Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Prenatal Zika virus exposure disrupts social-emotional development and cortical visual function in infant macaques
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 29 January 2026

Prenatal Zika virus exposure disrupts social-emotional development and cortical visual function in infant macaques

  • Karla K. Ausderau  ORCID: orcid.org/0000-0003-0799-10221,2,
  • Ben Boerigter1,
  • Elaina R. Razo3,
  • Jake Gutkes1,
  • Nicholas P. Krabbe  ORCID: orcid.org/0000-0002-5511-09153,
  • Ann M. Mitzey3,
  • Shannon Walsh1,
  • Viktorie Menna1,
  • John R. Drew Jr1,
  • Sabrina Kabakov  ORCID: orcid.org/0000-0003-4852-93601,
  • Finn Eckes3,
  • Rachel V. Spanton  ORCID: orcid.org/0000-0003-3987-25033,
  • Anika Shah3,
  • Angelica Sun3,
  • Alex Katz  ORCID: orcid.org/0000-0001-6941-21084,
  • Charlene Kim  ORCID: orcid.org/0000-0003-1205-45354,
  • Amy Hartman  ORCID: orcid.org/0000-0003-3635-88835,
  • Andrea M. Weiler6,
  • Carol Rasmussen4,
  • T. Michael Nork  ORCID: orcid.org/0000-0002-0687-373X4,
  • Puja Basu  ORCID: orcid.org/0000-0003-4051-79986,
  • Heather A. Simmons  ORCID: orcid.org/0000-0002-4862-72896,
  • James Ver Hoeve  ORCID: orcid.org/0000-0003-3541-75894,
  • Saverio Capuano6,
  • Matthew T. Aliota  ORCID: orcid.org/0000-0002-6902-91497,
  • Thomas C. Friedrich  ORCID: orcid.org/0000-0001-9831-68956,8 &
  • …
  • Emma L. Mohr  ORCID: orcid.org/0000-0003-0742-305X3,9 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Viral pathogenesis
  • Virus–host interactions

Abstract

Prenatal Zika virus (ZIKV) exposure can result in outcomes ranging from severe birth defects to subtle developmental delays, yet the underlying mechanisms remain unclear. Using a translational rhesus macaque model, we assess visual, auditory, and neurodevelopmental outcomes through 12 months of age following first-trimester ZIKV inoculation. Pregnant macaques, either flavivirus-naive or with prior dengue virus (DENV) exposure, are inoculated with Asian or African ZIKV lineages. Maternal viremia duration, placental viral burden, and neutralizing antibody titers vary but are not associated with developmental outcomes. At 12 months, ZIKV-exposed infants exhibit altered maternal attachment behaviors and reduced inhibition toward novel sensory stimuli. Visual evoked potentials are impaired at 3 months but normalize by 12 months; hearing loss is more frequent but not statistically significant. These outcomes are driven by ZIKV exposure itself, independent of maternal infection characteristics. Our findings highlight the limitations of maternal biomarkers in risk prediction and support incorporating infant-focused developmental outcomes in studies of maternal interventions.

Data availability

Source data are provided with this paper.

References

  1. Deshpande, G. R. et al. An outbreak of Zika virus in western India in the metropolis of Pune in the monsoon of 2024. J. Infect. Public Health 18, 102720 (2025).

    Google Scholar 

  2. Pezzi, L. et al. Zika virus infection in a traveller returning to France from Seychelles, 2024. J. Travel Med. https://doi.org/10.1093/jtm/taaf048 (2025).

    Google Scholar 

  3. Mulkey, S. B. et al. Neurodevelopmental abnormalities in children with in utero Zika virus exposure without congenital Zika syndrome. JAMA Pediatr. 174, 269–276 (2020).

    Google Scholar 

  4. Nielsen-Saines, K. et al. Delayed childhood neurodevelopment and neurosensory alterations in the second year of life in a prospective cohort of ZIKV-exposed children. Nat. Med. 25, 1213–1217 (2019).

    Google Scholar 

  5. Peçanha, P. M. et al. Neurodevelopment of children exposed intra-uterus by Zika virus: a case series. PLoS ONE 15, e0229434 (2020).

    Google Scholar 

  6. Vianna, R. A. et al. Children born to mothers with rash during Zika virus epidemic in Brazil: first 18 months of life. J. Trop. Pediatr. 65, 592–602 (2019).

    Google Scholar 

  7. Venancio, F. A. et al. Early and long-term adverse outcomes of in utero Zika exposure. Pediatrics 155, e2024067552 (2025).

  8. Mulkey, S. B. et al. School-age child neurodevelopment following antenatal Zika virus exposure. Pediatr. Res. https://doi.org/10.1038/s41390-025-03981-7 (2025).

  9. Moore, C. A. et al. Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr. 171, 288–295 (2017).

    Google Scholar 

  10. Roth, N. M. et al. Zika-associated birth defects reported in pregnancies with laboratory evidence of confirmed or possible Zika virus infection—U.S. Zika Pregnancy and Infant Registry, December 1, 2015-March 31, 2018. Morb. Mortal. Wkly. Rep. 71, 73–79 (2022).

    Google Scholar 

  11. Mahmoud, A., Pomar, L., Lambert, V., Picone, O. & Hcini, N. Prenatal and postnatal ocular abnormalities following congenital Zika virus infections: a systematic review. Ocul. Immunol. Inflamm. 1, 11 (2024).

    Google Scholar 

  12. Almeida, L. C. et al. Hearing and communicative skills in the first years of life in children with congenital Zika syndrome. Braz. J. Otorhinolaryngol. 88, 112–117 (2022).

    Google Scholar 

  13. Barbosa, M. H. et al. Auditory findings associated with Zika virus infection: an integrative review. Braz. J. Otorhinolaryngol. 85, 642–663 (2019).

    Google Scholar 

  14. Veldhorst, C., Vervloed, M., Kef, S. & Steenbergen, B. A scoping review of longitudinal studies of children with vision impairment. Br. J. Vis. Impair. 41, 587–609 (2023).

    Google Scholar 

  15. Lieu, J. E. C., Kenna, M., Anne, S. & Davidson, L. Hearing loss in children: a review. JAMA 324, 2195–2205 (2020).

    Google Scholar 

  16. Mohr, E. L. Modeling Zika virus-associated birth defects in nonhuman primates. J. Pediatric Infect. Dis. Soc. 7, S60–S66 (2018).

    Google Scholar 

  17. Dudley, D. M. et al. Using macaques to address critical questions in Zika virus research. Annu. Rev. Virol. 6, 481–500 (2019).

    Google Scholar 

  18. Narasimhan, H., Chudnovets, A., Burd, I., Pekosz, A. & Klein, S. L. Animal models of congenital zika syndrome provide mechanistic insight into viral pathogenesis during pregnancy. PLoS Negl. Trop. Dis. 14, e0008707 (2020).

    Google Scholar 

  19. Morrison, T. E. & Diamond, M. S. Animal models of Zika virus infection, pathogenesis, and immunity. J. Virol. 91, e00009-17 (2017).

  20. Gutkes, J., Krabbe, N. P., Ausderau, K. & Mohr, E. L. Macaque models of prenatal and postnatal Zika virus exposure and developmental outcomes. J. Pediatric Infect. Dis. Soc. https://doi.org/10.1093/jpids/piaf024 (2025).

  21. Sackett, G. P. Chapter 1—Developmental disabilities and primate models defined. in Primate Models of Children’s Health and Developmental Disabilities (eds Burbacher, T. M., Sackett, G. P. & Grant, K. S.) 1–10 (Academic Press, 2008).

  22. Koenig, M. R. et al. Quantitative definition of neurobehavior, vision, hearing and brain volumes in macaques congenitally exposed to Zika virus. PLoS ONE 15, e0235877 (2020).

    Google Scholar 

  23. Ausderau, K. et al. Neonatal development in prenatally Zika virus-exposed infant macaques with dengue immunity. Viruses 13, 1878 (2021).

  24. Pomar, L. et al. Prolonged maternal Zika viremia as a marker of adverse perinatal outcomes. Emerg. Infect. Dis. 27, 490–498 (2021).

    Google Scholar 

  25. Driggers, R. W. et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med. 374, 2142–2151 (2016).

    Google Scholar 

  26. Suy, A. et al. Prolonged Zika virus viremia during pregnancy. N. Engl. J. Med. 375, 2611–2613 (2016).

    Google Scholar 

  27. Schwartz, K. L. et al. Zika virus infection in a pregnant Canadian traveler with congenital fetal malformations noted by ultrasonography at 14-weeks gestation. Trop. Dis. Travel Med. Vaccines 4, 2 (2018).

    Google Scholar 

  28. Nielsen-Saines, K. et al. Development of maternal antibodies post ZIKV in pregnancy is associated with lower risk of microcephaly and structural brain abnormalities in exposed infants. J. Infect. Dis. https://doi.org/10.1093/infdis/jiaf146 (2025).

  29. Gordon, A. et al. Prior dengue virus infection and risk of Zika: a pediatric cohort in Nicaragua. PLoS Med. 16, e1002726 (2019).

    Google Scholar 

  30. Bardina, S. V. et al. Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 356, 175–180 (2017).

    Google Scholar 

  31. Langerak, T. et al. Transplacental Zika virus transmission in ex vivo perfused human placentas. PLoS Negl. Trop. Dis. 16, e0010359 (2022).

    Google Scholar 

  32. McCracken, M. K. et al. Impact of prior flavivirus immunity on Zika virus infection in rhesus macaques. PLoS Pathog. 13, e1006487 (2017).

    Google Scholar 

  33. Pantoja, P. et al. Zika virus pathogenesis in rhesus macaques is unaffected by pre-existing immunity to dengue virus. Nat. Commun. 8, 15674 (2017).

    Google Scholar 

  34. Sansone, N. M. S., Boschiero, M. N. & Marson, F. A. L. Dengue outbreaks in Brazil and Latin America: the new and continuing challenges. Int. J. Infect. Dis. 147, 107192 (2024).

    Google Scholar 

  35. Halai, U.-A. et al. Maternal Zika virus disease severity, virus load, prior dengue antibodies, and their relationship to birth outcomes. Clin. Infect. Dis. 65, 877–883 (2017).

  36. Brasil, P. et al. Zika virus infection in pregnant women in Rio de Janeiro. N. Engl. J. Med. 375, 2321–2334 (2016).

    Google Scholar 

  37. Moreira-Soto, A. et al. Exhaustive TORCH pathogen diagnostics corroborate Zika virus etiology of congenital malformations in Northeastern Brazil. mSphere 3, e00278-18 (2018).

  38. Pedroso, C. et al. Cross-protection of dengue virus infection against congenital Zika syndrome, northeastern Brazil. Emerg. Infect. Dis. 25, 1485–1493 (2019).

    Google Scholar 

  39. de Paula Freitas, B. et al. Ocular findings in infants with microcephaly associated with presumed Zika virus congenital infection in Salvador, Brazil. JAMA Ophthalmol. 134, 529–535 (2016).

    Google Scholar 

  40. Pimentel, R. et al. Birth defects and long-term neurodevelopmental abnormalities in infants born during the Zika virus epidemic in the Dominican Republic. Ann. Glob. Health 87, 4 (2021).

    Google Scholar 

  41. Honein, M. A. et al. Birth defects among fetuses and infants of US women with evidence of possible Zika virus infection during pregnancy. JAMA 317, 59–68 (2017).

    Google Scholar 

  42. Jaeger, A. S. et al. Zika viruses of African and Asian lineages cause fetal harm in a mouse model of vertical transmission. PLoS Negl. Trop. Dis. 13, e0007343 (2019).

    Google Scholar 

  43. Crooks, C. M. et al. African-lineage Zika virus replication dynamics and maternal-fetal interface infection in pregnant rhesus macaques. J. Virol. 95, e0222020 (2021).

    Google Scholar 

  44. Raasch, L. E. et al. Fetal loss in pregnant rhesus macaques infected with high-dose African-lineage Zika virus. PLoS Negl. Trop. Dis. 16, e0010623 (2022).

    Google Scholar 

  45. Mohr, E. L. et al. Ocular and uteroplacental pathology in a macaque pregnancy with congenital Zika virus infection. PLoS ONE 13, e0190617 (2018).

    Google Scholar 

  46. Hinde, R. A. & White, L. E. Dynamics of a relationship: rhesus mother-infant ventro-ventral contact. J. Comp. Physiol. Psychol. 86, 8–23 (1974).

    Google Scholar 

  47. Hinde, R. A. & Spencer-Booth, Y. The behaviour of socially living rhesus monkeys in their first two and a half years. Anim. Behav. 15, 169–196 (1967).

    Google Scholar 

  48. Hinde, R., Rowell, T. E. & Spencer-Booth, Y. Behavior socially living rhesus monkey first six months. Proc. Zool. Soc. Lond. 143, 609–649 (1964).

    Google Scholar 

  49. Sanchez, M. M., McCormack, K. M. & Howell, B. R. Social buffering of stress responses in nonhuman primates: maternal regulation of the development of emotional regulatory brain circuits. Soc. Neurosci. 10, 512–526 (2015).

    Google Scholar 

  50. Moadab, G. et al. Prenatal Zika virus infection has sex-specific effects on infant physical development and mother-infant social interactions. Sci. Transl. Med. 15, eadh0043 (2023).

    Google Scholar 

  51. Bliss-Moreau, E., Moadab, G. & Amaral, D. G. Living Without Amygdala 149–185 (The Guilford Press, 2016).

  52. Machado, C. J. Building Babies: Primate Development Proximate Ultimate Perspective, Developments Primatology: Progress Prospects 259–279 (Springer, 2013).

  53. Raper, J. et al. Long-term alterations in brain and behavior after postnatal Zika virus infection in infant macaques. Nat. Commun. 11, 2534 (2020).

    Google Scholar 

  54. Raper, J., Stephens, S. B. Z., Sanchez, M., Bachevalier, J. & Wallen, K. Neonatal amygdala lesions alter mother-infant interactions in rhesus monkeys living in a species-typical social environment. Dev. Psychobiol. 56, 1711–1722 (2014).

    Google Scholar 

  55. Medina, A. et al. Treatment with sofosbuvir attenuates the adverse neurodevelopmental consequences of Zika virus infection in infant rhesus macaques. J. Neuroimmunol. 381, 578148 (2023).

    Google Scholar 

  56. Schneider, M. L. et al. Sensory processing disorder in a primate model: evidence from a longitudinal study of prenatal alcohol and prenatal stress effects. Child Dev. 79, 100–113 (2008).

    Google Scholar 

  57. Moore, C. F. et al. Developmental lead exposure induces tactile defensiveness in rhesus monkeys (Macaca mulatta). Environ. Health Perspect. 116, 1322–1326 (2008).

    Google Scholar 

  58. Cogo, P. R., Moadab, G., Bliss-Moreau, E. & Pittet, F. Prenatal Zika virus exposure alters the interaction between affective processing and decision-making in juvenile rhesus macaques (Macaca mulatta). Dev. Psychobiol. 66, e70002 (2024).

    Google Scholar 

  59. White, L. K., McDermott, J. M., Degnan, K. A., Henderson, H. A. & Fox, N. A. Behavioral inhibition and anxiety: the moderating roles of inhibitory control and attention shifting. J. Abnorm. Child Psychol. 39, 735–747 (2011).

    Google Scholar 

  60. Bliss-Moreau, E., Toscano, J. E., Bauman, M. D., Mason, W. A. & Amaral, D. G. Neonatal amygdala or hippocampus lesions influence responsiveness to objects. Dev. Psychobiol. 52, 487–503 (2010).

    Google Scholar 

  61. Bliss-Moreau, E., Toscano, J. E., Bauman, M. D., Mason, W. A. & Amaral, D. G. Neonatal amygdala lesions alter responsiveness to objects in juvenile macaques. Neuroscience 178, 123–132 (2011).

    Google Scholar 

  62. Meunier, M. & Bachevalier, J. Comparison of emotional responses in monkeys with rhinal cortex or amygdala lesions. Emotion 2, 147–161 (2002).

    Google Scholar 

  63. Meunier, M., Nalwa, V. & Bachevalier, J. Reactions to familiar and novel objects in infant monkeys with neonatal temporal lesions. Hippocampus 13, 489–493 (2003).

    Google Scholar 

  64. Malkova, L., Mishkin, M., Suomi, S. J. & Bachevalier, J. Long-term effects of neonatal medial temporal ablations on socioemotional behavior in monkeys (Macaca mulatta). Behav. Neurosci. 124, 742–760 (2010).

    Google Scholar 

  65. Medina, A., Torres, J., Kazama, A. M., Bachevalier, J. & Raper, J. Emotional responses in monkeys differ depending on the stimulus type, sex, and neonatal amygdala lesion status. Behav. Neurosci. 134, 153–165 (2020).

    Google Scholar 

  66. de Aguiar, E. B. et al. Anthropometric parameters of children with congenital Zika virus exposure in the first three years of life. Viruses 14, 876 (2022).

  67. Peixoto, L. et al. Growth velocity and nutritional status in children exposed to Zika virus during pregnancy from Amazonas Cohort, Brazil. Viruses 15, 662 (2023).

  68. Almeida, L. F. B. et al. Pattern-reversal visual evoked potential in children with congenital Zika syndrome. J. Pediatr. Ophthalmol. Strabismus 58, 78–83 (2021).

    Google Scholar 

  69. García-Boyano, M. et al. Long-term outcomes of infants with congenital Zika virus infection in Ecuador: a retrospective longitudinal study. J. Trop. Pediatr. 67, fmaa066 (2021).

  70. Gordon, S., Kerr, A., Wiggs, C. & Chiang, M. F. What is cerebral/cortical visual impairment and why do we need a new definition? Ophthalmology 131, 1357–1358 (2024).

    Google Scholar 

  71. Crooks, C. M. et al. Previous exposure to dengue virus is associated with increased Zika virus burden at the maternal-fetal interface in rhesus macaques. PLoS Negl. Trop. Dis. 15, e0009641 (2021).

  72. Coe, C. L. & Lubach, G. R. Maternal determinants of gestation length in the rhesus monkey. Trends Dev. Biol. 14, 63–72 (2021).

    Google Scholar 

  73. Weatherall, D. The Use of Non-Human Primates in Research (Academy of Medical Sciences, Medical Research Council, Royal Society, Wellcome Trust, London, 2006).

  74. National Research Council, Division on Earth and Life Studies, Institute for Laboratory Animal Research & Committee on Guidelines for the Use of Animals in Neuroscience and Behavioral Research. Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research (National Academies Press, 2003).

  75. Tarantal, A. F. Ultrasound imaging in rhesus (Macaca mulatta) and long-tailed (Macaca fascicularis) macaques: reproductive and research applications. In The Laboratory Primate. (ed. Wolfe-Coote, S.) 317–352 (Elsevier, 2005).

  76. Dudley, D. M. et al. A rhesus macaque model of Asian-lineage Zika virus infection. Nat. Commun. 7, 12204 (2016).

    Google Scholar 

  77. Lanciotti, R. S. et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 14, 1232–1239 (2008).

    Google Scholar 

  78. Hansen, S. G. et al. Immune clearance of highly pathogenic SIV infection. Nature 502, 100–104 (2013).

    Google Scholar 

  79. Krabbe, N. P. et al. Control of maternal Zika virus infection during pregnancy is associated with lower antibody titers in a macaque model. Front. Immunol. 14, 1267638 (2023).

    Google Scholar 

  80. Hall, J. W. New Handbook of Auditory Evoked Responses (Pearson, 2007).

  81. Huang, Y. et al. Development of a semi-automatic segmentation method for retinal OCT images tested in patients with diabetic macular edema. PLoS ONE 8, e82922 (2013).

    Google Scholar 

  82. Robson, A. G. et al. ISCEV guide to visual electrodiagnostic procedures. Doc. Ophthalmol. 136, 1–26 (2018).

    Google Scholar 

  83. Sitdikova, G. et al. Isoflurane suppresses early cortical activity. Ann. Clin. Transl. Neurol. 1, 15–26 (2014).

    Google Scholar 

Download references

Acknowledgements

We thank the Wisconsin National Primate Research Center, specifically Behavioral Management Services, Scientific Protocol Implementation Services, Pathology Services, and Veterinary Services for their assistance with this project. We thank David O’Connor for insightful discussions on experimental design. This project was supported in part by NIH P01AI132132. We used ChatGPT 4o to assist with improving readability. We thank Saswati Bhattacharya, Taylor Treadway, and Nikunj Makwana for their contributions. This work was supported by the National Institutes of Health grants R01 AI153130 (to K.K.A. and E.L.M.), P01AI132132 (David O’Connor), and P30EY016665 (Vision Research Core), and by the Eunice Kennedy Shriver National Institute of Child Health and Human Development grant P50HD105353 (Waisman Center).

Author information

Authors and Affiliations

  1. Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA

    Karla K. Ausderau, Ben Boerigter, Jake Gutkes, Shannon Walsh, Viktorie Menna, John R. Drew Jr & Sabrina Kabakov

  2. Waisman Center, University of Wisconsin-Madison, Madison, WI, USA

    Karla K. Ausderau

  3. Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA

    Elaina R. Razo, Nicholas P. Krabbe, Ann M. Mitzey, Finn Eckes, Rachel V. Spanton, Anika Shah, Angelica Sun & Emma L. Mohr

  4. Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA

    Alex Katz, Charlene Kim, Carol Rasmussen, T. Michael Nork & James Ver Hoeve

  5. Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA

    Amy Hartman

  6. Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA

    Andrea M. Weiler, Puja Basu, Heather A. Simmons, Saverio Capuano & Thomas C. Friedrich

  7. Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, USA

    Matthew T. Aliota

  8. Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA

    Thomas C. Friedrich

  9. Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA

    Emma L. Mohr

Authors
  1. Karla K. Ausderau
    View author publications

    Search author on:PubMed Google Scholar

  2. Ben Boerigter
    View author publications

    Search author on:PubMed Google Scholar

  3. Elaina R. Razo
    View author publications

    Search author on:PubMed Google Scholar

  4. Jake Gutkes
    View author publications

    Search author on:PubMed Google Scholar

  5. Nicholas P. Krabbe
    View author publications

    Search author on:PubMed Google Scholar

  6. Ann M. Mitzey
    View author publications

    Search author on:PubMed Google Scholar

  7. Shannon Walsh
    View author publications

    Search author on:PubMed Google Scholar

  8. Viktorie Menna
    View author publications

    Search author on:PubMed Google Scholar

  9. John R. Drew Jr
    View author publications

    Search author on:PubMed Google Scholar

  10. Sabrina Kabakov
    View author publications

    Search author on:PubMed Google Scholar

  11. Finn Eckes
    View author publications

    Search author on:PubMed Google Scholar

  12. Rachel V. Spanton
    View author publications

    Search author on:PubMed Google Scholar

  13. Anika Shah
    View author publications

    Search author on:PubMed Google Scholar

  14. Angelica Sun
    View author publications

    Search author on:PubMed Google Scholar

  15. Alex Katz
    View author publications

    Search author on:PubMed Google Scholar

  16. Charlene Kim
    View author publications

    Search author on:PubMed Google Scholar

  17. Amy Hartman
    View author publications

    Search author on:PubMed Google Scholar

  18. Andrea M. Weiler
    View author publications

    Search author on:PubMed Google Scholar

  19. Carol Rasmussen
    View author publications

    Search author on:PubMed Google Scholar

  20. T. Michael Nork
    View author publications

    Search author on:PubMed Google Scholar

  21. Puja Basu
    View author publications

    Search author on:PubMed Google Scholar

  22. Heather A. Simmons
    View author publications

    Search author on:PubMed Google Scholar

  23. James Ver Hoeve
    View author publications

    Search author on:PubMed Google Scholar

  24. Saverio Capuano
    View author publications

    Search author on:PubMed Google Scholar

  25. Matthew T. Aliota
    View author publications

    Search author on:PubMed Google Scholar

  26. Thomas C. Friedrich
    View author publications

    Search author on:PubMed Google Scholar

  27. Emma L. Mohr
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: K.K.A. and E.L.M. Methodology: K.K.A., A.H., A.M.W., C.R., M.N., H.A.S., J.V.H., T.C.F., M.T.A., and E.L.M. Investigation: K.K.A., B.B., E.R.R., J.K., N.P.K., A.M.M., S.W., V.M., J.R.D., S.K., F.E., R.V.S., A. Shah, A. Sun, J.G., A.K., C.K., A.H., A.M.W., C.R., M.N., P.B., H.A.S., J.V.H., M.T.A., and E.L.M. Visualization: E.R.R., A. Shah, A. Sun, J.V.H., and E.L.M. Funding acquisition: K.K.A. and E.L.M. Project administration: K.K.A. and E.L.M. Supervision: K.K.A., A.H., M.N., H.A.S., S.C., and T.C.F. Writing—original draft: K.K.A., B.B., E.R.R., and J.K. Writing—review & editing: K.K.A., B.B., E.R.R., J.K., N.P.K., A.M.M., S.W., V.M., J.R.D., S.K., F.E., R.V.S., A. Shah, A. Sun, J.G., A.K., C.K., A.H., A.M.W., C.R., M.N., P.B., S.C., H.A.S., J.V.H., M.T.A., T.C.F., and E.L.M.

Corresponding author

Correspondence to Emma L. Mohr.

Ethics declarations

Competing interests

J.V.H. is a consultant for a company called OSOD, A Merit Company, which provides consulting services to the pharmaceutical industry. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Peer Review file

Reporting Summary

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ausderau, K.K., Boerigter, B., Razo, E.R. et al. Prenatal Zika virus exposure disrupts social-emotional development and cortical visual function in infant macaques. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68517-x

Download citation

  • Received: 17 June 2025

  • Accepted: 08 January 2026

  • Published: 29 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68517-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing