Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Genome-wide discovery and phenotyping of non-coding transcripts in A. fumigatus reveals lncRNAs with a role in antifungal drug sensitivity
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 11 February 2026

Genome-wide discovery and phenotyping of non-coding transcripts in A. fumigatus reveals lncRNAs with a role in antifungal drug sensitivity

  • Danielle Weaver1 na1,
  • Tanda Qi  ORCID: orcid.org/0000-0002-2097-246X2,3 na1,
  • Harry Chown  ORCID: orcid.org/0000-0002-5331-47113,4 na1,
  • Marcin Fraczek2,3,
  • Ressa Lebedinec3,
  • Lauren Dineen3,
  • Clara Valero3,
  • Norman van Rhijn  ORCID: orcid.org/0000-0001-6722-27573,
  • Takanori Furukawa  ORCID: orcid.org/0000-0001-9385-96123 nAff5,
  • Michael Bromley  ORCID: orcid.org/0000-0002-7611-02013,
  • Daniela Delneri2,3 &
  • …
  • Paul Bowyer  ORCID: orcid.org/0000-0002-1083-92863 

Nature Communications , Article number:  (2026) Cite this article

  • 370 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Fungal genomics
  • Long non-coding RNAs

Abstract

Recent data suggests one fungus, Aspergillus fumigatus, causes more deaths annually than HIV or malaria combined. Coupled with rapid emergence of antifungal drug resistance, the limited range of effective treatments, and mortality rates of >50%, aspergillosis represents a major challenge in infectious diseases. Recent studies have identified long-noncoding RNAs (lncRNAs) involved in drug resistance and virulence in pathogenic yeasts such as Candida spp. However, there is very limited knowledge of lncRNAs in human pathogenic moulds, including A. fumigatus. Here we exploit transcriptomics data of A. fumigatus exposed to different environments to annotate transcripts mapping to 2388 genomic loci. After manual curation we generate a database of over 1000 lncRNAs. We observe that the lncRNAs display orchestrated transcriptional profiles upon drug treatment and many are proximal to genes involved in azole sensitivity. We knock out a set of intergenic lncRNAs and perform a large-scale phenotypic analysis to identify 60 lncRNA mutants displaying condition-dependent fitness changes with 35 mutants exhibiting a positive growth phenotype under azole stress. Overall, this study generates and experimentally validates an important resource that will enable the wider research community to increase understanding of the functional importance of lncRNAs in A. fumigatus, including their involvement in drug sensitivity.

Similar content being viewed by others

Antifungals influence the immune-related transcriptomic landscape of human monocytes after Aspergillus fumigatus infection

Article Open access 17 March 2022

Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environment

Article Open access 25 April 2022

Transcription in fungal conidia before dormancy produces phenotypically variable conidia that maximize survival in different environments

Article 28 June 2021

Data availability

Raw sequence data has been deposited at the NCBI sequence read archive (SRA) under accession number PRJNA861909 (ncbi.nlm.nih.gov/bioproject/861909) and PRJNA1165181 (ncbi.nlm.nih.gov/bioproject/1165181). Source data are provided with this paper, either in the supplementary Data or the Source Data File. Source data are provided with this paper.

Code availability

Code used for analysis is available at https://github.com/Danweaver1/lncRNA-prediction (https://doi.org/10.5281/zenodo.17477034) and https://github.com/harrychown/asp_lncrna (https://doi.org/10.5281/zenodo.17416843) and https://github.com/Tanda-Qi/Analysis_Phenobooth_output (https://doi.org/10.5281/zenodo.17900633).

References

  1. WHO fungal priority pathogens list to guide research, development and public health action. https://www.who.int/publications/i/item/9789240060241 (2022).

  2. Fungal diseases: Health burden, neglectedness, and potential interventions. Rethink Priorities https://rethinkpriorities.org/publications/fungal-diseases (2024).

  3. Denning, D. W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 24, e428–e438 (2024).

    Google Scholar 

  4. Venkatesan, P. The 2023 WHO World Malaria Report. Lancet Microbe 5, e214 (2024).

    Google Scholar 

  5. HIV – Number of people dying from HIV-related causes. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/number-of-deaths-due-to-hiv-aids. (2024).

  6. Nierman, W. C. et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151–1156 (2005).

    Google Scholar 

  7. McCarthy, C. G. P. & Fitzpatrick, D. A. Pan-genome analyses of model fungal species. Microb. Genom. 5, e000243 (2019).

  8. Bowyer, P., Currin, A., Delneri, D. & Fraczek, M. G. Telomere-to-telomere genome sequence of the model mould pathogen Aspergillus fumigatus. Nat. Commun. 13, 5394 (2022).

    Google Scholar 

  9. Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).

    Google Scholar 

  10. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005).

    Google Scholar 

  11. Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Google Scholar 

  12. Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009).

    Google Scholar 

  13. Wilhelm, B. T. et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453, 1239–1243 (2008).

    Google Scholar 

  14. Parker, S. et al. Large-scale profiling of noncoding RNA function in yeast. PLoS Genet. 14, e1007253 (2018).

    Google Scholar 

  15. Balarezo-Cisneros, L. N. et al. Functional and transcriptional profiling of non-coding RNAs in yeast reveal context-dependent phenotypes and in trans effects on the protein regulatory network. PLoS Genet 17, e1008761 (2021).

    Google Scholar 

  16. Parker, S. et al. A resource for functional profiling of noncoding RNA in the yeast Saccharomyces cerevisiae. RNA 23, 1166–1171 (2017).

    Google Scholar 

  17. Hovhannisyan, H. & Gabaldón, T. The long non-coding RNA landscape of Candida yeast pathogens. Nat. Commun. 12, 7317 (2021).

    Google Scholar 

  18. Arthanari, Y., Heintzen, C., Griffiths-Jones, S. & Crosthwaite, S. K. Natural antisense transcripts and long non-coding RNA in Neurospora crassa. PLoS One 9, e91353 (2014).

    Google Scholar 

  19. Xue, Z. et al. Transcriptional interference by antisense RNA is required for circadian clock function. Nature 514, 650–653 (2014).

    Google Scholar 

  20. Jöchl, C. et al. Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res. 36, 2677–2689 (2008).

    Google Scholar 

  21. Arnaud, M. B. et al. The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res 40, D653–D659 (2012).

    Google Scholar 

  22. Gao, W., Jones, T. A. & Rivas, E. Discovery of 17 conserved structural RNAs in fungi. Nucleic Acids Res 49, 6128–6143 (2021).

    Google Scholar 

  23. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22, 1775–1789 (2012).

    Google Scholar 

  24. Houbraken, J., Weig, M., Groß, U., Meijer, M. & Bader, O. Aspergillus oerlinghausenensis, a new mould species closely related to A. fumigatus. FEMS Microbiol Lett. 363, fnv236 (2016).

    Google Scholar 

  25. Samson, R. A. et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 78, 141–173 (2014).

    Google Scholar 

  26. Fraczek, M. G. et al. The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatus. J. Antimicrob. Chemother. 68, 1486–1496 (2013).

    Google Scholar 

  27. Furukawa, T. et al. The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nat. Commun. 11, 427 (2020).

    Google Scholar 

  28. Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. in Report Number: LBNL-7065E (Research Org.: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States), 2014).

  29. Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

    Google Scholar 

  30. Pertea, G. & Pertea, M. GFF Utilities: GffRead and GffCompare. F1000Res. ISCB Comm J-304, https://doi.org/10.12688/f1000research.23297.2 (2020).

  31. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Google Scholar 

  32. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma. 10, 421 (2009).

    Google Scholar 

  33. Nawrocki, E. P. Annotating Functional RNAs in Genomes Using Infernal. in RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods (eds Gorodkin, J. & Ruzzo, W. L.) 163–197 (Humana Press, Totowa, NJ,) (2014).

  34. Kang, Y.-J. et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 45, W12–W16 (2017).

    Google Scholar 

  35. Love, M. I., Soneson, C. & Patro, R. Swimming downstream: statistical analysis of differential transcript usage following Salmon quantification. F1000Res 7, 952 (2018).

    Google Scholar 

  36. Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinforma. 14, 178–192 (2013).

    Google Scholar 

  37. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Google Scholar 

  38. Pontecorvo, G., Roper, J. A., Chemmons, L. M., Macdonald, K. D. & Bufton, A. W. J. The Genetics of Aspergillus nidulans. in Advances in Genetics (ed. Demerec, M.) 5, 141–238 (Academic Press, 1953).

  39. Zhao, C. et al. High-throughput gene replacement in aspergillus fumigatus. Curr. Protoc. Microbiol. 54, e88 (2019).

    Google Scholar 

  40. Punt, P. J., Oliver, R. P., Dingemanse, M. A., Pouwels, P. H. & van den Hondel, C. A. M. J. J. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56, 117–124 (1987).

    Google Scholar 

  41. Fraczek, M. G. et al. Fast and reliable PCR amplification from aspergillus fumigatus spore suspension without traditional DNA extraction. Curr. Protoc. Microbiol 54, e89 (2019).

    Google Scholar 

  42. Wickham, H. et al. Ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016).

  43. Bromley, M. et al. Mitochondrial complex i is a global regulator of secondary metabolism, virulence and azole sensitivity in fungi. PLOS ONE 11, e0158724 (2016).

    Google Scholar 

  44. Arendrup, M. C. et al. EUCAST technical note on isavuconazole breakpoints for Aspergillus, itraconazole breakpoints for Candida and updates for the antifungal susceptibility testing method documents. Clin. Microbiol Infect. 22, 571.e1–4 (2016).

    Google Scholar 

  45. R Core Team. R: A language and environment for statistical computing. Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/ (2023).

  46. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Google Scholar 

  47. Kolde, R. et al. pheatmap: Pretty Heatmaps. https://github.com/raivokolde/pheatmap (2025).

  48. Kinsella, R. J. et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxf.) 2011, bar030 (2011).

    Google Scholar 

  49. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).

    Google Scholar 

  50. Durinck, S. et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21, 3439–3440 (2005).

    Google Scholar 

  51. Furukawa, T. et al. The fungal CCAAT-binding complex and HapX display highly variable but evolutionary conserved synergetic promoter-specific DNA recognition. Nucleic Acids Res. 48, 3567–3590 (2020).

    Google Scholar 

  52. Gsaller, F. et al. Sterol biosynthesis and azole tolerance is governed by the opposing actions of SrbA and the CCAAT binding complex. PLOS Pathog. 12, e1005775 (2016).

    Google Scholar 

  53. Chung, D. et al. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus srebp SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLOS Pathog. 10, e1004487 (2014).

    Google Scholar 

  54. Priebe, S., Kreisel, C., Horn, F., Guthke, R. & Linde, J. FungiFun2: a comprehensive online resource for systematic analysis of gene lists from fungal species. Bioinformatics 31, 445–446 (2015).

    Google Scholar 

  55. Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940 (2017).

    Google Scholar 

  56. Dușa, A. Venn: Draw Venn Diagrams. https://github.com/dusadrian/venn (2021).

Download references

Acknowledgements

D.W. is funded by the NIHR Manchester Biomedical Research Centre (BRC) (NIHR203308). This work was funded by the Wellcome Trust under project number 208396/Z/17/Z (to M.J.B., P.B. and D.D.).

Author information

Author notes
  1. Takanori Furukawa

    Present address: School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK

  2. These authors contributed equally: Danielle Weaver, Tanda Qi, Harry Chown.

Authors and Affiliations

  1. Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK

    Danielle Weaver

  2. Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK

    Tanda Qi, Marcin Fraczek & Daniela Delneri

  3. Division of Evolution, Infection & Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK

    Tanda Qi, Harry Chown, Marcin Fraczek, Ressa Lebedinec, Lauren Dineen, Clara Valero, Norman van Rhijn, Takanori Furukawa, Michael Bromley, Daniela Delneri & Paul Bowyer

  4. MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK

    Harry Chown

Authors
  1. Danielle Weaver
    View author publications

    Search author on:PubMed Google Scholar

  2. Tanda Qi
    View author publications

    Search author on:PubMed Google Scholar

  3. Harry Chown
    View author publications

    Search author on:PubMed Google Scholar

  4. Marcin Fraczek
    View author publications

    Search author on:PubMed Google Scholar

  5. Ressa Lebedinec
    View author publications

    Search author on:PubMed Google Scholar

  6. Lauren Dineen
    View author publications

    Search author on:PubMed Google Scholar

  7. Clara Valero
    View author publications

    Search author on:PubMed Google Scholar

  8. Norman van Rhijn
    View author publications

    Search author on:PubMed Google Scholar

  9. Takanori Furukawa
    View author publications

    Search author on:PubMed Google Scholar

  10. Michael Bromley
    View author publications

    Search author on:PubMed Google Scholar

  11. Daniela Delneri
    View author publications

    Search author on:PubMed Google Scholar

  12. Paul Bowyer
    View author publications

    Search author on:PubMed Google Scholar

Contributions

P.B., D.D., M.B. conceived and planned the experimental work, P.B., D.D., T.Q., D.W., H.C., C.V. and M.B. wrote the manuscript, D.W., T.Q., M.F., C.V. and T.F. performed laboratory work, D.W., H.C., P.B., T.Q., C.V. analysed the data and D.W., H.C., R.L., L.D. and Nv.R. performed additional manual annotation steps.

Corresponding authors

Correspondence to Michael Bromley, Daniela Delneri or Paul Bowyer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description Of Additional Supplementary File

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Supplementary Data 7

Supplementary Data 8

Supplementary Data 9

Supplementary Data 10

Supplementary Data 11

Supplementary Data 12

Reporting summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weaver, D., Qi, T., Chown, H. et al. Genome-wide discovery and phenotyping of non-coding transcripts in A. fumigatus reveals lncRNAs with a role in antifungal drug sensitivity. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68543-9

Download citation

  • Received: 22 April 2025

  • Accepted: 09 January 2026

  • Published: 11 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68543-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing