Abstract
The synchronous formation between 2675–2655 Ma of hydrothermal gold mineralisation in the Kalgoorlie and Kurnalpi Terranes and of magmatic sulfide mineralisation enriched in nickel, copper and platinum-group elements in the South West Terrane of the Archean Yilgarn Craton of Western Australia offers key insights into first-order controls on the genesis of mineral systems. Here we show that hydrothermal and magmatic deposits formed on opposite sides of this craton share four key features: timing, enrichment in incompatible chalcophile elements, positive Δ³³S sulfur isotope signatures, and links to hydrous, metasomatised lithospheric mantle. These commonalities challenge conventional models that treat such mineralised systems as unrelated. Instead, they point to a shared origin: a fertile lithospheric mantle reservoir enriched by crustal recycling, which was subsequently tapped to generate magmas and fluids anomalously endowed in volatiles and metals that migrated through the overlying lithosphere, punctually triggering ore formation. These findings support a unified mineral system model in which mantle processes exert a first-order control over metal endowment of Archean cratons.
Similar content being viewed by others
Data availability
Sulfur isotope, automated mineralogy, in situ sulfide analysis, and whole-rock geochemistry data are provided in the Supplementary Datafile. Source data are provided with this paper.
References
Hronsky, J., Groves, D., Loucks, R. & Begg, C. A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods. Miner. Deposita 47, 339–358 (2012).
McCuaig, T. C., Beresford, S. & Hronsky, J. Translating the mineral systems approach into an effective exploration targeting system. Ore Geol. Rev. 38, 128–138 (2010).
McCuaig, T. C. & Hronsky, J. In Building Exploration Capability for the 21st Century(Society of Economic Geologists, 2014).
Begg, G. et al. Lithospheric, cratonic, and geodynamic setting of Ni-Cu-PGE sulfide deposits. Econ. Geol. 105, 1057–1070 (2010).
Tassara, S. et al. Plume-subduction interaction forms large auriferous provinces. Nat. Commun. 8, 843 (2017).
Ezad, I. et al. Incipient carbonate melting drives metal and sulfur mobilization in the mantle. Sci. Adv. 10, eadk5979 (2024).
Griffin, W., Begg, G. & O’Reilly, S. Continental-root control on the genesis of magmatic ore deposits. Nat. Geosci. 6, 905–910 (2013).
Barnes, S. J., Cruden, A. R., Arndt, N. & Saumur, B. M. The mineral system approach applied to magmatic Ni–Cu–PGE sulphide deposits. Ore Geol. Rev. 76, 296–316 (2016).
Wyman, D. A., Cassidy, K. F. & Hollings, P. Orogenic gold and the mineral systems approach: resolving fact, fiction and fantasy. Ore Geol. Rev. 78, 322–335 (2016).
Holwell, D. A. et al. A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. Nat. Commun. 10, 3511 (2019).
Corning, P. A. The re-emergence of “emergence”: a venerable concept in search of a theory. Complexity 7, 18–30 (2002).
Chalice Mining Limited. Gonneville Resource remodelled to support selective mining. ASX Announc. https://chalicemining.com/wp-content/uploads/2024/04/61203922.pdf (2024).
Lu, Y.-J. et al. Southwest Yilgarn Geochronology. https://doi.org/10.13140/RG.2.2.35768.47367 (2021).
Sumail et al. Temporal constraints on gold mineralisation at the world-class Jundee deposit: insights into the episodic nature of orogenic gold mineralisation in the Neoarchean Yilgarn Craton. Precambrian Res 410, 107479 (2024).
Hagemann, S. G. & Cassidy, K. F. In Gold in 2000 Vol. 13, 9–68 (Economic Geology, 2000).
Masurel, Q. & Thébaud, N. Deformation in the Agnew-Wiluna Greenstone Belt and host Kalgoorlie Terrane during the c. 2675–2630 Ma Kalgoorlie Orogeny: ∼45 Ma of horizontal shortening in a Neoarchean back-arc region. Precambrian Res. 414, 107586 (2024).
Mole, D. R. et al. Time-space evolution of an Archean craton: a Hf-isotope window into continent formation. Earth-Sci. Rev. 196, 102831 (2019).
Witt, W. K., Cassidy, K. F., Lu, Y.-J. & Hagemann, S. G. The tectonic setting and evolution of the 2.7 Ga Kalgoorlie–Kurnalpi Rift, a world-class Archean gold province. Miner. Deposita 55, 601–631 (2020).
Smithies, R. H. et al. A New Look at Lamprophyres and Sanukitoids and Their Relationship to the Black Flag Group and Gold Prospectivity (Geological Survey of Western Australia, 2018).
Champion, D. C. & Sheraton, J. W. Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: implications for crustal growth processes. Precambrian Res. 83, 109–132 (1997).
Choi, E., Fiorentini, M. L., Hughes, H. S. R. & Giuliani, A. Platinum-group element and Au geochemistry of Late Archean to Proterozoic calc-alkaline and alkaline magmas in the Yilgarn Craton, Western Australia. Lithos 374–375, 105716 (2020).
Witt, W., Ford, A., Hanrahan, B. & Mamuse, A. Regional-Scale Targeting for Gold in the Yilgarn Craton: Part 1 of the Yilgarn Gold Exploration Targeting Atlas (Geological Survey of Western Australia, 2013).
Shackleton, J. M., Spry, P. G. & Bateman, R. Telluride mineralogy of the Golden Mile deposit, Kalgoorlie, Western Australia. Can. Mineral. 41, 1503–1524 (2003).
Selvaraja, V., Caruso, S., Fiorentini, M. L., LaFlamme, C. K. & Bui, T.-H. Atmospheric sulfur in the orogenic gold deposits of the Archean Yilgarn Craton, Australia. Geology https://doi.org/10.1130/G39018.1 (2017).
LaFlamme, C. et al. Investigating sulfur pathways through the lithosphere by tracing mass independent fractionation of sulfur to the Lady Bountiful orogenic gold deposit, Yilgarn Craton. Gondwana Res. 58, 27–38 (2018).
Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).
Sugiono, D. et al. Integration of multiple sulfur isotopes with structural analysis unveils the evolution of ore fluids and source of sulfur at the Kanowna Belle Archean orogenic gold deposit, Yilgarn Craton, Western Australia. Miner. Deposita 56, 1471–1490 (2021).
LaFlamme, C. et al. Multiple sulfur isotopes monitor fluid evolution of an Archean orogenic gold deposit. Geochim. Cosmochim. Acta 222, 436–446 (2018).
Caruso, S. et al. Sulfur isotope systematics of granitoids from the Yilgarn Craton sheds new light on the fluid reservoirs of Neoarchean orogenic gold deposits. Geochim. Cosmochim. Acta 326, 199–213 (2022).
Duuring, P. & González-Álvarez, I. Diverse sources of sulfur in Archean ore deposits of the southwest Yilgarn Craton, Western Australia. Miner. Deposita https://doi.org/10.1007/s00126-025-01386-4 (2025).
Quentin De Gromard, R. & Ivanic, T. Redefining Archean terrane boundaries, a radical update within the Yilgarn Craton—a field guide. Geol. Surv. West. Aust. Record 2023/9 (2024).
Barnes, S. J., Coats, C. J. A. & Naldrett, A. J. Petrogenesis of a Proterozoic nickel-sulfide-komatiite association; the Katiniq Sill, Ungava, Quebec. Econ. Geol. 77, 413–429 (1982).
Barnes, S. J., Wells, M. A. & Verrall, M. R. Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Econ. Geol. 104, 539–562 (2009).
Barnes, S. J. & Hill, R. Metamorphism of komatiite-hosted nickel sulfide deposits. Soc. Econ. Geol. 203, 216 (1998).
Plümper, O., Røyne, A., Magrasó, A. & Jamtveit, B. The interface-scale mechanism of reaction-induced fracturing during serpentinization. Geology 40, 1103–1106 (2012).
Baublys, K. A., Golding, S. D., Young, E. & Kamber, B. S. Simultaneous determination of δ33S V-CDT and δ34S V-CDT using masses 48, 49 and 50 on a continuous flow isotope ratio mass spectrometer. Rapid Commun. Mass Spectrom 18, 2765–2769 (2004).
Barnes, S.-J., Cox, R. A. & Zientek, M. L. Platinum-group element, Gold, Silver and Base Metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril’sk, Russia. Contrib. Mineral. Petrol. 152, 187–200 (2006).
Arndt, N. Komatiites, kimberlites, and boninites. J. Geophys. Res. Solid Earth 108, 2002JB002157 (2003).
O’Neill, H. S.tC. The smoothness and shapes of chondrite-normalized rare Earth element patterns in basalts. J. Petrol. 57, 1463–1508 (2016).
Barnes, S. J. Are Bushveld U-type parent magmas boninites or contaminated komatiites?. Contrib. Mineral. Petrol. 101, 447–457 (1989).
Maier, W. D., Arndt, N. T. & Curl, E. A. Progressive crustal contamination of the Bushveld Complex: evidence from Nd isotopic analyses of the cumulate rocks. Contrib. Mineral. Petrol. 140, 316–327 (2000).
Rustioni, G., Audetat, A. & Keppler, H. The composition of subduction zone fluids and the origin of the trace element enrichment in arc magmas. Contrib. Mineral. Petrol. 176, 51 (2021).
Barnes, S.-J., Maier, W. D. & Curl, E. A. Composition of the marginal rocks and sills of the Rustenburg Layered Suite, Bushveld Complex, South Africa: implications for the formation of the platinum-group element deposits. Econ. Geol. 105, 1491–1511 (2010).
Maier, W. D. & Barnes, S.-J. Pt/Pd and Pd/Ir ratios in mantle-derived magmas: a possible role for mantle metasomatism. South Afr. J. Geol. 107, 333–340 (2004).
Crocket, J. H. Platinum-Group Element Geochemistry of Mafic and Ultramafic Rocks. In The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements: Edited by Louis J. Cabri Vol. 54, 117–210 (Canadian Institute of Mining, Metallurgy and Petroleum, 2002).
Hartnady, M. I. H. et al. Fluid processes in the early Earth and the growth of continents. Earth Planet. Sci. Lett. 594, 117695 (2022).
Tamblyn, R. et al. Hydrated komatiites as a source of water for TTG formation in the Archean. Earth Planet. Sci. Lett. 603, 117982 (2023).
Arndt, N. Why was flood volcanism on submerged continental platforms so common in the Precambrian?. Precambrian Res 97, 155–164 (1999).
Farquhar, J. & Wing, B. A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1–13 (2003).
Bekker, A. et al. Atmospheric sulfur in Archean komatiite-hosted nickel deposits. Science 326, 1086–1089 (2009).
Wallace, M. E. & Green, D. H. An experimental determination of primary carbonatite magma composition. Nature 335, 343–346 (1988).
Mungall, J., Hanley, J., Arndt, N. & Debecdelievre, A. Evidence from meimechites and other low-degree mantle melts for redox controls on mantle-crust fractionation of platinum-group elements. Proc. Natl. Acad. Sci. USA 103, 12695–12700 (2006).
Ballhaus, C., Bockrath, C., Wohlgemuth-Ueberwasser, C., Laurenz, V. & Berndt, J. Fractionation of the noble metals by physical processes. Contrib. Mineral. Petrol. 152, 667–684 (2006).
Alard, O., Griffin, W. L., Lorand, J. P., Jackson, S. E. & O’Reilly, S. Y. Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature 407, 891–894 (2000).
McInnes, B. I. A., McBride, J. S., Evans, N. J., Lambert, D. D. & Andrew, A. S. Osmium isotope constraints on ore metal recycling in subduction zones. Science 286, 512–516 (1999).
Jugo, P. J., Luth, R. W. & Richards, J. P. Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. Geochim. Cosmochim. Acta 69, 497–503 (2005).
Begg, G., Hronsky, J., Griffin, W. & O’Reilly, S. In Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time 1–46 (Elsevier, 2018).
Ezad, I. S. et al. Lithospheric hydrous pyroxenites control localisation and Ni endowment of magmatic sulfide deposits. Miner. Deposita 59, 227–236 (2024).
Groves, D. I. et al. A holistic model for the origin of orogenic gold deposits and its implications for exploration. Miner. Deposita 55, 275–292 (2020).
Zibra, I. et al. The importance of being molten: 100 Myr of synmagmatic shearing in the Yilgarn Craton (Western Australia). Implications for mineral systems. Precambrian Res 406, 107393 (2024).
Barnes, S.-J. & Ripley, E. M. Highly siderophile and strongly chalcophile elements in magmatic ore deposits. Rev. Mineral. Geochem. 81, 725–774 (2016).
Holwell, D. A. & McDonald, I. Distribution of platinum-group elements in the Platreef at Overysel, northern Bushveld Complex: a combined PGM and LA-ICP-MS study. Contrib. Mineral. Petrol. 154, 171–190 (2007).
Junge, M., Wirth, R., Oberthür, T., Melcher, F. & Schreiber, A. Mineralogical siting of platinum-group elements in pentlandite from the Bushveld Complex, South Africa. Miner. Deposita 50, 41–54 (2015).
Helmy, H. M. et al. How Pt and Pd are hosted in magmatic sulfides, substitutions and/or inclusions? Contrib. Mineral. Petrol. 178, 41 (2023).
Anenburg, M. & Mavrogenes, J. A. Noble metal nanonugget insolubility in geological sulfide liquids. Geology 48, 939–943 (2020).
Campbell, I. H. & Naldrett, A. J. The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides. Econ. Geol. 74, 1503–1506 (1979).
Fleet, M. E., Chryssoulis, S. L., Stone, W. E. & Weisener, C. G. Partitioning of platinum-group elements and Au in the Fe-Ni-Cu-S system: experiments on the fractional crystallization of sulfide melt. Contrib. Mineral. Petrol. 115, 36–44 (1993).
Tomkins, A. G., Pattison, D. R. M. & Zaleski, E. The Hemlo gold deposit, Ontario: an example of melting and mobilization of a precious metal-sulfosalt assemblage during amphibolite facies metamorphism and deformation. Econ. Geol. 99, 1063–1084 (2004).
Mansur, E. T., Barnes, S.-J. & Ferreira Filho, C. F. The effects of post-cumulus alteration on the distribution of chalcophile elements in magmatic sulfide deposits and implications for the formation of low-S-high-PGE zones: the Luanga deposit, Carajás Mineral Province, Brazil. Can. Mineral. 59, 1453–1484 (2021).
Fiorentini, M. L. et al. Multiple sulfur and iron isotope composition of magmatic Ni-Cu-(PGE) sulfide mineralization from Eastern Botswana. Econ. Geol. 107, 105–116 (2012).
Virnes, A. B. et al. Sulfur isotopes in Archaean crustal reservoirs constrain the transport and deposition mechanisms of nickel-sulfides in komatiites. Miner. Deposita https://doi.org/10.1007/s00126-024-01253-8 (2024).
Chen, C. et al. Sulfide-rich continental roots at cratonic margins formed by carbonated melts. Nature 637, 615–621 (2025).
Choi, E. et al. Subduction-related petrogenesis of Late Archean calc-alkaline lamprophyres in the Yilgarn Craton (Western Australia). Precambrian Res. 338, 105550 (2020).
Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508 (2011).
Thébaud, N. et al. Protracted and polyphased gold mineralisation in the Agnew District (Yilgarn Craton, Western Australia). Precambrian Res. 310, 291–304 (2018).
Godefroy-Rodríguez, M., Hagemann, S., LaFlamme, C. & Fiorentini, M. The multiple sulfur isotope architecture of the Golden Mile and Mount Charlotte deposits, Western Australia. Miner. Deposita 55, 797–822 (2020).
Palme, H. & O’Neill, H. St. C. In Treatise on Geochemistry 1–39 (Elsevier, 2014).
McDonough, W. F. & Sun, S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).
Kanayama, K., Umino, S. & Ishizuka, O. Geology and petrology. Mukojima Islands. Island Arc. Isl. Arc 21, 288–316 (2012).
Jenkins, M. C. et al. The geochemical and textural transition between the Reef Package and its Hanging Wall, Stillwater Complex, Montana, USA. J. Petrol. 63, egac053 (2022).
Sossi, P. A. et al. Petrogenesis and geochemistry of Archean komatiites. J. Petrol. 57, 147–184 (2016).
Anenburg, M. & Williams, M. J. Quantifying the tetrad effect, shape components, and Ce–Eu–Gd anomalies in rare Earth element patterns. Math. Geosci. 54, 47–70 (2022).
Acknowledgements
We thank Kim Baublys from the Stable Isotope Geochemistry Laboratory at the University of Queensland for assistance with S-isotope collection, Rebecca Pohrib from BHP Billiton for TIMA support and Louise Schoneveld from CSIRO for her help with the LA-ICP-MS data collection. We are grateful to Kevin Frost, John Simmonds, Anthony Crawford, Will Smith, and Edward Newitt for the many conversations that helped frame and shape this work. We appreciate the thoughtful feedback from Jon Hronsky and Graham Begg on an early version of this manuscript. We also thank Chalice Mining Limited for publication permission. This research is supported by the Australia Fees Offset Scholarship, the National Industry PhD Program (Project #36321), and is partially funded by the Australian Government through the ARC Training Centre in Critical Resources for the Future (Project #IC230100035).
Author information
Authors and Affiliations
Contributions
M.D. collected and generated the data and led the writing of the manuscript. The concept of a metallogenic continuum operating in the Archean Yilgarn was developed jointly by M.D., I.E. and M.F. I.E. and M.F. also contributed to data interpretation and editing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Brian O’Driscoll and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Demmer, M., Ezad, I. & Fiorentini, M. Unveiling the metallogenic continuum of an Archean craton. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68507-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-68507-z


