Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Leveraging glucan-induced trained immunity for the epigenetic and metabolic rewiring of macrophages to enhance colorectal cancer vaccine response
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 28 January 2026

Leveraging glucan-induced trained immunity for the epigenetic and metabolic rewiring of macrophages to enhance colorectal cancer vaccine response

  • Firas Hamdan  ORCID: orcid.org/0000-0003-4678-73821,2,3,4,
  • Sara Gandolfi  ORCID: orcid.org/0000-0001-6207-44334,5,6 na1,
  • Federica D’Alessio1,2,3,4 na1,
  • Yvonne Giannoula  ORCID: orcid.org/0000-0003-4265-54111,2,3,4,
  • Julia Kolikova4,7,
  • Manlio Fusciello  ORCID: orcid.org/0000-0002-7166-30181,2,3,4,
  • Elisa Zaghen  ORCID: orcid.org/0009-0006-6665-296X1,
  • Alessandra Napolano8,9,
  • Salvatore Russo1,2,3,4,
  • Ozan Izci1,
  • Paolo Bottega1,2,3,4,
  • Jacopo Chiaro  ORCID: orcid.org/0000-0001-6577-26911,2,3,4,
  • Kirsi-Marja Alanen  ORCID: orcid.org/0009-0002-0068-685010,
  • Gabriella Antignani1,2,3,4,
  • Michaela Feodoroff  ORCID: orcid.org/0000-0002-6094-98381,2,3,4,11,
  • Virpi Stigzelius1,2,3,12,
  • Milda Sakalauskaite1,2,3,4,
  • Janita Sandberg1,2,3,4,
  • Anni I. Nieminen  ORCID: orcid.org/0000-0001-8999-604013,
  • Nicola Zambrano8,9,
  • Ove Eriksson10,
  • Satu Mustjoki  ORCID: orcid.org/0000-0002-0816-82414,5,6,
  • Toni T. Seppälä4,7,14,15,
  • Mikaela Grönholm1,2,3,4 &
  • …
  • Vincenzo Cerullo  ORCID: orcid.org/0000-0003-4901-37961,2,3,4,9 

Nature Communications , Article number:  (2026) Cite this article

  • 21 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cancer immunotherapy
  • Colorectal cancer
  • Tumour immunology

Abstract

Colorectal cancer (CRC) remains refractory to most immunotherapies, with cancer vaccines failing due to an immunosuppressive tumor microenvironment. Here, we show that β-glucan–induced trained immunity overcomes these barriers by reprogramming macrophages through H3K4me3-dependent epigenetic modifications and metabolic rewiring. In female mice vaccinated with peptide-coated adenovirus-based vaccine PeptiCrad, training enhances glycolysis with creatine metabolism sustaining CXCL9/10 production, enabling macrophages to recruit NK cells via CXCR3. In turn, NK cells produce CCL5, driving cDC1 infiltration and antigen presentation, which together amplify effector memory CD8⁺ T cell responses. Moreover, with human peripheral blood mononuclear cells and CRC patient-derived organoids, trained macrophages boost NK migration, antigen-specific T cell activation, and tumor killing. These findings highlight trained immunity as a powerful adjuvant to reinvigorate colorectal cancer vaccination.

Similar content being viewed by others

Deep immunophenotyping reveals clinically distinct cellular states and ecosystems in large-scale colorectal cancer

Article Open access 27 July 2023

Claudin-7 deficiency induces metabolic reprogramming of neutrophils in the colorectal cancer microenvironment

Article Open access 16 October 2025

The immune microenvironment of colorectal cancer

Article 22 September 2025

Data availability

All scRNA sequencing data generated in this study have been deposited in the Genome Sequence Archive (GSA) under the accession number CRA024974 (https://ngdc.cncb.ac.cn/gsa/browse/CRA024974). The full dataset of the metabolomics data can be found in the Source Data (Supplementary Fig. 7A). The remaining data supporting the findings of this study are available within the Article or its Supplementary Information. Source data are provided with this paper.

References

  1. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).

    Google Scholar 

  2. Morgan, E. et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 72, 338–344 (2023).

    Google Scholar 

  3. Sung, H. et al. Colorectal cancer incidence trends in younger versus older adults: an analysis of population-based cancer registry data. Lancet Oncol. 26, 51–63 (2025).

    Google Scholar 

  4. Mariotto, A. B., Thompson, T. D., Johnson, C., Wu, X. C. & Pollack, L. A. Breast and colorectal cancer recurrence-free survival estimates in the US: modeling versus active data collection. Cancer Epidemiol. 85, 102370 (2023).

    Google Scholar 

  5. Yan, S. et al. Immune checkpoint inhibitors in colorectal cancer: limitation and challenges. Front Immunol. 15, 1403533 (2024).

    Google Scholar 

  6. Moreau, M. et al. A multicenter study evaluating efficacy of immune checkpoint inhibitors in advanced non-colorectal digestive cancers with microsatellite instability. Eur. J. Cancer 202, 959–8049 (2024).

    Google Scholar 

  7. André, T., Cohen, R. & Salem, M. E. Immune checkpoint blockade therapy in patients with colorectal cancer harboring microsatellite instability/mismatch repair deficiency in 2022. American Society of Clinical Oncology Educational Book 233–241 https://doi.org/10.1200/EDBK_349557 (2022).

  8. Yamaguchi, K. et al. Efficacy of pembrolizumab in microsatellite-stable, tumor mutational burden-high metastatic colorectal cancer: genomic signatures and clinical outcomes. ESMO Open 10, 104108 (2025).

  9. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Google Scholar 

  10. Le, D. T. et al. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409 (2017).

    Google Scholar 

  11. Hazama, S. et al. A phase ΙI study of five peptides combination with oxaliplatin-based chemotherapy as a first-line therapy for advanced colorectal cancer (FXV study). J. Transl. Med. 12, 108 (2014).

    Google Scholar 

  12. Murahashi, M. et al. Phase I clinical trial of a five-peptide cancer vaccine combined with cyclophosphamide in advanced solid tumors. Clin. Immunol. 166–167, 48–58 (2016).

    Google Scholar 

  13. Harris, J. E. et al. Adjuvant active specific immunotherapy for stage II and III colon cancer with an autologous tumor cell vaccine: Eastern Cooperative Oncology Group study E5283. J. Clin. Oncol. 18, 148–157 (2000).

    Google Scholar 

  14. Toh, H. C. et al. Clinical benefit of allogeneic melanoma cell lysate-pulsed autologous dendritic cell vaccine in mage-positive colorectal cancer patients. Clin. Cancer Res. 15, 7726–7736 (2009).

    Google Scholar 

  15. Saito, T. et al. Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat. Med. 22, 679–684 (2016).

  16. Loddenkemper, C. et al. In situ analysis of FOXP3+ regulatory T cells in human colorectal cancer. J. Transl. Med. 4, 1–8 (2006).

    Google Scholar 

  17. Bonertz, A. et al. Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J. Clin. Invest. 119, 3311 (2009).

    Google Scholar 

  18. Zhang, B. et al. Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. PLoS One 8, e57114 (2013).

    Google Scholar 

  19. Brandau, S., Moses, K. & Lang, S. The kinship of neutrophils and granulocytic myeloid-derived suppressor cells in cancer: cousins, siblings or twins?. Semin Cancer Biol. 23, 171–182 (2013).

    Google Scholar 

  20. Wang, P. F. et al. Prognostic role of pretreatment circulating MDSCs in patients with solid malignancies: a meta-analysis of 40 studies. Oncoimmunology 7, e1494113 (2018).

    Google Scholar 

  21. Li, J. et al. Tumor-associated macrophage infiltration and prognosis in colorectal cancer: systematic review and meta-analysis. Int J. Colorectal Dis. 35, 1203–1210 (2020).

    Google Scholar 

  22. Zhou, Q. et al. The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer. J. Transl. Med. 8, 13 (2010).

    Google Scholar 

  23. Forssell, J. et al. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin. Cancer Res. 13, 1472–1479 (2007).

    Google Scholar 

  24. Koelzer, V. H. et al. Phenotyping of tumor-associated macrophages in colorectal cancer: Impact on single cell invasion (tumor budding) and clinicopathological outcome. Oncoimmunology 5, e1106677 (2015).

    Google Scholar 

  25. Zhu, Q., Han, X., Peng, J., Qin, H. & Wang, Y. The role of CXC chemokines and their receptors in the progression and treatment of tumors. J. Mol. Histol. 43, 699–713 (2012).

    Google Scholar 

  26. Johnson, D. E., O’Keefe, R. A. & Grandis, J. R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15, 234 (2018).

    Google Scholar 

  27. Zhang, Y., Rajput, A., Jin, N. & Wang, J. Mechanisms of immunosuppression in colorectal cancer. Cancers (Basel) 12, 3850 (2020).

    Google Scholar 

  28. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020). 2020 20:6.

    Google Scholar 

  29. Ciarlo, E. et al. Trained immunity confers broad-spectrum protection against bacterial infections. J. Infect. Dis. 222, 1869 (2019).

    Google Scholar 

  30. Moorlag, S. J. C. F. M. et al. β-Glucan induces protective trained immunity against Mycobacterium tuberculosis infection: a key role for IL-1. Cell Rep. 31, 107634 (2020).

  31. Ciarlo, E. et al. Trained immunity confers broad-spectrum protection against bacterial infections. J. Infect. Dis. 222, 1869–1881 (2020).

    Google Scholar 

  32. Khan, N. et al. β-Glucan reprograms neutrophils to promote disease tolerance against influenza A virus. Nat. Immunol. 26, 174–187 (2025).

    Google Scholar 

  33. Starr, S. E., Visintine, A. M., Tomeh, M. O. & Nahmias, A. J. Effects of immunostimulants on resistance of newborn mice to herpes simplex type 2 infection. Proc. Soc. Exp. Biol. Med. 152, 57–60 (1976).

    Google Scholar 

  34. Suenaga, T., Okuyama, T., Yoshida, I. & Azuma, M. Effect of Mycobacterium tuberculosis BCG infection on the resistance of mice to ectromelia virus infection: participation of interferon in enhanced resistance. Infect. Immun. 20, 312–314 (1978).

    Google Scholar 

  35. Spencer, J. C., Ganguly, R. & Waldman, R. H. Nonspecific protection of mice against influenza virus infection by local or systemic immunization with bacille calmette-guerin. J. Infect. Dis. 136, 171–175 (1977).

    Google Scholar 

  36. Floc’h, F. & Werner, G. H. Increased resistance to virus infections of mice inoculated with BCG (Bacillus calmette-guérin). Ann. Immunol. (Paris) 127, 173–186 (1976).

    Google Scholar 

  37. Masuda, Y., Yamashita, S., Nakayama, Y., Shimizu, R. & Konishi, M. Maitake beta-glucan enhances the therapeutic effect of trastuzumab via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Biol. Pharm. Bull. 47, 840–847 (2024).

    Google Scholar 

  38. Kalafati, L. et al. Innate immune training of granulopoiesis promotes anti-tumor activity. Cell 183, 771–785.e12 (2020).

    Google Scholar 

  39. Wattenberg, M. M. et al. Cancer immunotherapy via synergistic coactivation of myeloid receptors CD40 and Dectin-1. Sci. Immunol. 8, eadj5097 (2023).

  40. Geller, A. E. et al. The induction of peripheral trained immunity in the pancreas incites anti-tumor activity to control pancreatic cancer progression. Nat. Commun. 13, 1–20 (2022).

    Google Scholar 

  41. Feola, S. et al. Peptides-Coated Oncolytic Vaccines for Cancer Personalized Medicine. Front Immunol. 13, 826164 (2022).

    Google Scholar 

  42. Capasso, C. et al. Oncolytic adenoviruses coated with MHC-I tumor epitopes increase the antitumor immunity and efficacy against melanoma. Oncoimmunology 5, e1105429 (2015).

  43. Lee, H. G., Cho, M. Z. & Choi, J. M. Bystander CD4+ T cells: crossroads between innate and adaptive immunity. Exp. Mol. Med. 52, 1255–1263 (2020).

    Google Scholar 

  44. Feola, S. et al. A novel immunopeptidomic-based pipeline for the generation of personalized oncolytic cancer vaccines. Elife 11, e71156 (2022).

  45. Dufva, O. et al. Single-cell functional genomics reveals determinants of sensitivity and resistance to natural killer cells in blood cancers. Immunity 56, 2816–2835.e13 (2023).

    Google Scholar 

  46. Barry, K. C. et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med 24, 1178–1191 (2018).

    Google Scholar 

  47. Böttcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037.e14 (2018).

    Google Scholar 

  48. Ray, A. et al. Targeting CD206+ macrophages disrupts the establishment of a key antitumor immune axis. J. Exp. Med. 222, e20240957 (2025).

  49. Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 938 (2014).

    Google Scholar 

  50. Doedens, A. L. et al. Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell function and promotes tumor progression. Cancer Res. 70, 7465–7475 (2010).

    Google Scholar 

  51. Mitchem, J. B. et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73, 1128–1141 (2013).

    Google Scholar 

  52. Nixon, B. G. et al. Tumor-associated macrophages expressing the transcription factor IRF8 promote T cell exhaustion in cancer. Immunity 55, 2044–2058.e5 (2022).

    Google Scholar 

  53. Park, M. D. et al. TREM2 macrophages drive NK cell paucity and dysfunction in lung cancer. Nat. Immunol. 24, 792–801 (2023).

    Google Scholar 

  54. Peranzoni, E. et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti–PD-1 treatment. Proc. Natl. Acad. Sci. USA 115, E4041–E4050 (2018).

    Google Scholar 

  55. Ruffell, B. et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26, 623–637 (2014).

    Google Scholar 

  56. Subtil, B., Cambi, A., Tauriello, D. V. F. & de Vries, I. J. M. The therapeutic potential of tackling tumor-induced dendritic cell dysfunction in colorectal cancer. Front Immunol. 12, 724883 (2021).

    Google Scholar 

  57. Zhu, B. et al. Plasticity of Ly-6Chi myeloid cells in T cell regulation. J. Immunol. 187, 2418 (2011).

    Google Scholar 

  58. Ramachandran, P. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl. Acad. Sci. USA 109, E3186–E3195 (2012).

    Google Scholar 

  59. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    Google Scholar 

  60. Ferreira, A. V., Domínguez-Andrés, J., Merlo Pich, L. M., Joosten, L. A. B. & Netea, M. G. Metabolic regulation in the induction of trained immunity. Semin Immunopathol. 46, 7 (2024).

    Google Scholar 

  61. Peng, Z. & Saito, S. Creatine supplementation enhances anti-tumor immunity by promoting adenosine triphosphate production in macrophages. Front Immunol. 14, 1176956 (2023).

    Google Scholar 

  62. Bhagat, A., Lyerly, H. K., Morse, M. A. & Hartman, Z. C. CEA vaccines. Hum. Vaccin Immunother. 19, 2291857 (2023).

    Google Scholar 

  63. Evers, M. et al. Novel chimerized IgA CD20 antibodies: Improving neutrophil activation against CD20-positive malignancies. MAbs 12, 1795505 (2020).

Download references

Acknowledgements

The flow cytometry analysis was performed at the HiLife Flow Cytometry Unit, University of Helsinki. We acknowledge the Helsinki Metabolomics Center, supported by HiIFE and Biocenter Finland. The single-cell RNA sequencing was performed with FIMM Single-Cell Analytics and Sequencing units supported by HiLIFE and Biocenter Finland. We are also grateful for Dr. Cristian Smerdou (Cima Universidad de Navarra) for kindly gifting us the MC38 cell line. We would also like to acknowledge bachelor student, Karim Hamdan, for helping in some experiments. This work has been supported by European Research Council (ERC), Horizon 2020 (H2020) framework (Agreement No. 681219) (V.C.), Magnus Ehrnrooth Foundation (project No. 4706235) (V.C.), Jane and Aatos Erkko Foundation (Project No. 4705796) (V.C.), Finnish Cancer Foundation (project No. 4706116) (V.C.), Helsinki Institute of Life Science (HiLIFE) (project No. 797011004) (V.C.), Digital Precision Cancer Medicine Flagship iCAN (V.C.), GeneCellNano flagship (V.C.), HiLIFE HiPOC (FH), Research Council of Finland (TTS) and iCAN Digital Precision Cancer Medicine Flagship (TTS), and research grants by Jane and Aatos Erkko Foundation (TTS), Sigrid Juselius Foundation (TTS), Mary and Georg Ehrnrooth Foundation (TTS), Cancer Foundation Finland (TTS), Relander Foundation (TTS), and HUS(TTS) and Pirha state research funding (TTS).

Author information

Author notes
  1. These authors contributed equally: Sara Gandolfi, Federica D’Alessio.

Authors and Affiliations

  1. Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Viikinkaari 5E, University of Helsinki, Helsinki, Finland

    Firas Hamdan, Federica D’Alessio, Yvonne Giannoula, Manlio Fusciello, Elisa Zaghen, Salvatore Russo, Ozan Izci, Paolo Bottega, Jacopo Chiaro, Gabriella Antignani, Michaela Feodoroff, Virpi Stigzelius, Milda Sakalauskaite, Janita Sandberg, Mikaela Grönholm & Vincenzo Cerullo

  2. Helsinki Institute of Life Science (HiLIFE), Fabianinkatu 33, University of Helsinki, Helsinki, Finland

    Firas Hamdan, Federica D’Alessio, Yvonne Giannoula, Manlio Fusciello, Salvatore Russo, Paolo Bottega, Jacopo Chiaro, Gabriella Antignani, Michaela Feodoroff, Virpi Stigzelius, Milda Sakalauskaite, Janita Sandberg, Mikaela Grönholm & Vincenzo Cerullo

  3. Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Haartmaninkatu 8, University of Helsinki, Helsinki, Finland

    Firas Hamdan, Federica D’Alessio, Yvonne Giannoula, Manlio Fusciello, Salvatore Russo, Paolo Bottega, Jacopo Chiaro, Gabriella Antignani, Michaela Feodoroff, Virpi Stigzelius, Milda Sakalauskaite, Janita Sandberg, Mikaela Grönholm & Vincenzo Cerullo

  4. iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland

    Firas Hamdan, Sara Gandolfi, Federica D’Alessio, Yvonne Giannoula, Julia Kolikova, Manlio Fusciello, Salvatore Russo, Paolo Bottega, Jacopo Chiaro, Gabriella Antignani, Michaela Feodoroff, Milda Sakalauskaite, Janita Sandberg, Satu Mustjoki, Toni T. Seppälä, Mikaela Grönholm & Vincenzo Cerullo

  5. Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland

    Sara Gandolfi & Satu Mustjoki

  6. Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland

    Sara Gandolfi & Satu Mustjoki

  7. Applied Tumor Genomics Research, Research Program Unit, University of Helsinki, Helsinki, Finland

    Julia Kolikova & Toni T. Seppälä

  8. Department of Molecular Medicine and Medical Biotechnology, Naples University “Federico II”, S. Pansini 5, Naples, Italy

    Alessandra Napolano & Nicola Zambrano

  9. Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, Naples, Italy

    Alessandra Napolano, Nicola Zambrano & Vincenzo Cerullo

  10. Biochemistry/Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland

    Kirsi-Marja Alanen & Ove Eriksson

  11. Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland

    Michaela Feodoroff

  12. Cell Therapy Safety, Clinical and Pharmacological Safety Sciences, AstraZeneca R&D, Pepparedsleden 1, Mölndal, Sweden

    Virpi Stigzelius

  13. Helsinki Metabolomics Center, Stem Cell and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland

    Anni I. Nieminen

  14. Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland

    Toni T. Seppälä

  15. Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland

    Toni T. Seppälä

Authors
  1. Firas Hamdan
    View author publications

    Search author on:PubMed Google Scholar

  2. Sara Gandolfi
    View author publications

    Search author on:PubMed Google Scholar

  3. Federica D’Alessio
    View author publications

    Search author on:PubMed Google Scholar

  4. Yvonne Giannoula
    View author publications

    Search author on:PubMed Google Scholar

  5. Julia Kolikova
    View author publications

    Search author on:PubMed Google Scholar

  6. Manlio Fusciello
    View author publications

    Search author on:PubMed Google Scholar

  7. Elisa Zaghen
    View author publications

    Search author on:PubMed Google Scholar

  8. Alessandra Napolano
    View author publications

    Search author on:PubMed Google Scholar

  9. Salvatore Russo
    View author publications

    Search author on:PubMed Google Scholar

  10. Ozan Izci
    View author publications

    Search author on:PubMed Google Scholar

  11. Paolo Bottega
    View author publications

    Search author on:PubMed Google Scholar

  12. Jacopo Chiaro
    View author publications

    Search author on:PubMed Google Scholar

  13. Kirsi-Marja Alanen
    View author publications

    Search author on:PubMed Google Scholar

  14. Gabriella Antignani
    View author publications

    Search author on:PubMed Google Scholar

  15. Michaela Feodoroff
    View author publications

    Search author on:PubMed Google Scholar

  16. Virpi Stigzelius
    View author publications

    Search author on:PubMed Google Scholar

  17. Milda Sakalauskaite
    View author publications

    Search author on:PubMed Google Scholar

  18. Janita Sandberg
    View author publications

    Search author on:PubMed Google Scholar

  19. Anni I. Nieminen
    View author publications

    Search author on:PubMed Google Scholar

  20. Nicola Zambrano
    View author publications

    Search author on:PubMed Google Scholar

  21. Ove Eriksson
    View author publications

    Search author on:PubMed Google Scholar

  22. Satu Mustjoki
    View author publications

    Search author on:PubMed Google Scholar

  23. Toni T. Seppälä
    View author publications

    Search author on:PubMed Google Scholar

  24. Mikaela Grönholm
    View author publications

    Search author on:PubMed Google Scholar

  25. Vincenzo Cerullo
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.G. and F.D have contributed equally to this work. Specific contributions: Conceptualization: F.H, S.G and V.C. Investigation: F.H, S.G, F.D, Y.G, J.K, M.Fu, E.Z, S.R, O.I, P.B, J.C, G.A, M.Fe, V.S, M.S, J.S, A.N, O.E, KM.A. Data Curation: F.H., S.G., A.I.N., and F.D. Formal analysis. F.H., S.G., A.I.N., F.D and V.C. Visualization: F.H. Project administration: F.H. and V.C. Writing original draft: F.H., S.G., M.G. and V.C. Writing-Review editing: All authors. Funding acquisition: N.Z, O.E, S.M, T.TS, M.G and V.C

Corresponding author

Correspondence to Vincenzo Cerullo.

Ethics declarations

Competing interests

V.C. is co-founder and shareholder of Valo Therapeutics LTD. H.C. and L.K. are stakeholders of Valo Therapeutics LTD. Toni T. Seppälä reports consultation fees from Mehiläinen, Nouscom, Orion Pharma, Amgen, and Tillots Pharma, and a position in the Clinical Advisory Board and as a minor shareholder of Lynsight Ltd. S.M. has received honoraria and research funding from Novartis, Pfizer, and Bristol-Myers Squibb and honoraria from Dren-Bio (not related to this study). V.S. is an employee and shareholder of AstraZeneca. All other named authors declare that they have no competing interests, financial or otherwise.

Peer review

Peer review information

Nature Communications thanks Xiaojun Xia, Jun Yan, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdan, F., Gandolfi, S., D’Alessio, F. et al. Leveraging glucan-induced trained immunity for the epigenetic and metabolic rewiring of macrophages to enhance colorectal cancer vaccine response. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68466-5

Download citation

  • Received: 16 April 2025

  • Accepted: 08 January 2026

  • Published: 28 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68466-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer