Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
A stochastic mechanism drives fast substrate translocation in the AAA+ machine ClpB
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 January 2026

A stochastic mechanism drives fast substrate translocation in the AAA+ machine ClpB

  • Remi Casier  ORCID: orcid.org/0000-0003-0791-08941,
  • Dorit Levy1,
  • Inbal Riven1,
  • Yoav Barak2 &
  • …
  • Gilad Haran  ORCID: orcid.org/0000-0003-1837-97791 

Nature Communications , Article number:  (2026) Cite this article

  • 1416 Accesses

  • 6 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biophysical chemistry
  • Enzyme mechanisms
  • Single-molecule biophysics

Abstract

How biological machines harness ATP to drive mechanical work remains a crucial question. Structural studies of protein-translocating AAA+ machines proposed a coupled and sequential translocation process, whereby ATP hydrolysis events lead to short threading steps. Yet, direct real-time observation of these events remains elusive. Here, we employ single-molecule FRET spectroscopy to track substrate translocation through ClpB, a quality control AAA+ machine. We isolate ClpB and its substrate within lipid vesicles and find that translocation events, while dependent on ATP, take milliseconds, much faster than ATP hydrolysis times. Surprisingly, the translocation rate depends weakly on temperature and ATP concentration. Using three-color FRET experiments, we find that translocation events can occur bidirectionally but are not always complete. Replacing ATP with the slowly hydrolysable analog ATPγS abolishes both rapid translocation and directionality. These results indicate a fast, stochastic Brownian-motor-like mechanism, redefining how ATP is coupled with mechanical action in AAA+ machines.

Similar content being viewed by others

A proteolytic AAA+ machine poised to unfold protein substrates

Article Open access 08 November 2024

A concerted ATPase cycle of the protein transporter AAA-ATPase Bcs1

Article Open access 11 October 2023

Characterizing ATP processing by the AAA+ protein p97 at the atomic level

Article Open access 07 February 2024

Data availability

All data generated and processed in this study have been deposited in the Zenodo database under accession code 17532905. A summary of the data in this manuscript is provided in the Supplementary Materials. Source data are provided with this paper. This study used the following PDB structures of ClpB: 6OAX and 1QVR. Source data are provided with this paper.

Code availability

All code generated in this study has been deposited in the Zenodo database under accession code 17532905.

References

  1. Lin, J., Shorter, J. & Lucius, A. L. AAA+ proteins: one motor, multiple ways to work. Biochem. Soc. Trans. 50, 895–906 (2022).

    Google Scholar 

  2. Gates, S. N. & Martin, A. Stairway to translocation: AAA plus motor structures reveal the mechanisms of ATP-dependent substrate translocation. Protein Sci. 29, 407–419 (2020).

    Google Scholar 

  3. Erzberger, J. P. & Berger, J. M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 93–114 (2006).

    Google Scholar 

  4. Deville, C. et al. Structural pathway of regulated substrate transfer and threading through an Hsp100 disaggregase. Sci. Adv. 3, e1701726 (2017).

    Google Scholar 

  5. Deville, C., Franke, K., Mogk, A., Bukau, B. & Saibil, H. R. Two-step activation mechanism of the ClpB disaggregase for sequential substrate threading by the main ATPase motor. Cell Rep. 27, 3433–3446.e3434 (2019).

    Google Scholar 

  6. Yu, H. et al. ATP hydrolysis-coupled peptide translocation mechanism of Mycobacterium tuberculosis ClpB. Proc. Natl. Acad. Sci. USA 115, E9560–E9569 (2018).

    Google Scholar 

  7. Uchihashi, T. et al. Dynamic structural states of ClpB involved in its disaggregation function. Nat. Commun. 9, 2147 (2018).

    Google Scholar 

  8. Puchades, C., Sandate, C. R. & Lander, G. C. The molecular principles governing the activity and functional diversity of AAA+ proteins. Nat. Rev. Mol. Cell Biol. 21, 43–58 (2020).

    Google Scholar 

  9. de la Pena, A.H., Goodall, E. A., Gates, S. N., Lander, G. C. & Martin, A. Substrate-engaged 26S proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation. Science 362, (2018).

  10. Puchades, C. et al., Structure of the mitochondrial inner membrane AAA+ protease YME1 gives insight into substrate processing. Science 358, (2017).

  11. Gates, S. N. et al. Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104. Science 357, 273–279 (2017).

    Google Scholar 

  12. Hwang, W. & Karplus, M. Structural basis for power stroke vs. Brownian ratchet mechanisms of motor proteins. Proc. Natl. Acad. Sci. USA 116, 19777–19785 (2019).

    Google Scholar 

  13. Wagoner, J. A. & Dill, K. A. Molecular motors: power strokes outperform brownian ratchets. J. Phys. Chem. B 120, 6327–6336 (2016).

    Google Scholar 

  14. Yamasaki, T., Oohata, Y., Nakamura, T. & Watanabe, Y. H. Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement. J. Biol. Chem. 290, 9789–9800 (2015).

    Google Scholar 

  15. Iosefson, O., Olivares, A. O., Baker, T. A. & Sauer, R. T. Dissection of axial-pore loop function during unfolding and translocation by a AAA+ proteolytic machine. Cell Rep. 12, 1032–1041 (2015).

    Google Scholar 

  16. Doyle, S. M., Genest, O. & Wickner, S. Protein rescue from aggregates by powerful molecular chaperone machines. Nat. Rev. Mol. Cell Biol. 14, 617–629 (2013).

    Google Scholar 

  17. Duran, E. C., Weaver, C. L. & Lucius, A. L. Comparative analysis of the structure and function of AAA+ Motors ClpA, ClpB, and Hsp104: common threads and disparate functions. Front Mol. Biosci. 4, 54 (2017).

    Google Scholar 

  18. Avellaneda, M. J. et al. Processive extrusion of polypeptide loops by a Hsp100 disaggregase. Nature 578, 317–320 (2020).

    Google Scholar 

  19. Haslberger, T. et al. Protein disaggregation by the AAA plus chaperone ClpB involves partial threading of looped polypeptide segments. Nat. Struct. Mol. Biol. 15, 641–650 (2008).

    Google Scholar 

  20. Sawyer, L. & Holt, C. The secondary structure of milk proteins and their biological function. J. Dairy Sci. 76, 3062–3078 (1993).

    Google Scholar 

  21. Mirdha, L. & Chakraborty, H. Characterization of structural conformers of κ-casein utilizing fluorescence spectroscopy. Int. J. Biol. Macromolecules 131, 89–96 (2019).

    Google Scholar 

  22. Banwait, J. K., Islam, L. & Lucius, A. L. Single turnover transient state kinetics reveals processive protein unfolding catalyzed by Escherichia coli ClpB. eLife 13, RP99052 (2024).

    Google Scholar 

  23. Weibezahn, J. et al. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119, 653–665 (2004).

    Google Scholar 

  24. Banwait, J. K. & Lucius, A. L. Quantitative insights into processivity of an Hsp100 protein disaggregase on folded proteins. Biophysical J. 124, 753–764 (2025).

    Google Scholar 

  25. Benítez, J. J. et al. Probing Transient Copper Chaperone−Wilson Disease Protein Interactions at the Single-Molecule Level with Nanovesicle Trapping. J. Am. Chem. Soc. 130, 2446–2447 (2008).

    Google Scholar 

  26. Cisse, I., Okumus, B., Joo, C. & Ha, T. Fueling protein–DNA interactions inside porous nanocontainers. Proc. Natl. Acad. Sci. 104, 12646–12650 (2007).

    Google Scholar 

  27. Monnard, P.-A. & Deamer, D. W. Nutrient uptake by protocells: a liposome model system. Orig. Life Evolut. Biosphere 31, 147–155 (2001).

    Google Scholar 

  28. Ainavarapu, S. R. K. et al. Contour length and refolding rate of a small protein controlled by engineered disulfide bonds. Biophys. J. 92, 225–233 (2007).

    Google Scholar 

  29. Mazal, H. et al. Tunable microsecond dynamics of an allosteric switch regulate the activity of a AAA+ disaggregation machine. Nat. Commun. 10, 1438 (2019).

    Google Scholar 

  30. Newman, M. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005).

    Google Scholar 

  31. Soranno, A. et al. Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy. Proc. Natl. Acad. Sci. USA 109, 17800–17806 (2012).

    Google Scholar 

  32. Krieger, F., Stecher, K., Nyffenegger, C., Schleeger, M. & Kiefhaber, T. Local and large-scale conformational dynamics in unfolded proteins and IDPs. II. Effect of temperature and internal friction. J. Phys. Chem. B 127, 8106–8115 (2023).

    Google Scholar 

  33. Zolkiewski, M., Kessel, M., Ginsburg, A. & Maurizi, M. R. Nucleotide-dependent oligomerization of C1pB from Escherichia coli. Protein Sci. 8, 1899–1903 (1999).

    Google Scholar 

  34. Doyle, S. M. et al. Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity. Nat. Struct. Mol. Biol. 14, 114–122 (2007).

    Google Scholar 

  35. Kawaguchi, K. & Ishiwata, S. I. Thermal activation of single kinesin molecules with temperature pulse microscopy. Cell Motil. 49, 41–47 (2001).

    Google Scholar 

  36. Kato, H., Nishizaka, T., Iga, T., Kinosita, K. & Ishiwata, S. I. Imaging of thermal activation of actomyosin motors. Proc. Natl. Acad. Sci. USA 96, 9602–9606 (1999).

    Google Scholar 

  37. Howard, J. Protein power strokes. Curr. Biol. 16, R517–R519 (2006).

    Google Scholar 

  38. Ait-Haddou, R. & Herzog, W. Brownian ratchet models of molecular motors. Cell Biochem. Biophys. 38, 191–214 (2003).

    Google Scholar 

  39. Astumian, R. D., Mukherjee, S. & Warshel, A. The physics and physical chemistry of molecular machines. ChemPhysChem 17, 1719–1741 (2016).

    Google Scholar 

  40. Shin, M. et al. Structural basis for distinct operational modes and protease activation in AAA+ protease Lon. Sci. Adv. 6, eaba8404 (2020).

    Google Scholar 

  41. Hersch, G. L., Burton, R. E., Bolon, D. N., Baker, T. A. & Sauer, R. T. Asymmetric Interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Cell 121, 1017–1027 (2005).

    Google Scholar 

  42. Kotamarthi, H. C., Sauer, R. T. & Baker, T. A. The non-dominant AAA+ ring in the ClpAP Protease functions as an anti-stalling motor to accelerate protein unfolding and translocation. Cell Rep. 30, 2644–2654.e2643 (2020).

    Google Scholar 

  43. Aubin-Tam, M.-E., Olivares, A. drianO., Sauer, R. obertT., Baker, T. aniaA. & Lang, M. atthewJ. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell 145, 257–267 (2011).

    Google Scholar 

  44. Lee, J.aY., Finkelstein, I. lyaJ., Arciszewska, L. idiaK., Sherratt, D. avidJ. & Greene, E. ricC. Single-molecule imaging of FtsK translocation reveals mechanistic features of protein-protein collisions on DNA. Mol. Cell 54, 832–843 (2014).

    Google Scholar 

  45. Li, T. et al. Escherichia coli ClpB is a non-processive polypeptide translocase. Biochem. J. 470, 39–52 (2015).

    Google Scholar 

  46. Rosenzweig, R. et al. ClpB N-terminal domain plays a regulatory role in protein disaggregation. Proc. Natl. Acad. Sci. 112, E6872–E6881 (2015).

    Google Scholar 

  47. Hänggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990).

    Google Scholar 

  48. Amano, S. et al. Using catalysis to drive chemistry away from equilibrium: relating kinetic asymmetry, power strokes, and the Curtin–Hammett principle in Brownian ratchets. J. Am. Chem. Soc. 144, 20153–20164 (2022).

    Google Scholar 

  49. Brown, A. I. & Sivak, D. A. Theory of nonequilibrium free energy transduction by molecular machines. Chem. Rev. 120, 434–459 (2020).

    Google Scholar 

  50. Wang, H. & Oster, G. Ratchets, power strokes, and molecular motors. Appl. Phys. A 75, 315–323 (2002).

    Google Scholar 

  51. A. B. Kolomeisky, Motor Proteins and Molecular Motors. (CRC Press, 2015).

  52. Wolfe, A. J., Mohammad, S., Cheley, H., Bayley, L. & Movileanu Catalyzing the translocation of polypeptides through attractive interactions. J. Am. Chem. Soc. 129, 14034–14041 (2007).

    Google Scholar 

  53. Sauciuc, A., Morozzo della Rocca, B., Tadema, M. J., Chinappi, M. & Maglia, G. Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force. Nat. Biotechnol. 42, 1275–1281 (2024).

    Google Scholar 

  54. Makarov, D. E. Computer simulations and theory of protein translocation. Acc. Chem. Res. 42, 281–289 (2009).

    Google Scholar 

  55. Reguera, D. et al., Entropic transport: kinetics, scaling, and control mechanisms. Phys. Rev. Lett. 96, (2006).

  56. Mazal, H., Iljina, M., Riven, I. & Haran, G. Ultrafast pore-loop dynamics in a AAA+ machine point to a Brownian-ratchet mechanism for protein translocation. Sci. Adv. 7, eabg4674 (2021).

    Google Scholar 

  57. Iljina, M. et al. Single-molecule FRET probes allosteric effects on protein-translocating pore loops of a AAA+ machine. Biophys. J. 123, 374–388 (2024).

    Google Scholar 

  58. Ruer, M., Krainer, G., Gröger, P. & Schlierf, M. ATPase and protease domain movements in the bacterial AAA+ protease FtsH are driven by thermal fluctuations. J. Mol. Biol. 430, 4592–4602 (2018).

    Google Scholar 

  59. Carusela, M. F. & Rubí, J. M. Entropic rectification and current inversion in a pulsating channel. J. Chem. Phys. 146, 184901 (2017).

    Google Scholar 

  60. Koga, N., Kameda, T., Okazaki, K. -i & Takada, S. Paddling mechanism for the substrate translocation by AAA+ motor revealed by multiscale molecular simulations. Proc. Natl. Acad. Sci. USA 106, 18237–18242 (2009).

    Google Scholar 

  61. Astumian, R. D. & Hanggi, P. Brownian motors. Phys. Today 55, 33–39 (2002).

    Google Scholar 

  62. S. Tyagi, E. A. Lemke, in Methods in Cell Biology, P. M. Conn, Ed. (Academic Press, 2013), vol. 113, pp. 169-187.

  63. Akoev, V., Gogol, E. P., Barnett, M. E. & Zolkiewski, M. Nucleotide-induced switch in oligomerization of the AAA+ ATPase ClpB. Protein Sci. 13, 567–574 (2004).

    Google Scholar 

  64. Schlee, S., Groemping, Y., Herde, P., Seidel, R. & Reinstein, J. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites11Edited by A. R. Fersht. J. Mol. Biol. 306, 889–899 (2001).

    Google Scholar 

  65. Nørby, J. G. in Methods in Enzymology. (Academic Press, 1988), vol. 156, pp. 116-119.

  66. Boukobza, E., Sonnenfeld, A. & Haran, G. Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy. J. Phys. Chem. B 105, 12165–12170 (2001).

    Google Scholar 

  67. Aitken, C. E., Marshall, R. A. & Puglisi, J. D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J. 94, 1826–1835 (2008).

    Google Scholar 

  68. Heidarsson, P. O. et al. Release of linker histone from the nucleosome driven by polyelectrolyte competition with a disordered protein. Nat. Chem. 14, 224–231 (2022).

    Google Scholar 

  69. Ha, T. & Tinnefeld, P. Photophysics of Fluorescent Probes for Single-Molecule Biophysics and Super-Resolution Imaging. Annu. Rev. Phys. Chem. 63, 595–617 (2012).

    Google Scholar 

  70. Yoo, J., Louis, J. M., Gopich, I. V. & Chung, H. S. Three-color single-molecule FRET and fluorescence lifetime analysis of fast protein folding. J. Phys. Chem. B 122, 11702–11720 (2018).

    Google Scholar 

  71. Gopich, I. V. & Szabo, A. Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. Proc. Natl. Acad. Sci. USA 109, 7747–7752 (2012).

    Google Scholar 

  72. Rizo, A. N. et al. Structural basis for substrate gripping and translocation by the ClpB AAA+ disaggregase. Nat. Commun. 10, 2393 (2019).

    Google Scholar 

Download references

Acknowledgements

We thank Drs. Pierre Goloubinoff, Hagen Hofmann, Axel Mogk, David Scheerer, Ilya Kuprov, and Michal Haran for reading and commenting on the manuscript. We thank Drs. Hagen Hofmann and Tanya Lasitza-Male for the use of their homebuilt Peltier control unit, Dr. David Scheerer for the fluorescently labeled enzyme adenylate kinase, and Dr. Hisham Mazal for his insightful input and kindly providing samples for initial experimental trials. This work was supported by a grant from the NSF-BSF program (no. 2021700, R.C., D.L., I.R., B.Y., G.H.). R.C. is grateful to the Azrieli Foundation for its generous funding of an Azrieli International Postdoctoral Fellowship.

Author information

Authors and Affiliations

  1. Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel

    Remi Casier, Dorit Levy, Inbal Riven & Gilad Haran

  2. Chemical Research Support, Weizmann Institute of, Rehovot, Israel

    Yoav Barak

Authors
  1. Remi Casier
    View author publications

    Search author on:PubMed Google Scholar

  2. Dorit Levy
    View author publications

    Search author on:PubMed Google Scholar

  3. Inbal Riven
    View author publications

    Search author on:PubMed Google Scholar

  4. Yoav Barak
    View author publications

    Search author on:PubMed Google Scholar

  5. Gilad Haran
    View author publications

    Search author on:PubMed Google Scholar

Contributions

R.C., I.R., and G.H. conceptualized and designed the experiments. R.C. conducted the experiments. R.C., D.L., I.R., and Y.B. worked on protein expression, purification, and labeling. R.C. and G.H. analyzed the results and wrote the manuscript. All authors contributed to editing and discussions.

Corresponding author

Correspondence to Gilad Haran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Tomas Fessl and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting summary

Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casier, R., Levy, D., Riven, I. et al. A stochastic mechanism drives fast substrate translocation in the AAA+ machine ClpB. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68478-1

Download citation

  • Received: 09 September 2025

  • Accepted: 05 January 2026

  • Published: 21 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68478-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing