Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Unveiling the metallogenic continuum of an Archean craton
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 January 2026

Unveiling the metallogenic continuum of an Archean craton

  • Matthew Demmer  ORCID: orcid.org/0009-0003-2181-51021,2,3,
  • Isra Ezad1,2 &
  • Marco Fiorentini  ORCID: orcid.org/0000-0001-8079-96061,2 

Nature Communications , Article number:  (2026) Cite this article

  • 1821 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Economic geology
  • Geochemistry

Abstract

The synchronous formation between 2675–2655 Ma of hydrothermal gold mineralisation in the Kalgoorlie and Kurnalpi Terranes and of magmatic sulfide mineralisation enriched in nickel, copper and platinum-group elements in the South West Terrane of the Archean Yilgarn Craton of Western Australia offers key insights into first-order controls on the genesis of mineral systems. Here we show that hydrothermal and magmatic deposits formed on opposite sides of this craton share four key features: timing, enrichment in incompatible chalcophile elements, positive Δ³³S sulfur isotope signatures, and links to hydrous, metasomatised lithospheric mantle. These commonalities challenge conventional models that treat such mineralised systems as unrelated. Instead, they point to a shared origin: a fertile lithospheric mantle reservoir enriched by crustal recycling, which was subsequently tapped to generate magmas and fluids anomalously endowed in volatiles and metals that migrated through the overlying lithosphere, punctually triggering ore formation. These findings support a unified mineral system model in which mantle processes exert a first-order control over metal endowment of Archean cratons.

Similar content being viewed by others

Mantle-derived fluid flux controls Olympic Dam-style Fe oxide-Cu-Au mineralisation

Article Open access 16 January 2026

Metal scavenging by sulfide oxidation in porphyry copper deposit root zones

Article Open access 07 November 2025

The implications of crustal architecture and transcrustal upflow zones on the metal endowment of a world-class mineral district

Article Open access 29 August 2022

Data availability

Sulfur isotope, automated mineralogy, in situ sulfide analysis, and whole-rock geochemistry data are provided in the Supplementary Datafile. Source data are provided with this paper.

References

  1. Hronsky, J., Groves, D., Loucks, R. & Begg, C. A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods. Miner. Deposita 47, 339–358 (2012).

    Google Scholar 

  2. McCuaig, T. C., Beresford, S. & Hronsky, J. Translating the mineral systems approach into an effective exploration targeting system. Ore Geol. Rev. 38, 128–138 (2010).

    Google Scholar 

  3. McCuaig, T. C. & Hronsky, J. In Building Exploration Capability for the 21st Century(Society of Economic Geologists, 2014).

  4. Begg, G. et al. Lithospheric, cratonic, and geodynamic setting of Ni-Cu-PGE sulfide deposits. Econ. Geol. 105, 1057–1070 (2010).

    Google Scholar 

  5. Tassara, S. et al. Plume-subduction interaction forms large auriferous provinces. Nat. Commun. 8, 843 (2017).

    Google Scholar 

  6. Ezad, I. et al. Incipient carbonate melting drives metal and sulfur mobilization in the mantle. Sci. Adv. 10, eadk5979 (2024).

  7. Griffin, W., Begg, G. & O’Reilly, S. Continental-root control on the genesis of magmatic ore deposits. Nat. Geosci. 6, 905–910 (2013).

    Google Scholar 

  8. Barnes, S. J., Cruden, A. R., Arndt, N. & Saumur, B. M. The mineral system approach applied to magmatic Ni–Cu–PGE sulphide deposits. Ore Geol. Rev. 76, 296–316 (2016).

    Google Scholar 

  9. Wyman, D. A., Cassidy, K. F. & Hollings, P. Orogenic gold and the mineral systems approach: resolving fact, fiction and fantasy. Ore Geol. Rev. 78, 322–335 (2016).

    Google Scholar 

  10. Holwell, D. A. et al. A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. Nat. Commun. 10, 3511 (2019).

    Google Scholar 

  11. Corning, P. A. The re-emergence of “emergence”: a venerable concept in search of a theory. Complexity 7, 18–30 (2002).

    Google Scholar 

  12. Chalice Mining Limited. Gonneville Resource remodelled to support selective mining. ASX Announc. https://chalicemining.com/wp-content/uploads/2024/04/61203922.pdf (2024).

  13. Lu, Y.-J. et al. Southwest Yilgarn Geochronology. https://doi.org/10.13140/RG.2.2.35768.47367 (2021).

  14. Sumail et al. Temporal constraints on gold mineralisation at the world-class Jundee deposit: insights into the episodic nature of orogenic gold mineralisation in the Neoarchean Yilgarn Craton. Precambrian Res 410, 107479 (2024).

    Google Scholar 

  15. Hagemann, S. G. & Cassidy, K. F. In Gold in 2000 Vol. 13, 9–68 (Economic Geology, 2000).

  16. Masurel, Q. & Thébaud, N. Deformation in the Agnew-Wiluna Greenstone Belt and host Kalgoorlie Terrane during the c. 2675–2630 Ma Kalgoorlie Orogeny: ∼45 Ma of horizontal shortening in a Neoarchean back-arc region. Precambrian Res. 414, 107586 (2024).

    Google Scholar 

  17. Mole, D. R. et al. Time-space evolution of an Archean craton: a Hf-isotope window into continent formation. Earth-Sci. Rev. 196, 102831 (2019).

    Google Scholar 

  18. Witt, W. K., Cassidy, K. F., Lu, Y.-J. & Hagemann, S. G. The tectonic setting and evolution of the 2.7 Ga Kalgoorlie–Kurnalpi Rift, a world-class Archean gold province. Miner. Deposita 55, 601–631 (2020).

    Google Scholar 

  19. Smithies, R. H. et al. A New Look at Lamprophyres and Sanukitoids and Their Relationship to the Black Flag Group and Gold Prospectivity (Geological Survey of Western Australia, 2018).

  20. Champion, D. C. & Sheraton, J. W. Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: implications for crustal growth processes. Precambrian Res. 83, 109–132 (1997).

    Google Scholar 

  21. Choi, E., Fiorentini, M. L., Hughes, H. S. R. & Giuliani, A. Platinum-group element and Au geochemistry of Late Archean to Proterozoic calc-alkaline and alkaline magmas in the Yilgarn Craton, Western Australia. Lithos 374–375, 105716 (2020).

    Google Scholar 

  22. Witt, W., Ford, A., Hanrahan, B. & Mamuse, A. Regional-Scale Targeting for Gold in the Yilgarn Craton: Part 1 of the Yilgarn Gold Exploration Targeting Atlas (Geological Survey of Western Australia, 2013).

  23. Shackleton, J. M., Spry, P. G. & Bateman, R. Telluride mineralogy of the Golden Mile deposit, Kalgoorlie, Western Australia. Can. Mineral. 41, 1503–1524 (2003).

    Google Scholar 

  24. Selvaraja, V., Caruso, S., Fiorentini, M. L., LaFlamme, C. K. & Bui, T.-H. Atmospheric sulfur in the orogenic gold deposits of the Archean Yilgarn Craton, Australia. Geology https://doi.org/10.1130/G39018.1 (2017).

    Google Scholar 

  25. LaFlamme, C. et al. Investigating sulfur pathways through the lithosphere by tracing mass independent fractionation of sulfur to the Lady Bountiful orogenic gold deposit, Yilgarn Craton. Gondwana Res. 58, 27–38 (2018).

    Google Scholar 

  26. Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    Google Scholar 

  27. Sugiono, D. et al. Integration of multiple sulfur isotopes with structural analysis unveils the evolution of ore fluids and source of sulfur at the Kanowna Belle Archean orogenic gold deposit, Yilgarn Craton, Western Australia. Miner. Deposita 56, 1471–1490 (2021).

    Google Scholar 

  28. LaFlamme, C. et al. Multiple sulfur isotopes monitor fluid evolution of an Archean orogenic gold deposit. Geochim. Cosmochim. Acta 222, 436–446 (2018).

    Google Scholar 

  29. Caruso, S. et al. Sulfur isotope systematics of granitoids from the Yilgarn Craton sheds new light on the fluid reservoirs of Neoarchean orogenic gold deposits. Geochim. Cosmochim. Acta 326, 199–213 (2022).

    Google Scholar 

  30. Duuring, P. & González-Álvarez, I. Diverse sources of sulfur in Archean ore deposits of the southwest Yilgarn Craton, Western Australia. Miner. Deposita https://doi.org/10.1007/s00126-025-01386-4 (2025).

    Google Scholar 

  31. Quentin De Gromard, R. & Ivanic, T. Redefining Archean terrane boundaries, a radical update within the Yilgarn Craton—a field guide. Geol. Surv. West. Aust. Record 2023/9 (2024).

  32. Barnes, S. J., Coats, C. J. A. & Naldrett, A. J. Petrogenesis of a Proterozoic nickel-sulfide-komatiite association; the Katiniq Sill, Ungava, Quebec. Econ. Geol. 77, 413–429 (1982).

    Google Scholar 

  33. Barnes, S. J., Wells, M. A. & Verrall, M. R. Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Econ. Geol. 104, 539–562 (2009).

    Google Scholar 

  34. Barnes, S. J. & Hill, R. Metamorphism of komatiite-hosted nickel sulfide deposits. Soc. Econ. Geol. 203, 216 (1998).

    Google Scholar 

  35. Plümper, O., Røyne, A., Magrasó, A. & Jamtveit, B. The interface-scale mechanism of reaction-induced fracturing during serpentinization. Geology 40, 1103–1106 (2012).

    Google Scholar 

  36. Baublys, K. A., Golding, S. D., Young, E. & Kamber, B. S. Simultaneous determination of δ33S V-CDT and δ34S V-CDT using masses 48, 49 and 50 on a continuous flow isotope ratio mass spectrometer. Rapid Commun. Mass Spectrom 18, 2765–2769 (2004).

    Google Scholar 

  37. Barnes, S.-J., Cox, R. A. & Zientek, M. L. Platinum-group element, Gold, Silver and Base Metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril’sk, Russia. Contrib. Mineral. Petrol. 152, 187–200 (2006).

    Google Scholar 

  38. Arndt, N. Komatiites, kimberlites, and boninites. J. Geophys. Res. Solid Earth 108, 2002JB002157 (2003).

    Google Scholar 

  39. O’Neill, H. S.tC. The smoothness and shapes of chondrite-normalized rare Earth element patterns in basalts. J. Petrol. 57, 1463–1508 (2016).

    Google Scholar 

  40. Barnes, S. J. Are Bushveld U-type parent magmas boninites or contaminated komatiites?. Contrib. Mineral. Petrol. 101, 447–457 (1989).

    Google Scholar 

  41. Maier, W. D., Arndt, N. T. & Curl, E. A. Progressive crustal contamination of the Bushveld Complex: evidence from Nd isotopic analyses of the cumulate rocks. Contrib. Mineral. Petrol. 140, 316–327 (2000).

    Google Scholar 

  42. Rustioni, G., Audetat, A. & Keppler, H. The composition of subduction zone fluids and the origin of the trace element enrichment in arc magmas. Contrib. Mineral. Petrol. 176, 51 (2021).

    Google Scholar 

  43. Barnes, S.-J., Maier, W. D. & Curl, E. A. Composition of the marginal rocks and sills of the Rustenburg Layered Suite, Bushveld Complex, South Africa: implications for the formation of the platinum-group element deposits. Econ. Geol. 105, 1491–1511 (2010).

    Google Scholar 

  44. Maier, W. D. & Barnes, S.-J. Pt/Pd and Pd/Ir ratios in mantle-derived magmas: a possible role for mantle metasomatism. South Afr. J. Geol. 107, 333–340 (2004).

    Google Scholar 

  45. Crocket, J. H. Platinum-Group Element Geochemistry of Mafic and Ultramafic Rocks. In The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements: Edited by Louis J. Cabri Vol. 54, 117–210 (Canadian Institute of Mining, Metallurgy and Petroleum, 2002).

  46. Hartnady, M. I. H. et al. Fluid processes in the early Earth and the growth of continents. Earth Planet. Sci. Lett. 594, 117695 (2022).

    Google Scholar 

  47. Tamblyn, R. et al. Hydrated komatiites as a source of water for TTG formation in the Archean. Earth Planet. Sci. Lett. 603, 117982 (2023).

    Google Scholar 

  48. Arndt, N. Why was flood volcanism on submerged continental platforms so common in the Precambrian?. Precambrian Res 97, 155–164 (1999).

    Google Scholar 

  49. Farquhar, J. & Wing, B. A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1–13 (2003).

    Google Scholar 

  50. Bekker, A. et al. Atmospheric sulfur in Archean komatiite-hosted nickel deposits. Science 326, 1086–1089 (2009).

    Google Scholar 

  51. Wallace, M. E. & Green, D. H. An experimental determination of primary carbonatite magma composition. Nature 335, 343–346 (1988).

    Google Scholar 

  52. Mungall, J., Hanley, J., Arndt, N. & Debecdelievre, A. Evidence from meimechites and other low-degree mantle melts for redox controls on mantle-crust fractionation of platinum-group elements. Proc. Natl. Acad. Sci. USA 103, 12695–12700 (2006).

    Google Scholar 

  53. Ballhaus, C., Bockrath, C., Wohlgemuth-Ueberwasser, C., Laurenz, V. & Berndt, J. Fractionation of the noble metals by physical processes. Contrib. Mineral. Petrol. 152, 667–684 (2006).

    Google Scholar 

  54. Alard, O., Griffin, W. L., Lorand, J. P., Jackson, S. E. & O’Reilly, S. Y. Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature 407, 891–894 (2000).

    Google Scholar 

  55. McInnes, B. I. A., McBride, J. S., Evans, N. J., Lambert, D. D. & Andrew, A. S. Osmium isotope constraints on ore metal recycling in subduction zones. Science 286, 512–516 (1999).

    Google Scholar 

  56. Jugo, P. J., Luth, R. W. & Richards, J. P. Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. Geochim. Cosmochim. Acta 69, 497–503 (2005).

    Google Scholar 

  57. Begg, G., Hronsky, J., Griffin, W. & O’Reilly, S. In Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time 1–46 (Elsevier, 2018).

  58. Ezad, I. S. et al. Lithospheric hydrous pyroxenites control localisation and Ni endowment of magmatic sulfide deposits. Miner. Deposita 59, 227–236 (2024).

    Google Scholar 

  59. Groves, D. I. et al. A holistic model for the origin of orogenic gold deposits and its implications for exploration. Miner. Deposita 55, 275–292 (2020).

    Google Scholar 

  60. Zibra, I. et al. The importance of being molten: 100 Myr of synmagmatic shearing in the Yilgarn Craton (Western Australia). Implications for mineral systems. Precambrian Res 406, 107393 (2024).

    Google Scholar 

  61. Barnes, S.-J. & Ripley, E. M. Highly siderophile and strongly chalcophile elements in magmatic ore deposits. Rev. Mineral. Geochem. 81, 725–774 (2016).

    Google Scholar 

  62. Holwell, D. A. & McDonald, I. Distribution of platinum-group elements in the Platreef at Overysel, northern Bushveld Complex: a combined PGM and LA-ICP-MS study. Contrib. Mineral. Petrol. 154, 171–190 (2007).

    Google Scholar 

  63. Junge, M., Wirth, R., Oberthür, T., Melcher, F. & Schreiber, A. Mineralogical siting of platinum-group elements in pentlandite from the Bushveld Complex, South Africa. Miner. Deposita 50, 41–54 (2015).

    Google Scholar 

  64. Helmy, H. M. et al. How Pt and Pd are hosted in magmatic sulfides, substitutions and/or inclusions? Contrib. Mineral. Petrol. 178, 41 (2023).

    Google Scholar 

  65. Anenburg, M. & Mavrogenes, J. A. Noble metal nanonugget insolubility in geological sulfide liquids. Geology 48, 939–943 (2020).

    Google Scholar 

  66. Campbell, I. H. & Naldrett, A. J. The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides. Econ. Geol. 74, 1503–1506 (1979).

    Google Scholar 

  67. Fleet, M. E., Chryssoulis, S. L., Stone, W. E. & Weisener, C. G. Partitioning of platinum-group elements and Au in the Fe-Ni-Cu-S system: experiments on the fractional crystallization of sulfide melt. Contrib. Mineral. Petrol. 115, 36–44 (1993).

    Google Scholar 

  68. Tomkins, A. G., Pattison, D. R. M. & Zaleski, E. The Hemlo gold deposit, Ontario: an example of melting and mobilization of a precious metal-sulfosalt assemblage during amphibolite facies metamorphism and deformation. Econ. Geol. 99, 1063–1084 (2004).

    Google Scholar 

  69. Mansur, E. T., Barnes, S.-J. & Ferreira Filho, C. F. The effects of post-cumulus alteration on the distribution of chalcophile elements in magmatic sulfide deposits and implications for the formation of low-S-high-PGE zones: the Luanga deposit, Carajás Mineral Province, Brazil. Can. Mineral. 59, 1453–1484 (2021).

    Google Scholar 

  70. Fiorentini, M. L. et al. Multiple sulfur and iron isotope composition of magmatic Ni-Cu-(PGE) sulfide mineralization from Eastern Botswana. Econ. Geol. 107, 105–116 (2012).

    Google Scholar 

  71. Virnes, A. B. et al. Sulfur isotopes in Archaean crustal reservoirs constrain the transport and deposition mechanisms of nickel-sulfides in komatiites. Miner. Deposita https://doi.org/10.1007/s00126-024-01253-8 (2024).

    Google Scholar 

  72. Chen, C. et al. Sulfide-rich continental roots at cratonic margins formed by carbonated melts. Nature 637, 615–621 (2025).

    Google Scholar 

  73. Choi, E. et al. Subduction-related petrogenesis of Late Archean calc-alkaline lamprophyres in the Yilgarn Craton (Western Australia). Precambrian Res. 338, 105550 (2020).

    Google Scholar 

  74. Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508 (2011).

    Google Scholar 

  75. Thébaud, N. et al. Protracted and polyphased gold mineralisation in the Agnew District (Yilgarn Craton, Western Australia). Precambrian Res. 310, 291–304 (2018).

    Google Scholar 

  76. Godefroy-Rodríguez, M., Hagemann, S., LaFlamme, C. & Fiorentini, M. The multiple sulfur isotope architecture of the Golden Mile and Mount Charlotte deposits, Western Australia. Miner. Deposita 55, 797–822 (2020).

    Google Scholar 

  77. Palme, H. & O’Neill, H. St. C. In Treatise on Geochemistry 1–39 (Elsevier, 2014).

  78. McDonough, W. F. & Sun, S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Google Scholar 

  79. Kanayama, K., Umino, S. & Ishizuka, O. Geology and petrology. Mukojima Islands. Island Arc. Isl. Arc 21, 288–316 (2012).

    Google Scholar 

  80. Jenkins, M. C. et al. The geochemical and textural transition between the Reef Package and its Hanging Wall, Stillwater Complex, Montana, USA. J. Petrol. 63, egac053 (2022).

    Google Scholar 

  81. Sossi, P. A. et al. Petrogenesis and geochemistry of Archean komatiites. J. Petrol. 57, 147–184 (2016).

    Google Scholar 

  82. Anenburg, M. & Williams, M. J. Quantifying the tetrad effect, shape components, and Ce–Eu–Gd anomalies in rare Earth element patterns. Math. Geosci. 54, 47–70 (2022).

    Google Scholar 

Download references

Acknowledgements

We thank Kim Baublys from the Stable Isotope Geochemistry Laboratory at the University of Queensland for assistance with S-isotope collection, Rebecca Pohrib from BHP Billiton for TIMA support and Louise Schoneveld from CSIRO for her help with the LA-ICP-MS data collection. We are grateful to Kevin Frost, John Simmonds, Anthony Crawford, Will Smith, and Edward Newitt for the many conversations that helped frame and shape this work. We appreciate the thoughtful feedback from Jon Hronsky and Graham Begg on an early version of this manuscript. We also thank Chalice Mining Limited for publication permission. This research is supported by the Australia Fees Offset Scholarship, the National Industry PhD Program (Project #36321), and is partially funded by the Australian Government through the ARC Training Centre in Critical Resources for the Future (Project #IC230100035).

Author information

Authors and Affiliations

  1. ARC Training Centre in Critical Resources for the Future, School of Earth and Oceans, The University of Western Australia, Crawley, Western Australia, Australia

    Matthew Demmer, Isra Ezad & Marco Fiorentini

  2. Centre for Exploration Targeting, School of Earth and Oceans, The University of Western Australia, Crawley, Western Australia, Australia

    Matthew Demmer, Isra Ezad & Marco Fiorentini

  3. Chalice Mining Limited, West Perth, Western Australia, Australia

    Matthew Demmer

Authors
  1. Matthew Demmer
    View author publications

    Search author on:PubMed Google Scholar

  2. Isra Ezad
    View author publications

    Search author on:PubMed Google Scholar

  3. Marco Fiorentini
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.D. collected and generated the data and led the writing of the manuscript. The concept of a metallogenic continuum operating in the Archean Yilgarn was developed jointly by M.D., I.E. and M.F. I.E. and M.F. also contributed to data interpretation and editing of the manuscript.

Corresponding author

Correspondence to Matthew Demmer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Brian O’Driscoll and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demmer, M., Ezad, I. & Fiorentini, M. Unveiling the metallogenic continuum of an Archean craton. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68507-z

Download citation

  • Received: 19 June 2025

  • Accepted: 08 January 2026

  • Published: 16 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68507-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing