Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Engineering energy-efficient Saccharomyces cerevisiae for methanol and CO2 assimilation
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 January 2026

Engineering energy-efficient Saccharomyces cerevisiae for methanol and CO2 assimilation

  • Wei Zhong1,2,
  • Nana Liu1,2,
  • Binbin Chen1,2,
  • Huiqi Sun3,
  • Xiao Fei1,2,
  • Jiazhang Lian  ORCID: orcid.org/0000-0001-9784-98764,5,
  • Junling Guo  ORCID: orcid.org/0000-0002-2948-880X6,
  • Bo Wang  ORCID: orcid.org/0000-0002-3022-17907 &
  • …
  • Yajie Wang  ORCID: orcid.org/0000-0002-6216-791X1,2,3,8 

Nature Communications , Article number:  (2026) Cite this article

  • 2845 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Applied microbiology
  • Metabolic engineering
  • Metabolic pathways
  • Synthetic biology

Abstract

Methanol is a promising one-carbon (C1) feedstock for microbial bioconversion; however, engineered Saccharomyces cerevisiae often faces energetic constrains during its assimilation. Here, we develop SC-AOX25, an energy-efficient methylotrophic S. cerevisiae, through engineering of heterologous methanol-formaldehyde-formate (MFF) oxidation pathways coupled with adaptive laboratory evolution. SC-AOX25 efficiently generates adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NADH) during methanol metabolism while co-assimilating methanol-derived intermediates (formaldehyde, formate, and CO₂) via native glyoxylate-serine cycle, pentose phosphate pathway, and reductive glycine pathway. Key energy modules - Fdh1sc, Adh2m, Aoxm, and Rgi2m - are characterized for their roles in ATP/NADH synthesis and methylotrophic growth. Formaldehyde-induced DNA-protein crosslinks (DPCs) and large repeated DNA fragments suggest strategies for methanol detoxification and phenotype enhancement. Utilizing SC-AOX25, we enable CO₂ assimilation through non-native Calvin cycle during methanol fermentation, establishing the engineered strain as a robust and energy-efficient methylotrophic platform for further C1 engineering.

Similar content being viewed by others

Reprogramming methanol utilization pathways to convert Saccharomyces cerevisiae to a synthetic methylotroph

Article 15 May 2023

Identification of overoxidizing and non-overoxidizing NAD-dependent methanol dehydrogenases and implications for synthetic methylotrophy

Article Open access 09 December 2025

Evolutionary engineering of methylotrophic E. coli enables fast growth on methanol

Article Open access 13 October 2024

Data availability

The RNA-seq data and genome resequencing data generated in this study have been deposited in the NCBI SRA database under Bioproject PRJNA1238490 and PRJNA1238044, respectively. The proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE repository under accession PXD064258 and PXD064984. Source data are provided with this paper.

References

  1. Boehm, S. et al. State of Climate Action 2023. World Resour. Inst https://www.wri.org/research/state-climate-action-2023 (2023).

  2. Sollai, S., Porcu, A., Tola, V., Ferrara, F. & Pettinau, A. Renewable methanol production from green hydrogen and captured CO2: a techno-economic assessment. J. CO2 Util. 68, 102345 (2023).

    Google Scholar 

  3. Meunier, N., Chauvy, R., Mouhoubi, S., Thomas, D. & De Weireld, G. Alternative production of methanol from industrial CO2. Renew. Energ. 146, 1192–1203 (2020).

    Google Scholar 

  4. Kelso, P. A., Chow, L. K. M., Carpenter, A. C., Paulsen, I. T. & Williams, T. C. Toward methanol-based biomanufacturing: emerging strategies for engineering synthetic methylotrophy in Saccharomyces cerevisiae. ACS Synth. Biol. 11, 2548–2563 (2022).

    Google Scholar 

  5. Bertau, M., Offermanns, H., Plass, L., Schmidt, F. & Wernicke, H.-J. Methanol: The Basic Chemical and Energy Feedstock of the Future Vol. 1 (Springer, 2014).

  6. Patel, S. K. S. et al. Hierarchical macroporous particles for efficient whole-cell immobilization: Application in bioconversion of greenhouse gases to methanol. ACS Appl. Mater. Interfaces 11, 18968–18977 (2019).

    Google Scholar 

  7. Bennett, R. K., Steinberg, L. M., Chen, W. & Papoutsakis, E. T. Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Curr. Opin. Biotechnol. 50, 81–93 (2018).

    Google Scholar 

  8. Ochsner, A. M., Sonntag, F., Buchhaupt, M., Schrader, J. & Vorholt, J. A. Methylobacterium extorquens: methylotrophy and biotechnological applications. Appl. Microbiol. Biotechnol. 99, 517–534 (2015).

    Google Scholar 

  9. Mo, X.-H. et al. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis. Appl. Microbiol. Biotechnol. 104, 4515–4532 (2020).

    Google Scholar 

  10. Schultenkämper, K., Brito, L. F., López, M. G., Brautaset, T. & Wendisch, V. F. Establishment and application of CRISPR interference to affect sporulation, hydrogen peroxide detoxification, and mannitol catabolism in the methylotrophic thermophile Bacillus methanolicus. Appl. Microbiol. Biotechnol. 103, 5879–5889 (2019).

    Google Scholar 

  11. Yang, X., Zheng, Z. & Wang, Y. Bacillus methanolicus: an emerging chassis for low-carbon biomanufacturing. Trends Biotechnol. 43, 274–277 (2025).

    Google Scholar 

  12. Gao, J., Gao, N., Zhai, X. & Zhou, Y. J. Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha. iScience 24, 102168 (2021).

    Google Scholar 

  13. Wang, L. et al. Efficient CRISPR–Cas9 mediated multiplex genome editing in yeasts. Biotechnol. Biofuels 11, 277 (2018).

    Google Scholar 

  14. Liu, Q. et al. CRISPR–Cas9-mediated genomic multiloci integration in Pichia pastoris. Microb. Cell Fact. 18, 144 (2019).

    Google Scholar 

  15. Guo, F., Qiao, Y., Xin, F., Zhang, W. & Jiang, M. Bioconversion of C1 feedstocks for chemical production using Pichia pastoris. Trends Biotechnol. 41, 1066–1079 (2023).

    Google Scholar 

  16. Cai, P., Gao, J. & Zhou, Y. CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications. Microb. Cell Fact. 18, 63 (2019).

    Google Scholar 

  17. Chen, F. Y. H., Jung, H.-W., Tsuei, C.-Y. & Liao, J. C. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell 182, 933–946.e914 (2020).

    Google Scholar 

  18. Nieh, L.-Y. et al. Evolutionary engineering of methylotrophic E. coli enables fast growth on methanol. Nat. Commun. 15, 8840 (2024).

    Google Scholar 

  19. Reiter, M. A. et al. A synthetic methylotrophic Escherichia coli as a chassis for bioproduction from methanol. Nat. Catal. 7, 560–573 (2024).

    Google Scholar 

  20. Zhan, C. et al. Reprogramming methanol utilization pathways to convert Saccharomyces cerevisiae to a synthetic methylotroph. Nat. Catal. 6, 435–450 (2023).

    Google Scholar 

  21. Guo, Y. et al. Engineering yeasts to co-utilize methanol or formate coupled with CO2 fixation. Metab. Eng. 84, 1–12 (2024).

    Google Scholar 

  22. Espinosa, M. I. et al. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat. Commun. 11, 5564 (2020).

    Google Scholar 

  23. Guo, F. et al. Evolutionary engineering of Saccharomyces cerevisiae: Crafting a synthetic methylotroph via self-reprogramming. Sci. Adv. 10, eadq3484 (2024).

    Google Scholar 

  24. Attfield, P. V. Stress tolerance: The key to effective strains of industrial baker’s yeast. Nat. Biotechnol. 15, 1351–1357 (1997).

    Google Scholar 

  25. Nielsen, J. Yeast systems biology: model organism and cell factory. Biotechnol. J. 14, 1800421 (2019).

    Google Scholar 

  26. Lourens-Hattingh, A. & Viljoen, B. C. Growth and survival of a probiotic yeast in dairy products. Food Res. Int. 34, 791–796 (2001).

    Google Scholar 

  27. Espinosa, M. I., Williams, T. C., Pretorius, I. S. & Paulsen, I. T. Benchmarking two Saccharomyces cerevisiae laboratory strains for growth and transcriptional response to methanol. Syn. Syst. Biotechnol. 4, 180–188 (2019).

    Google Scholar 

  28. Dai, Z. et al. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae. Bioresour. Technol. 245, 1407–1412 (2017).

    Google Scholar 

  29. Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Bi. 27, 441–464 (2011).

    Google Scholar 

  30. Lieven, C., Herrgård, M. J. & Sonnenschein, N. Microbial methylotrophic metabolism: Recent metabolic modeling efforts and their applications in industrial biotechnology. Biotechnol. J. 13, 1800011 (2018).

    Google Scholar 

  31. Liu, Z., Wang, K., Chen, Y., Tan, T. & Nielsen, J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat. Catal. 3, 274–288 (2020).

    Google Scholar 

  32. Gregory, G. J., Bennett, R. K. & Papoutsakis, E. T. Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs. Metab. Eng. 71, 99–116 (2022).

    Google Scholar 

  33. Kim, S. et al. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat. Chem. Biol. 16, 538–545 (2020).

    Google Scholar 

  34. Yu, H. & Liao, J. C. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds. Nat. Commun. 9, 3992 (2018).

    Google Scholar 

  35. He, H., Höper, R., Dodenhöft, M., Marlière, P. & Bar-Even, A. An optimized methanol assimilation pathway relying on promiscuous formaldehyde-condensing aldolases in E. coli. Metab. Eng. 60, 1–13 (2020).

    Google Scholar 

  36. Wenk, S. et al. Evolution-assisted engineering of E. coli enables growth on formic acid at ambient CO2 via the serine threonine cycle. Metab. Eng. 88, 14–24 (2025).

    Google Scholar 

  37. Klein, V. J., Irla, M., Gil López, M., Brautaset, T. & Fernandes Brito, L. Unravelling formaldehyde metabolism in bacteria: Road towards synthetic methylotrophy. Microorganisms 10, 220 (2022).

    Google Scholar 

  38. Moioli, E., Mutschler, R. & Züttel, A. Renewable energy storage via CO2 and H2 conversion to methane and methanol: Assessment for small scale applications. Renew. Sust. Enegr. Rev. 107, 497–506 (2019).

    Google Scholar 

  39. Zhu, Z., Kin Tam, T., Sun, F., You, C. & Percival Zhang, Y. H. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat. Commun. 5, 3026 (2014).

    Google Scholar 

  40. Ullah, A., Hashim, N. A., Rabuni, M. F. & Mohd Junaidi, M. U. A review on methanol as a clean energy carrier: Roles of zeolite in improving production efficiency. Energies 16, 1482 (2023).

    Google Scholar 

  41. Ozimek, P., Kötter, P., Veenhuis, M. & van der Klei, I. J. Hansenula polymorpha and Saccharomyces cerevisiae Pex5p’s recognize different, independent peroxisomal targeting signals in alcohol oxidase. FEBS Lett. 580, 46–50 (2006).

    Google Scholar 

  42. Zhong, W., Li, H. & Wang, Y. Design and construction of artificial biological systems for one-carbon utilization. BioDes. Res. 5, 0021 (2023).

    Google Scholar 

  43. Sundström, M., Lindqvist, Y., Schneider, G., Hellman, U. & Ronne, H. Yeast TKL1 gene encodes a transketolase that is required for efficient glycolysis and biosynthesis of aromatic amino acids. J. Biol. Chem. 268, 24346–24352 (1993).

    Google Scholar 

  44. Navarro-Aviño, J. P., Prasad, R., Miralles, V. J., Benito, R. M. & Serrano, R. A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes. Yeast 15, 829–842 (1999).

    Google Scholar 

  45. Ruiz-Amil, M., de Torrontegui, G., Palacián, E., Catalina, L. & Losada, M. Properties and function of yeast pyruvate carboxylase. J. Biol. Chem. 240, 3485–3492 (1965).

    Google Scholar 

  46. Qin, N. et al. Increased CO2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast. Nat. Commun. 15, 1591 (2024).

    Google Scholar 

  47. Chandel, N. S. Glycolysis. Cold Spring Harb. Perspect. Biol. 13, a040535 (2021).

    Google Scholar 

  48. Kresnowati, M. T. A. P. et al. When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol. Syst. Biol. 2, 49 (2006).

    Google Scholar 

  49. Byrne, K. P. & Wolfe, K. H. The yeast gene order browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res. 15, 1456–1461 (2005).

    Google Scholar 

  50. Xia, P. F. et al. Recycling carbon dioxide during xylose fermentation by engineered Saccharomyces cerevisiae. ACS Synth. Biol. 6, 276–283 (2017).

    Google Scholar 

  51. Papapetridis, I. et al. Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield. Biotechnol. Biofuels 11, 17–17 (2018).

    Google Scholar 

  52. Yasokawa, D. et al. Toxicity of methanol and formaldehyde towards Saccharomyces cerevisiae as assessed by DNA microarray analysis. Appl. Biochem. Biotech. 160, 1685–1698 (2010).

    Google Scholar 

  53. Stingele, J. & Jentsch, S. DNA–protein crosslink repair. Nat. Rev. Mol. Cell Bio. 16, 455–460 (2015).

    Google Scholar 

  54. Falcone, C. & Mazzoni, C. External and internal triggers of cell death in yeast. Cell. Mol. Life Sci. 73, 2237–2250 (2016).

    Google Scholar 

  55. Carmona-Gutierrez, D. et al. Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ. 17, 763–773 (2010).

    Google Scholar 

  56. Spégel, C. F. et al. Amperometric response from the glycolytic versus the pentose phosphate pathway in Saccharomyces cerevisiae cells. Anal. Chem. 79, 8919–8926 (2007).

    Google Scholar 

  57. Lu, X. et al. Constructing a synthetic pathway for acetyl-coenzyme a from one-carbon through enzyme design. Nat. Commun. 10, 1378 (2019).

    Google Scholar 

  58. Mao, Y. F. et al. Non-natural aldol reactions enable the design and construction of novel one-carbon assimilation pathways in vitro. Front. Microbiol. 12, 677596 (2021).

    Google Scholar 

  59. Nattermann, M. et al. Engineering a new-to-nature cascade for phosphate-dependent formate to formaldehyde conversion in vitro and in vivo. Nat. Commun. 14, 2682 (2023).

    Google Scholar 

  60. Henras, A. K., Plisson-Chastang, C., O’Donohue, M.-F., Chakraborty, A. & Gleizes, P.-E. An overview of pre-ribosomal RNA processing in eukaryotes. WIREs RNA 6, 225–242 (2015).

    Google Scholar 

  61. Nomura, M. Ribosomal RNA genes, RNA polymerases, nucleolar structures, and synthesis of rRNA in the yeast Saccharomyces cerevisiae. Cold Spring Harb. Symp. Quant. Biol. 66, 555–565 (2001).

    Google Scholar 

  62. Berger, K. H. & Yaffe, M. P. Mitochondrial DNA inheritance in Saccharomyces cerevisiae. Trends Microbiol 8, 508–513 (2000).

    Google Scholar 

  63. de Zamaroczy, M. & Bernardi, G. The primary structure of the mitochondrial genome of Saccharomyces cerevisiae - a review. Gene 47, 155–177 (1986).

    Google Scholar 

  64. Zhang, Y. et al. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat. Commun. 10, 1053 (2019).

    Google Scholar 

  65. Naito, Y., Hino, K., Bono, H. & Ui-Tei, K. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31, 1120–1123 (2015).

    Google Scholar 

  66. Evers, M. E., Harder, W. & Veenhuis, M. In vitro dissociation and re-assembly of peroxisomal alcohol oxidases of Hansenula polymorpha and Pichia pastoris. FEBS Lett. 368, 293–296 (1995).

    Google Scholar 

  67. Couderc, R. & Baratti, J. Oxidation of methanol by the yeast, Pichia pastoris. purification and properties of the alcohol oxidase. Agric. Biol. Chem. 44, 2279–2289 (1980).

    Google Scholar 

  68. SchÜTte, H., Flossdorf, J., Sahm, H. & Kula, M.-R. Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii. Eur. J. Biochem. 62, 151–160 (1976).

    Google Scholar 

  69. Degrassi, G., Uotila, L., Klima, R. & Venturi, V. Purification and properties of an esterase from the yeast Saccharomyces cerevisiae and identification of the encoding gene. Appl. Environ. Microbiol. 65, 3470–3472 (1999).

    Google Scholar 

  70. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Google Scholar 

  71. Overkamp, K. M. et al. Functional analysis of structural genes for NAD+-dependent formate dehydrogenase in Saccharomyces cerevisiae. Yeast 19, 509–520 (2002).

    Google Scholar 

  72. Seah, T. C. M. & Kaplan, J. G. Purification and properties of the catalase of bakers’ yeast. J. Biol. Chem. 248, 2889–2893 (1973).

    Google Scholar 

  73. Ruuska, S. A., Badger, M. R., Andrews, T. J. & von Caemmerer, S. Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction. J. Exp. Bot. 51, 357–368 (2000).

    Google Scholar 

  74. Yamori, W. & von Caemmerer, S. Effect of Rubisco activase deficiency on the temperature response of CO2 assimilation rate and Rubisco activation state: Insights from transgenic tobacco with reduced amounts of Rubisco activase. Plant Physiol. 151, 2073–2082 (2009).

    Google Scholar 

  75. Sulpice, R. et al. Description and applications of a rapid and sensitive non-radioactive microplate-based assay for maximum and initial activity of D-ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Cell Environ. 30, 1163–1175 (2007).

    Google Scholar 

  76. MacElroy Robert, D., Mack Henry, M. & Johnson Emmett, J. Properties of phosphoribulokinase from Thiobacillus neapolitanus. J. Bacteriol. 112, 532–538 (1972).

    Google Scholar 

  77. Lee, J.-Y., Cheong, D.-E. & Kim, G.-J. A novel assay system for the measurement of transketolase activity using xylulokinase from Saccharomyces cerevisiae. Biotechnol. Lett. 30, 899–904 (2008).

    Google Scholar 

  78. Wang, X., Mann Craig, J., Bai, Y., Ni, L. & Weiner, H. Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae. J. Bacteriol. 180, 822–830 (1998).

    Google Scholar 

  79. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔCT method. Methods 25, 402–408 (2001).

    Google Scholar 

  80. Burda, P. et al. Stepwise assembly of the lipid-linked oligosaccharide in the endoplasmic reticulum of Saccharomyces cerevisiae: Identification of the ALG9 gene encoding a putative mannosyl transferase. Proc. Natl. Acad. Sci. USA 93, 7160–7165 (1996).

    Google Scholar 

  81. Wang, Y., Parsons, L. R. & Su, X. AccuCor2: isotope natural abundance correction for dual-isotope tracer experiments. Lab. Invest. 101, 1403–1410 (2021).

    Google Scholar 

  82. Cota-Sánchez, J. H., Remarchuk, K. & Ubayasena, K. Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Mol. Biol. Rep. 24, 161–167 (2006).

    Google Scholar 

  83. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    Google Scholar 

  84. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).

    Google Scholar 

  85. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Google Scholar 

  86. Shen, S. et al. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-seq data. Proc. Natl. Acad. Sci. USA 111, E5593–E5601 (2014).

    Google Scholar 

  87. Castell, C. H. & Smith, B. Measurement of formaldehyde in fish muscle using TCA extraction and the Nash reagent. J. Fish. Res. Board Can. 30, 91–98 (1973).

    Google Scholar 

  88. Kamiloglu, S., Sari, G., Ozdal, T. & Capanoglu, E. Guidelines for cell viability assays. Food Front. 1, 332–349 (2020).

    Google Scholar 

  89. Sun, P., Zhang, H., Sun, Y. & Liu, J. The recent development of fluorescent probes for the detection of NADH and NADPH in living cells and in vivo. Spectrochim. Acta A. 245, 118919 (2021).

    Google Scholar 

  90. Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat. Methods 14, 513–520 (2017).

    Google Scholar 

  91. Yu, F. et al. Fast quantitative analysis of timsTOF PASEF data with MSFragger and IonQuant. Mol. Cell. Proteom. 19, 1575–1585 (2020).

    Google Scholar 

  92. Flamholz, A., Noor, E., Bar-Even, A. & Milo, R. eQuilibrator-the biochemical thermodynamics calculator. Nucleic Acids Res. 40, D770–D775 (2012).

    Google Scholar 

  93. Beber, M. E. et al. eQuilibrator 3.0: a database solution for thermodynamic constant estimation. Nucleic Acids Res. 50, D603–D609 (2022).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (32401209), National Key R&D Program of China (2022YFA0912800), National Natural Science Foundation of China (22178233), Talents Program of Sichuan Province, Fundamental Research Funds for the Central Universities (SCU2025D014), Double First-Class University Plan of Sichuan University, State Key Laboratory of Polymer Materials Engineering (sklpme 2020-03-01), Suzhou Municipal High-Level Talent Entrepreneurship Fund, Tianfu Emei Program of Sichuan Province (2022-EC02-00073-CG) the Center of Synthetic Biology and Integrated Bioengineering (WU2022A006, WU2022A007, WU2023A009), Research Plan for Westlake University Funded Scientific Research Project (WU2022C032), Zhejiang Key Laboratory of Low-Carbon Intelligent Synthetic Biology (2024ZY01025), and Shenzhen Science and Technology Program (RCYX20231211090115013). We thank Wenwen Zhang and Xiaoyan Xu at Mass Spectrometry & Metabolomics Core Facility of Westlake University for MS analysis.

Author information

Authors and Affiliations

  1. Center of Synthetic Biology and integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China

    Wei Zhong, Nana Liu, Binbin Chen, Xiao Fei & Yajie Wang

  2. School of Engineering, Westlake University, Hangzhou, Zhejiang, China

    Wei Zhong, Nana Liu, Binbin Chen, Xiao Fei & Yajie Wang

  3. Center for Future Food, Muyuan Laboratory, Zhengzhou, Henan, China

    Huiqi Sun & Yajie Wang

  4. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China

    Jiazhang Lian

  5. State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China

    Jiazhang Lian

  6. BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, China

    Junling Guo

  7. State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Key Laboratory of Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou, China

    Bo Wang

  8. School of Life Science, Westlake University, Hangzhou, Zhejiang, China

    Yajie Wang

Authors
  1. Wei Zhong
    View author publications

    Search author on:PubMed Google Scholar

  2. Nana Liu
    View author publications

    Search author on:PubMed Google Scholar

  3. Binbin Chen
    View author publications

    Search author on:PubMed Google Scholar

  4. Huiqi Sun
    View author publications

    Search author on:PubMed Google Scholar

  5. Xiao Fei
    View author publications

    Search author on:PubMed Google Scholar

  6. Jiazhang Lian
    View author publications

    Search author on:PubMed Google Scholar

  7. Junling Guo
    View author publications

    Search author on:PubMed Google Scholar

  8. Bo Wang
    View author publications

    Search author on:PubMed Google Scholar

  9. Yajie Wang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

W.Z. and Y.W. conceived and designed the study. Y.W. supervised the project. W.Z. and N.L. performed the experiments and data processing, and analyzed the data. B.C. completed the analysis of the structure of Aoxm and Adh2m, respectively. H.S. and X.F. were involved in constructing some of the engineered yeast strains needed for the study. W.Z. and Y.W. wrote and revised the manuscript with input of all authors. J.L., J.G., and B.W. contributed to the review, editing, and final approval of the manuscript. They provided valuable insights and suggestions to improve the quality of the research paper.

Corresponding author

Correspondence to Yajie Wang.

Ethics declarations

Competing interests

Authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Wenming Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Declaration of generative AI and AI-ASSISTED technologies

During the preparation of this manuscript, the authors utilized Grammarly (https://www.grammarly.com/) and DeepSeek (www.deepseek.com) for grammatical revision and language polishing. All AI-generated suggestions were critically reviewed and manually adjusted by the authors, who assume full responsibility for the intellectual content and academic integrity of this work.

Supplementary information

Supplementary Information

Peer Review file

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Reporting Summary

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, W., Liu, N., Chen, B. et al. Engineering energy-efficient Saccharomyces cerevisiae for methanol and CO2 assimilation. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68516-y

Download citation

  • Received: 15 May 2025

  • Accepted: 08 January 2026

  • Published: 17 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68516-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research