    Google Scholar 

  17. Petljak, M. et al. Mechanisms of APOBEC3 mutagenesis in human cancer cells. Nature 607, 799–807 (2022).

    Google Scholar 

  18. Starrett, G. J. et al. The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis. Nat. Commun. 7, 12918 (2016).

    Google Scholar 

  19. Henderson, S. & Fenton, T. APOBEC3 genes: retroviral restriction factors to cancer drivers. Trends Mol. Med. 21, 274–284 (2015).

    Google Scholar 

  20. Jalili, P. et al. Quantification of ongoing APOBEC3A activity in tumor cells by monitoring RNA editing at hotspots. Nat. Commun. 11, 2971 (2020).

    Google Scholar 

  21. Petljak, M. et al. Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC mutagenesis. Cell 176, 1282–1294.e20 (2019).

    Google Scholar 

  22. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    Google Scholar 

  23. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54 (2016).

    Google Scholar 

  24. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Google Scholar 

  25. Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013).

    Google Scholar 

  26. de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).

    Google Scholar 

  27. Morganella, S. et al. The topography of mutational processes in breast cancer genomes. Nat. Commun. 7, 11383 (2016).

    Google Scholar 

  28. Carpenter, M. A. et al. Mutational impact of APOBEC3A and APOBEC3B in a human cell line and comparisons to breast cancer. PLoS Genet. 19, e1011043 (2023).

    Google Scholar 

  29. Bergstrom, E. N. et al. Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA. Nature 602, 510–517 (2022).

    Google Scholar 

  30. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    Google Scholar 

  31. Dananberg, A., Striepen, J., Rozowsky, J. S. & Petljak, M. APOBEC mutagenesis in cancer development and susceptibility. Cancers 16, 374 (2024).

    Google Scholar 

  32. Hix, M. A., Wong, L., Flath, B., Chelico, L. & Cisneros, G. A. Single-nucleotide polymorphism of the DNA cytosine deaminase APOBEC3H haplotype I leads to enzyme destabilization and correlates with lung cancer. NAR Cancer 2, zcaa023 (2020).

    Google Scholar 

  33. Sanchez, A. et al. Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and shape tumor mutational landscapes. Nat. Commun. 15, 2370 (2024).

    Google Scholar 

  34. Burns, M. B. et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494, 366–370 (2013).

    Google Scholar 

  35. Burns, M. B., Temiz, N. A. & Harris, R. S. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat. Genet. 45, 977–983 (2013).

    Google Scholar 

  36. Apolonia, L. et al. Promiscuous RNA binding ensures effective encapsidation of APOBEC3 proteins by HIV-1. PLoS Pathog. 11, e1004609 (2015).

    Google Scholar 

  37. York, A., Kutluay, S. B., Errando, M. & Bieniasz, P. D. The RNA binding specificity of human APOBEC3 proteins resembles that of HIV-1 nucleocapsid. PLoS Pathog. 12, e1005833 (2016).

    Google Scholar 

  38. Iwatani, Y., Takeuchi, H., Strebel, K. & Levin, J. G. Biochemical activities of highly purified, catalytically active human APOBEC3G: correlation with antiviral effect. J. Virol. 80, 5992–6002 (2006).

    Google Scholar 

  39. Yang, H., Kim, K., Li, S., Pacheco, J. & Chen, X. S. Structural basis of sequence-specific RNA recognition by the antiviral factor APOBEC3G. Nat. Commun. 13, 7498 (2022).

    Google Scholar 

  40. Dang, Y. et al. Human cytidine deaminase APOBEC3H restricts HIV-1 replication. J. Biol. Chem. 283, 11606–11614 (2008).

    Google Scholar 

  41. Shaban, N. M. et al. The antiviral and cancer genomic DNA deaminase APOBEC3H Is regulated by an RNA-mediated dimerization mechanism. Mol. Cell 69, 75–86.e9 (2018).

    Google Scholar 

  42. Refsland, E. W. et al. Natural polymorphisms in human APOBEC3H and HIV-1 Vif combine in primary T lymphocytes to affect viral G-to-A mutation levels and infectivity. PLoS Genet. 10, e1004761 (2014).

    Google Scholar 

  43. Lackey, L. et al. APOBEC3B and AID have similar nuclear import mechanisms. J. Mol. Biol. 419, 301–314 (2012).

    Google Scholar 

  44. Salamango, D. J. et al. APOBEC3H subcellular localization determinants define zipcode for targeting HIV-1 for restriction. Mol. Cell Biol. 38, e00356-18 (2018).

    Google Scholar 

  45. Chesarino, N. M. & Emerman, M. Polymorphisms in human APOBEC3H differentially regulate ubiquitination and antiviral activity. Viruses 12, 378 (2020).

    Google Scholar 

  46. de Almeida, M. et al. AKIRIN2 controls the nuclear import of proteasomes in vertebrates. Nature 599, 491–496 (2021).

    Google Scholar 

  47. Vunjak, M. et al. SPOP targets the immune transcription factor IRF1 for proteasomal degradation (Cell Biology) https://doi.org/10.1101/2022.10.10.511567 (2022).

  48. Scinicariello, S. et al. HUWE1 controls tristetraprolin proteasomal degradation by regulating its phosphorylation. Elife 12, e83159 (2023).

    Google Scholar 

  49. Chan, K. et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat. Genet. 47, 1067–1072 (2015).

    Google Scholar 

  50. Jang, G. M. et al. Protein interaction map of APOBEC3 enzyme family reveals deamination-independent role in cellular function. Mol. Cell Proteom. 100755. https://doi.org/10.1016/j.mcpro.2024.100755 (2024).

  51. Gallois-Montbrun, S. et al. Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J. Virol. 81, 2165–2178 (2007).

    Google Scholar 

  52. Izumi, T. et al. Mov10 and APOBEC3G localization to processing bodies is not required for virion incorporation and antiviral activity. J. Virol. 87, 11047–11062 (2013).

    Google Scholar 

  53. Phalora, P. K., Sherer, N. M., Wolinsky, S. M., Swanson, C. M. & Malim, M. H. HIV-1 replication and APOBEC3 antiviral activity are not regulated by P bodies. J. Virol. 86, 11712–11724 (2012).

    Google Scholar 

  54. Kozak, S. L., Marin, M., Rose, K. M., Bystrom, C. & Kabat, D. The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J. Biol. Chem. 281, 29105–29119 (2006).

    Google Scholar 

  55. Ito, F. et al. Understanding the structure, multimerization, subcellular localization and mc selectivity of a genomic mutator and anti-HIV factor APOBEC3H. Sci. Rep. 8, 3763 (2018).

    Google Scholar 

  56. Zhen, A., Du, J., Zhou, X., Xiong, Y. & Yu, X.-F. Reduced APOBEC3H variant anti-viral activities are associated with altered RNA binding activities. PLoS ONE 7, e38771 (2012).

    Google Scholar 

  57. Polevoda, B. et al. DNA mutagenic activity and capacity for HIV-1 restriction of the cytidine deaminase APOBEC3G depend on whether DNA or RNA binds to tyrosine 315. J. Biol. Chem. 292, 8642–8656 (2017).

    Google Scholar 

  58. Xiao, X., Li, S.-X., Yang, H. & Chen, X. S. Crystal structures of APOBEC3G N-domain alone and its complex with DNA. Nat. Commun. 7, 12193 (2016).

    Google Scholar 

  59. Huthoff, H. & Malim, M. H. Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation. J. Virol. 81, 3807–3815 (2007).

    Google Scholar 

  60. Huthoff, H., Autore, F., Gallois-Montbrun, S., Fraternali, F. & Malim, M. H. RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1. PLoS Pathog. 5, e1000330 (2009).

    Google Scholar 

  61. Matsuoka, T. et al. Structural basis of chimpanzee APOBEC3H dimerization stabilized by double-stranded RNA. Nucleic Acids Res. 46, 10368–10379 (2018).

    Google Scholar 

  62. Bohn, J. A. et al. APOBEC3H structure reveals an unusual mechanism of interaction with duplex RNA. Nat. Commun. 8, 1021 (2017).

    Google Scholar 

  63. Grabarczyk, D. B. et al. Architecture of the UBR4 complex, a giant E4 ligase central to eukaryotic protein quality control. Science 389, 909–914 (2025).

  64. Yang, Z. et al. Molecular basis of SIFI activity in the integrated stress response. Nature 643, 1117–1126 (2025).

  65. Shulkina, A. et al. TRIM52 maintains cellular fitness and is under tight proteolytic control by multiple giant E3 ligases. Nat. Commun. 16, 3894 (2025).

    Google Scholar 

  66. Carrillo Roas, S. et al. Convergence of orphan quality control pathways at a ubiquitin chain-elongating ligase. Mol. Cell 85, 815–828.e10 (2025).

    Google Scholar 

  67. Yau, R. G. et al. Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control. Cell 171, 918–933.e20 (2017).

    Google Scholar 

  68. Perner, J. et al. The mutREAD method detects mutational signatures from low quantities of cancer DNA. Nat. Commun. 11, 3166 (2020).

    Google Scholar 

  69. Cipolla, L. et al. UBR5 interacts with the replication fork and protects DNA replication from DNA polymerase η toxicity. Nucleic Acids Res. 47, 11268–11283 (2019).

    Google Scholar 

  70. Gudjonsson, T. et al. TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell 150, 697–709 (2012).

    Google Scholar 

  71. Zhang, T., Cronshaw, J., Kanu, N., Snijders, A. P. & Behrens, A. UBR5-mediated ubiquitination of ATMIN is required for ionizing radiation-induced ATM signaling and function. Proc. Natl. Acad. Sci. USA 111, 12091–12096 (2014).

    Google Scholar 

  72. de Vivo, A. et al. The OTUD5-UBR5 complex regulates FACT-mediated transcription at damaged chromatin. Nucleic Acids Res 47, 729–746 (2019).

    Google Scholar 

  73. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, Aaltonen. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

  74. Butler, K. & Banday, A. R. APOBEC3-mediated mutagenesis in cancer: causes, clinical significance and therapeutic potential. J. Hematol. Oncol. 16, 31 (2023).

    Google Scholar 

  75. Durfee, C. et al. Human APOBEC3B promotes tumor development in vivo including signature mutations and metastases. Cell Rep. Med. 4, 101211 (2023).

    Google Scholar 

  76. McCann, J. L. et al. APOBEC3B regulates R-loops and promotes transcription-associated mutagenesis in cancer. Nat. Genet. 55, 1721–1734 (2023).

    Google Scholar 

  77. Middlebrooks, C. D. et al. Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors. Nat. Genet. 48, 1330–1338 (2016).

    Google Scholar 

  78. Law, E. K. et al. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Sci. Adv. 2, e1601737 (2016).

    Google Scholar 

  79. Stopak, K. S., Chiu, Y.-L., Kropp, J., Grant, R. M. & Greene, W. C. Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J. Biol. Chem. 282, 3539–3546 (2007).

    Google Scholar 

  80. Kreisberg, J. F., Yonemoto, W. & Greene, W. C. Endogenous factors enhance HIV infection of tissue naive CD4 T cells by stimulating high molecular mass APOBEC3G complex formation. J. Exp. Med. 203, 865–870 (2006).

    Google Scholar 

  81. Soros, V. B., Yonemoto, W. & Greene, W. C. Newly synthesized APOBEC3G is incorporated into HIV virions, inhibited by HIV RNA, and subsequently activated by RNase H. PLoS Pathog. 3, e15 (2007).

    Google Scholar 

  82. Friew, Y. N., Boyko, V., Hu, W.-S. & Pathak, V. K. Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag: APOBEC3G multimerization is dependent on its association with RNA. Retrovirology 6, 56 (2009).

    Google Scholar 

  83. Khan, M. A. et al. Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 virions. Retrovirology 4, 48 (2007).

    Google Scholar 

  84. Wittkopp, C. J., Adolph, M. B., Wu, L. I., Chelico, L. & Emerman, M. A single nucleotide polymorphism in human APOBEC3C enhances restriction of lentiviruses. PLoS Pathog. 12, e1005865 (2016).

    Google Scholar 

  85. Monda, J. K. et al. HAPSTR1 localizes HUWE1 to the nucleus to limit stress signaling pathways. Cell Reports 42 https://doi.org/10.1016/j.celrep.2023.112496 (2023).

  86. Xu, Y., Anderson, D. E. & Ye, Y. The HECT domain ubiquitin ligase HUWE1 targets unassembled soluble proteins for degradation. Cell Discov. 2, 1–16 (2016).

    Google Scholar 

  87. Tripathi, S. et al. Meta- and orthogonal integration of influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe 18, 723–735 (2015).

    Google Scholar 

  88. Kim, S. T. et al. The N-recognin UBR4 of the N-end rule pathway is required for neurogenesis and homeostasis of cell surface proteins. PLoS ONE 13, e0202260 (2018).

    Google Scholar 

  89. Chen, L. J. et al. HUWE1 plays important role in mouse preimplantation embryo development and the dysregulation is associated with poor embryo development in humans. Sci. Rep. 6, 37928 (2016).

    Google Scholar 

  90. Shearer, R. F. et al. The E3 ubiquitin ligase UBR5 regulates centriolar satellite stability and primary cilia. MBoC 29, 1542–1554 (2018).

    Google Scholar 

  91. Sanchez, A. et al. BMI1–UBR5 axis regulates transcriptional repression at damaged chromatin. Proc. Natl. Acad. Sci. USA 113, 11243–11248 (2016).

    Google Scholar 

  92. Xiang, G. et al. UBR5 targets tumor suppressor CDC73 proteolytically to promote aggressive breast cancer. Cell Death Dis. 13, 1–14 (2022).

    Google Scholar 

  93. Esnault, C., Millet, J., Schwartz, O. & Heidmann, T. Dual inhibitory effects of APOBEC family proteins on retrotransposition of mammalian endogenous retroviruses. Nucleic Acids Res. 34, 1522–1531 (2006).

    Google Scholar 

  94. Nakaya, Y., Stavrou, S., Blouch, K., Tattersall, P. & Ross, S. R. In vivo examination of mouse APOBEC3- and human APOBEC3A- and APOBEC3G-mediated restriction of parvovirus and herpesvirus infection in mouse models. J. Virol. 90, 8005–8012 (2016).

    Google Scholar 

  95. Moraes, S. N. et al. Evidence linking APOBEC3B genesis and evolution of innate immune antagonism by gamma-herpesvirus ribonucleotide reductases. Elife 11, e83893 (2022).

    Google Scholar 

  96. Cheng, A. Z. et al. Epstein-barr virus BORF2 inhibits cellular APOBEC3B to preserve viral genome integrity. Nat. Microbiol. 4, 78–88 (2019).

    Google Scholar 

  97. Zhang, Z. et al. Stably expressed APOBEC3H forms a barrier for cross-species transmission of simian immunodeficiency virus of chimpanzee to humans. PLoS Pathog. 13, e1006746 (2017).

    Google Scholar 

  98. Chen, Y. et al. APOBEC3B edits HBV DNA and inhibits HBV replication during reverse transcription. Antivir. Res. 149, 16–25 (2018).

    Google Scholar 

  99. Bandarra, S. et al. APOBEC3B potently restricts HIV-2 but Not HIV-1 in a Vif-dependent manner. J. Virol. 95, e0117021 (2021).

    Google Scholar 

  100. Mark, K. G. et al. Orphan quality control shapes network dynamics and gene expression. Cell 186, 3460–3475.e23 (2023).

    Google Scholar 

  101. Tsai, J. M. et al. UBR5 forms ligand-dependent complexes on chromatin to regulate nuclear hormone receptor stability. Mol. Cell 83, 2753–2767.e10 (2023).

    Google Scholar 

  102. Kaisari, S. et al. Role of ubiquitin-protein ligase UBR5 in the disassembly of mitotic checkpoint complexes. Proc. Natl. Acad. Sci. USA 119, e2121478119 (2022).

    Google Scholar 

  103. Hehl, L. A. et al. Structural snapshots along K48-linked ubiquitin chain formation by the HECT E3 UBR5. Nat. Chem. Biol. 20, 190–200 (2024).

    Google Scholar 

  104. Hodáková, Z. et al. Cryo-EM structure of the chain-elongating E3 ubiquitin ligase UBR5. EMBO J. 42, e113348 (2023).

    Google Scholar 

  105. Wang, F. et al. Structure of the human UBR5 E3 ubiquitin ligase. Structure 31, 541–552.e4 (2023).

    Google Scholar 

  106. Heidelberger, J. B. et al. Proteomic profiling of VCP substrates links VCP to K6-linked ubiquitylation and c-Myc function. EMBO Rep. 19, e44754 (2018).

    Google Scholar 

  107. Hong, J. H. et al. KCMF1 (potassium channel modulatory factor 1) Links RAD6 to UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4) and lysosome-mediated degradation. Mol. Cell Proteom. 14, 674–685 (2015).

    Google Scholar 

  108. Haakonsen, D. L. et al. Stress response silencing by an E3 ligase mutated in neurodegeneration. Nature 626, 874–880 (2024).

    Google Scholar 

  109. Leto, D. E. et al. Genome-wide CRISPR analysis identifies substrate-specific conjugation modules in ER-associated degradation. Mol. Cell 73, 377–389.e11 (2019).

    Google Scholar 

  110. Cassidy, K. B., Bang, S., Kurokawa, M. & Gerber, S. A. Direct regulation of Chk1 protein stability by E3 ubiquitin ligase HUWE1. FEBS J. 287, 1985–1999 (2020).

    Google Scholar 

  111. Kunz, V. et al. Targeting of the E3 ubiquitin-protein ligase HUWE1 impairs DNA repair capacity and tumor growth in preclinical multiple myeloma models. Sci. Rep. 10, 18419 (2020).

    Google Scholar 

  112. Thompson, J. W. et al. Quantitative Lys-ϵ-Gly-Gly (diGly) proteomics coupled with inducible RNAi reveals ubiquitin-mediated proteolysis of DNA damage-inducible transcript 4 (DDIT4) by the E3 ligase HUWE1. J. Biol. Chem. 289, 28942–28955 (2014).

    Google Scholar 

  113. D’Arca, D. et al. Huwe1 ubiquitin ligase is essential to synchronize neuronal and glial differentiation in the developing cerebellum. Proc. Natl. Acad. Sci. USA 107, 5875–5880 (2010).

    Google Scholar 

  114. Poulsen, E. G. et al. HUWE1 and TRIP12 collaborate in degradation of ubiquitin-fusion proteins and misframed ubiquitin. PLoS ONE 7, e50548 (2012).

    Google Scholar 

  115. Hegazi, S. et al. UBR4/POE facilitates secretory trafficking to maintain circadian clock synchrony. Nat. Commun. 13, 1594 (2022).

    Google Scholar 

  116. Hunt, L. C. et al. A key role for the ubiquitin ligase UBR4 in myofiber hypertrophy in drosophila and mice. Cell Rep. 28, 1268–1281.e6 (2019).

    Google Scholar 

  117. Jeong, D. E. et al. Insights into the recognition mechanism in the UBR box of UBR4 for its specific substrates. Commun. Biol. 6, 1214 (2023).

    Google Scholar 

  118. Rinschen, M. M. et al. The ubiquitin ligase Ubr4 controls stability of podocin/MEC-2 supercomplexes. Hum. Mol. Genet. 25, 1328–1344 (2016).

    Google Scholar 

  119. Hunkeler, M. et al. Solenoid architecture of HUWE1 contributes to ligase activity and substrate recognition. Mol. Cell 81, 3468–3480.e7 (2021).

    Google Scholar 

  120. Grabarczyk, D. B. et al. HUWE1 employs a giant substrate-binding ring to feed and regulate its HECT E3 domain. Nat. Chem. Biol. 17, 1084–1092 (2021).

    Google Scholar 

  121. Ohtake, F., Tsuchiya, H., Saeki, Y. & Tanaka, K. K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. Proc. Natl. Acad. Sci. USA 115, E1401–E1408 (2018).

    Google Scholar 

  122. Manasanch, E. E. & Orlowski, R. Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 14, 417–433 (2017).

    Google Scholar 

  123. Venkatesan, S. et al. Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann. Oncol. 29, 563–572 (2018).

    Google Scholar 

  124. Coxon, M. et al. An impaired ubiquitin-proteasome system increases APOBEC3A abundance. NAR Cancer 5, zcad058 (2023).

    Google Scholar 

  125. Shlyakhtenko, L. S., Lushnikov, A. J., Li, M., Harris, R. S. & Lyubchenko, Y. L. Interaction of APOBEC3A with DNA assessed by atomic force microscopy. PLoS ONE 9, e99354 (2014).

    Google Scholar 

  126. Chen, X. S. Insights into the structures and multimeric status of apobec proteins involved in viral restriction and other cellular functions. Viruses 13, 497 (2021).

    Google Scholar 

  127. Bohn, M.-F. et al. The ssDNA mutator APOBEC3A is regulated by cooperative dimerization. Structure 23, 903–911 (2015).

    Google Scholar 

  128. Aydin, H., Taylor, M. W. & Lee, J. E. Structure-guided analysis of the human APOBEC3-HIV restrictome. Structure 22, 668–684 (2014).

    Google Scholar 

  129. Michlits, G. et al. Multilayered VBC score predicts sgRNAs that efficiently generate loss-of-function alleles. Nat. Methods 17, 708–716 (2020).

    Google Scholar 

  130. Schwartz, I. et al. SPOP targets the immune transcription factor IRF1 for proteasomal degradation. Elife 12, e89951 (2023).

    Google Scholar 

  131. Hatziioannou, T., Cowan, S. & Bieniasz, P. D. Capsid-dependent and -independent postentry restriction of primate lentivirus tropism in rodent cells. J. Virol. 78, 1006–1011 (2004).

    Google Scholar 

  132. Yee, J. K., Friedmann, T. & Burns, J. C. Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol. 43, 99–112 (1994). Pt A.

    Google Scholar 

  133. Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    Google Scholar 

  134. Suzuki, K., Bose, P., Leong-Quong, R. Y., Fujita, D. J. & Riabowol, K. REAP: a two minute cell fractionation method. BMC Res. Notes 3, 294 (2010).

    Google Scholar 

  135. Artan, M., Hartl, M., Chen, W. & de Bono, M. Depletion of endogenously biotinylated carboxylases enhances the sensitivity of TurboID-mediated proximity labeling in Caenorhabditis elegans. J. Biol. Chem. 298, 102343 (2022).

  136. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Google Scholar 

  137. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Google Scholar 

  138. UniProt https://www.uniprot.org/.

  139. R: The R Project for Statistical Computing https://www.r-project.org/.

  140. Madern, M. Cassiopeia_LFQ (2023).

  141. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinforma. 14, 128 (2013).

    Google Scholar 

  142. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Google Scholar 

  143. Xie, Z. et al. Gene set knowledge discovery with EnrichR. Curr. Protoc. 1, e90 (2021).

    Google Scholar 

  144. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

    Google Scholar 

  145. Neuhold, J. et al. GoldenBac: a simple, highly efficient, and widely applicable system for construction of multi-gene expression vectors for use with the baculovirus expression vector system. BMC Biotechnol. 20, 26 (2020).

    Google Scholar 

  146. Ehrmann, J. F. et al. Structural basis for regulation of apoptosis and autophagy by the BIRC6/SMAC complex. Science 379, 1117–1123 (2023).

    Google Scholar 

  147. GATK https://gatk.broadinstitute.org/hc/en-us.

  148. Benjamin, D. et al. Calling somatic SNVs and indels with mutect2. Preprint at https://doi.org/10.1101/861054 (2019).

  149. MutationalPatterns (UMCU Genetics) (2024).

  150. Rozen, S. G. mSigAct. (2024).

  151. Cao, T., Li, Q., Huang, Y. & Li, A. plotnineSeqSuite: a Python package for visualizing sequence data using ggplot2 style. BMC Genomics 24, 585 (2023).

    Google Scholar 

  152. DCC Data Releases | ICGC Data Portal https://dcc.icgc.org/releases/PCAWG.

  153. The Cancer Genome Atlas Program (TCGA) - NCI. https://www.cancer.gov/ccg/research/genome-sequencing/tcga (2022).

  154. nerdgum. menchelab/apobex: Analysis Tools and Code for “Guardian ubiquitin E3 ligases target cancer-associated APOBEC3 deaminases for degradation to promote human genome integrity” (v1.0). Zenodo. https://doi.org/10.5281/zenodo.17953821 (2025).

Download references

Acknowledgements

Next Generation Sequencing analysis was performed by the Vienna Biocenter Core Facilities using the VBCF instrument pool. Proteomics analyses were performed by the Mass Spectrometry Facility at Max Perutz Labs using the VBCF instrument pool; we particularly thank Markus Hartl and WeiQiang Chen for their expert support. Flow cytometry analyses were performed at the BioOptics FACS Facility at the Max Perutz Labs using the Max Perutz Labs instrument pool; we particularly acknowledge Kitti Csalyi, Thomas Sauer, and Johanna Stranner for expert support. Microscopy was performed at the BioOptics Light Microscopy Facility at the Max Perutz Labs; we thank Thomas Peterbauer and Irmgard Fischer for their expert support and training. We thank Johannes Bock for establishing TurboID-related reagents and methodology, Robert Kurzbauer for purification of recombinant proteins, Anna Hakobyan for advice on cancer genome data analysis, Joanna Loizou for expert advice on DNA damage assays, Magdalini Nigritinou and Pablo Araguas-Rodriguez for experimental support, and Marcel Ooms for APOBEC expertise, discussions, and manuscript feedback. We are grateful to the ‘Signaling Mechanisms in Cellular Homeostasis’ doctoral program community, in particular Thomas Decker, Pavel Kovarik and their labs for their technical expertise and help. We thank Life Science Editors for editing services. The results shown here are in whole or part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga. This research was funded in whole, or in part, by the Austrian Science Fund (FWF) (grants 10.55776/P36572, 10.55776/P30415, 10.55776/P30231, 10.55776/P36945, 10.55776/F79, and 10.55776/W1261 to G.A.V.). For the purpose of open access, the author has applied a CC-BY public copyright license to any author accepted manuscript version arising from this submission. This work was funded by Austrian Science Fund Special Research Grant (FWF, SFB F79) and an ERC European Union’s Horizon 2020 research and innovation program grant (AdG 694978) to TC, and an Austrian Science Fund Special Research Grant (SFB grant F79) to GEK. VB and S.Sci are the recipients of a DOC fellowship of the Austrian Academy of Sciences. Research at the IMP is supported by Boehringer Ingelheim and the Austrian Research Promotion Agency (Headquarter grant FFG-852936). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author information

Author notes
  1. Julian F. Ehrmann

    Present address: Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA

  2. Julian F. Ehrmann

    Present address: Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA

  3. These authors contributed equally: Irene Schwartz, Valentina Budroni.

Authors and Affiliations

  1. Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr. -Bohrgasse 9, Vienna, Austria

    Irene Schwartz, Valentina Budroni, Mathilde Meyenberg, Harald Hornegger, Kathrin Hacker, Sara Scinicariello, Jörg Menche, G. Elif Karagöz & Gijs A. Versteeg

  2. University of Vienna, Center for Molecular Biology, Dr. -Bohrgasse 9, Vienna, Austria

    Irene Schwartz, Valentina Budroni, Kathrin Hacker, Sara Scinicariello, Jörg Menche & Gijs A. Versteeg

  3. Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria

    Irene Schwartz, Valentina Budroni, Harald Hornegger, Julian F. Ehrmann & Sara Scinicariello

  4. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria

    Mathilde Meyenberg & Jörg Menche

  5. Ludwig Boltzmann Institute for Network Medicine at the University of Vienna, Vienna, Austria

    Mathilde Meyenberg & Jörg Menche

  6. Research Institute of Molecular Pathology (IMP), Vienna BioCenter Campus (VBC), Vienna, Austria

    Zuzana Hodakova, Daniel B. Grabarczyk, Julian F. Ehrmann, David Haselbach & Tim Clausen

  7. Medical University of Vienna, Center for Medical Biochemistry, Dr. -Bohrgasse 9, Vienna, Austria

    Harald Hornegger & G. Elif Karagöz

  8. TU Wien, Faculty of Informatics, Vienna, Austria

    Siegfried Schwartz

  9. Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria

    David Haselbach & Tim Clausen

  10. Faculty of Mathematics, University of Vienna, Vienna, Austria

    Jörg Menche

Authors
  1. Irene Schwartz
    View author publications

    Search author on:PubMed Google Scholar

  2. Valentina Budroni
    View author publications

    Search author on:PubMed Google Scholar

  3. Mathilde Meyenberg
    View author publications

    Search author on:PubMed Google Scholar

  4. Zuzana Hodakova
    View author publications

    Search author on:PubMed Google Scholar

  5. Harald Hornegger
    View author publications

    Search author on:PubMed Google Scholar

  6. Kathrin Hacker
    View author publications

    Search author on:PubMed Google Scholar

  7. Siegfried Schwartz
    View author publications

    Search author on:PubMed Google Scholar

  8. Daniel B. Grabarczyk
    View author publications

    Search author on:PubMed Google Scholar

  9. Julian F. Ehrmann
    View author publications

    Search author on:PubMed Google Scholar

  10. Sara Scinicariello
    View author publications

    Search author on:PubMed Google Scholar

  11. David Haselbach
    View author publications

    Search author on:PubMed Google Scholar

  12. Jörg Menche
    View author publications

    Search author on:PubMed Google Scholar

  13. Tim Clausen
    View author publications

    Search author on:PubMed Google Scholar

  14. G. Elif Karagöz
    View author publications

    Search author on:PubMed Google Scholar

  15. Gijs A. Versteeg
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, G.A.V., I.S., V.B., D.H., T.C., and E.K.; Methodology, G.A.V., I.S., V.B., M.M., H.H., Z.H., D.B.G., and J.F.E.; Software, M.M, I.S., and S.S.; Validation, I.S. and V.B.; Formal analysis, I.S., V.B., and M.M.; Investigation, I.S., V.B., and K.H.; Resources, Z.H., D.B.G., J.F.E., and S.Sci.; Data Curation, I.S., V.B., M.M and G.A.V.; Writing—original draft, I.S., V.B. and G.A.V.; Writing—review and editing, I.S., V.B., M.M., H.H., K.H., S.S., Z.H., D.B.G., J.F.E., S.Sci, D.H., J.M., T.C., E.K., and G.A.V.; Visualization, I.S., V.B., and M.M.; Supervision G.A.V.; Project administration, G.A.V.; Funding acquisition, G.A.V.

Corresponding author

Correspondence to Gijs A. Versteeg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartz, I., Budroni, V., Meyenberg, M. et al. Guardian ubiquitin E3 ligases target cancer-associated APOBEC3 deaminases for degradation to promote human genome integrity. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68420-5

Download citation

  • Received: 29 October 2025

  • Accepted: 07 January 2026

  • Published: 19 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68420-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing