Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Self-oscillating synchronematic colloids
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 23 January 2026

Self-oscillating synchronematic colloids

  • Sergi G. Leyva  ORCID: orcid.org/0000-0001-9176-92851,2,
  • Zhengyan Zhang3,
  • Monica Olvera de la Cruz  ORCID: orcid.org/0000-0002-9802-36271,2,4 &
  • …
  • Kyle J. M. Bishop  ORCID: orcid.org/0000-0002-7467-36683 

Nature Communications , Article number:  (2026) Cite this article

  • 917 Accesses

  • 47 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Colloids
  • Fluid dynamics

Abstract

Self-oscillators that sustain periodic dynamics under constant input are ubiquitous in natural and engineered systems, where their interactions enable spatiotemporal coordination among many individual units. New forms of organization can emerge when these self-oscillating units are free to move and rotate, linking their spatial arrangement and orientation with their oscillation frequencies and phases. Here, we report experiments and simulations on populations of Quincke colloids that behave as self-oscillating units characterized by position, orientation, frequency, and phase. Hydrodynamic interactions among these colloids drive temporal synchronization and spatial alignment of their phases and orientations, giving rise to a new form of collective order that we term synchronematic. Within finite-size crystalline clusters, these non-reciprocal interactions promote global synchronization and circular alignment, with a collective frequency that increases with cluster size. Using the theory of weakly coupled oscillators, we derive a reduced-order model that captures the coupled evolution of phase and orientation and explains how synchronematic order depends sensitively on the particle configuration. Our results establish Quincke colloids as a model system for active oscillatory matter and reveal fundamental principles by which synchronization, alignment, and structure co-emerge—offering a framework for designing adaptive, frequency-tunable materials.

Similar content being viewed by others

Tunable colloidal swarmalators with hydrodynamic coupling

Article Open access 08 December 2025

Extreme synchronization transitions

Article Open access 15 May 2025

Weakly nonlinear analysis on synchronization and oscillation quenching of coupled mechanical oscillators

Article Open access 17 January 2024

Data availability

The microscopy videos generated and analyzed in this study are available on figshare at https://doi.org/10.6084/m9.figshare.30946217. Source data are provided with this paper.

Code availability

Swarmalator simulation code is available on GitHub at https://github.com/slevinskygra/ReducedSynchronematic.

References

  1. Jenkins, A. Self-oscillation. Phys. Rep. 525, 167–222 (2013).

    Google Scholar 

  2. Strogatz, S. H. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143, 1–20 (2000).

    Google Scholar 

  3. Samatas, S. & Lintuvuori, J. Hydrodynamic synchronization of chiral microswimmers. Phys. Rev. Lett. 130, 024001 (2023).

    Google Scholar 

  4. Dou, Y., Pandey, S., Cartier, C. A., Miller, O. & Bishop, K. J. M. Emergence of traveling waves in linear arrays of electromechanical oscillators. Commun. Phys. 1, 85 (2018).

    Google Scholar 

  5. Hickey, D. J., Golestanian, R. & Vilfan, A. Nonreciprocal interactions give rise to fast cilium synchronization in finite systems. Proc. Natl. Acad. Sci. USA 120, e2307279120 (2023).

    Google Scholar 

  6. Kuramoto, Y. Chemical turbulence. In Chemical Oscillations, Waves, and Turbulence (Springer, 1984) https://doi.org/10.1007/978-3-642-69689-3.

  7. Uchida, N. & Golestanian, R. Synchronization and collective dynamics in a carpet of microfluidic rotors. Phys. Rev. Lett. 104, 178103 (2010).

    Google Scholar 

  8. Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F. & Spigler, R. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005).

    Google Scholar 

  9. Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge University Press, 1995).

  10. Rouzaire, Y. & Levis, D. Defect superdiffusion and unbinding in a 2D XY model of self-driven rotors. Phys. Rev. Lett. 127, 088004 (2021).

    Google Scholar 

  11. Pargellis, A. N., Green, S. & Yurke, B. Planar xy-model dynamics in a nematic liquid crystal system. Phys. Rev. E 49, 4250 (1994).

    Google Scholar 

  12. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143 (2013).

    Google Scholar 

  13. Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007).

    Google Scholar 

  14. Caprini, L., Marini Bettolo Marconi, U. & Puglisi, A. Spontaneous velocity alignment in motility-induced phase separation. Phys. Rev. Lett. 124, 078001 (2020).

    Google Scholar 

  15. Soto, R. & Golestanian, R. Self-assembly of catalytically active colloidal molecules: tailoring activity through surface chemistry. Phys. Rev. Lett. 112, 068301 (2014).

    Google Scholar 

  16. Sakaguchi, H., Shinomoto, S. & Kuramoto, Y. Mutual entrainment in oscillator lattices with nonvariational type interaction. Prog. Theor. Exp. Phys. 79, 1069–1079 (1988).

    Google Scholar 

  17. O’Keeffe, K. P., Hong, H. & Strogatz, S. H. Oscillators that sync and swarm. Nat. Commun. 8, 1504 (2017).

    Google Scholar 

  18. Ceron, S., O’Keeffe, K. & Petersen, K. Diverse behaviors in non-uniform chiral and non-chiral swarmalators. Nat. Commun. 14, 940 (2023).

    Google Scholar 

  19. Riedel, I. H., Kruse, K. & Howard, J. A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309, 300–303 (2005).

    Google Scholar 

  20. Yan, J., Bloom, M., Bae, S. C., Luijten, E. & Granick, S. Linking synchronization to self-assembly using magnetic janus colloids. Nature 491, 578–581 (2012).

    Google Scholar 

  21. Bechinger, C. et al. Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).

    Google Scholar 

  22. Bishop, K. J. M., Biswal, S. L. & Bharti, B. Active colloids as models, materials, and machines. Annu. Rev. Chem. Biomol. Eng. 14, 1–30 (2023).

    Google Scholar 

  23. Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O. & Bartolo, D. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95–98 (2013).

    Google Scholar 

  24. Bricard, A. et al. Emergent vortices in populations of colloidal rollers. Nat. Commun. 6, 7470 (2015).

    Google Scholar 

  25. Karani, H., Pradillo, G. E. & Vlahovska, P. M. Tuning the random walk of active colloids: from individual run-and-tumble to dynamic clustering. Phys. Rev. Lett. 123, 208002 (2019).

    Google Scholar 

  26. Zhang, B., Yuan, H., Sokolov, A., de la Cruz, M. O. & Snezhko, A. Polar state reversal in active fluids. Nat. Phys. 18, 154–159 (2022).

    Google Scholar 

  27. Jones, T. B. Quincke rotation of spheres. IEEE Trans. Ind. Appl. IA-20, 845–849 (1984).

    Google Scholar 

  28. Das, D. & Saintillan, D. Electrohydrodynamic interaction of spherical particles under Quincke rotation. Phys. Rev. E 87, 043014 (2013).

    Google Scholar 

  29. Peters, F., Lobry, L. & Lemaire, E. Experimental observation of Lorenz chaos in the quincke rotor dynamics. Chaos 15, 13102 (2005).

  30. Zhang, B., Sokolov, A. & Snezhko, A. Reconfigurable emergent patterns in active chiral fluids. Nat. Commun. 11, 4401 (2020).

    Google Scholar 

  31. Zhang, Z., Yuan, H., Dou, Y., Olvera de la Cruz, M. & Bishop, K. J. M. Quincke oscillations of colloids at planar electrodes. Phys. Rev. Lett. 126, 258001 (2021).

    Google Scholar 

  32. Kotar, J., Leoni, M., Bassetti, B., Lagomarsino, M. C. & Cicuta, P. Hydrodynamic synchronization of colloidal oscillators. Proc. Natl. Acad. Sci. USA 107, 7669–7673 (2010).

    Google Scholar 

  33. Kakoty, H., Huang, Y., Banerjee, R., Dasgupta, C. & Ghosh, A. Colloidal crystallites under external oscillation. Soft Matter 16, 5770–5776 (2020).

    Google Scholar 

  34. Kato, A. N., Takeuchi, K. A. & Sano, M. Active colloid with externally induced periodic bipolar motility and its cooperative motion. Soft Matter 18, 5435–5445 (2022).

    Google Scholar 

  35. Brady, J. F. & Bossis, G. Stokesian Dynamics. Annu. Rev. Fluid Mech. 20, 111–157 (1988).

    Google Scholar 

  36. Swan, J. W. & Brady, J. F. Simulation of hydrodynamically interacting particles near a no-slip boundary. Phys. Fluid 19, 113306 (2007).

    Google Scholar 

  37. Sprinkle, B., van der Wee, E. B., Luo, Y., Driscoll, M. M. & Donev, A. Driven dynamics in dense suspensions of microrollers. Soft Matter 16, 7982–8001 (2020).

    Google Scholar 

  38. Dabelow, L., Bo, S. & Eichhorn, R. Irreversibility in active matter systems: fluctuation theorem and mutual information. Phys. Rev. X 9, 021009 (2019).

    Google Scholar 

  39. Zhang, Z. & Bishop, K. J. M. Synchronization and alignment of model oscillators based on quincke rotation. Phys. Rev. E 107, 054603 (2023).

    Google Scholar 

  40. Trau, M., Saville, D. A. & Aksay, I. A. Field-induced layering of colloidal crystals. Science 272, 706–709 (1996).

    Google Scholar 

  41. Solomentsev, Y., Böhmer, M. & Anderson, J. L. Particle clustering and pattern formation during electrophoretic deposition: a hydrodynamic model. Langmuir 13, 6058–6068 (1997).

    Google Scholar 

  42. Sapozhnikov, M. V., Tolmachev, Y. V., Aranson, I. S. & Kwok, W.-K. Dynamic self-assembly and patterns in electrostatically driven granular media. Phys. Rev. Lett. 90, 114301 (2003).

    Google Scholar 

  43. Ristenpart, W. D., Aksay, I. A. & Saville, D. A. Electrically driven flow near a colloidal particle close to an electrode with a faradaic current. Langmuir 23, 4071–4080 (2007).

    Google Scholar 

  44. Zhang, B., Glatz, A., Aranson, I. S. & Snezhko, A. Spontaneous shock waves in pulse-stimulated flocks of quincke rollers. Nat. Commun. 14, 7050 (2023).

    Google Scholar 

  45. Blake, J. R. & Chwang, A. T. Fundamental singularities of viscous flow: Part I: the image systems in the vicinity of a stationary no-slip boundary. J. Eng. Math. 8, 23–29 (1974).

    Google Scholar 

  46. Kim, S. & Karrila, S. J. Microhydrodynamics: Principles and Selected Applications (Dover Publications, 2005).

  47. Schwemmer, M. A. & Lewis, T. J. The theory of weakly coupled oscillators. In Phase Response Curves in Neuroscience 3–31 (eds Nathan W. Schultheiss, Astrid A. Prinz & Robert J. Butera) (Springer, 2012) https://doi.org/10.1007/978-1-4614-0739-3.

  48. Hunter, I. et al. Pattern formation in a four-ring reaction-diffusion network with heterogeneity. Phys. Rev. E 105, 024310 (2022).

    Google Scholar 

  49. Shankar, S., Souslov, A., Bowick, M. J., Marchetti, M. C. & Vitelli, V. Topological active matter. Nat. Rev. Phys. 4, 380–398 (2022).

    Google Scholar 

  50. Niedermayer, T., Eckhardt, B. & Lenz, P. Synchronization, phase locking, and metachronal wave formation in ciliary chains. Chaos 18, 037128 (2008).

    Google Scholar 

  51. Xu, H., Huang, Y., Zhang, R. & Wu, Y. Autonomous waves and global motion modes in living active solids. Nat. Phys. 19, 46–51 (2023).

    Google Scholar 

  52. Baconnier, P. et al. Selective and collective actuation in active solids. Nat. Phys. 18, 1234–1239 (2022).

    Google Scholar 

  53. Caprini, L., Liebchen, B. & Löwen, H. Self-reverting vortices in chiral active matter. Commun. Phys. 7, 153 (2024).

    Google Scholar 

  54. Igoshin, O. A., Mogilner, A., Welch, R. D., Kaiser, D. & Oster, G. Pattern formation and traveling waves in myxobacteria: theory and modeling. Proc. Nat. Acad. Sci. USA 98, 14913–14918 (2001).

    Google Scholar 

  55. Bishop, C. M. Pattern Recognition and Machine Learning (Springer, 2006).

  56. Kalman, R. E. A new approach to linear filtering and prediction problems. J. Basic Eng. 382, 35–45 (1960).

    Google Scholar 

  57. Rauch, H. E., Tung, F. & Striebel, C. T. Maximum likelihood estimates of linear dynamic systems. AIAA J. 3, 1445–1450 (1965).

    Google Scholar 

  58. Saville, D. A. Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29, 27–64 (1997).

    Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award DE-SC0000989. S.G.L. and M.O.d.l.C. were supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract DE-FG02-08ER46539.

Author information

Authors and Affiliations

  1. Center for Computation and Theory of Soft Materials, Northwestern University, Evanston, IL, USA

    Sergi G. Leyva & Monica Olvera de la Cruz

  2. Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA

    Sergi G. Leyva & Monica Olvera de la Cruz

  3. Department of Chemical Engineering, Columbia University, New York, NY, USA

    Zhengyan Zhang & Kyle J. M. Bishop

  4. Department of Materials Science & Engineering, Northwestern University, Evanston, IL, USA

    Monica Olvera de la Cruz

Authors
  1. Sergi G. Leyva
    View author publications

    Search author on:PubMed Google Scholar

  2. Zhengyan Zhang
    View author publications

    Search author on:PubMed Google Scholar

  3. Monica Olvera de la Cruz
    View author publications

    Search author on:PubMed Google Scholar

  4. Kyle J. M. Bishop
    View author publications

    Search author on:PubMed Google Scholar

Contributions

K.J.M.B. conceived the project. Z.Z. performed the experiments and analyzed the experimental data. S.G.L. developed and performed the Stokesian Dynamics simulations. K.J.M.B. and S.G.L. developed the reduced-order model and performed the swarmalator simulations. All authors contributed to data interpretation. S.G.L. drafted the manuscript with contributions from K.J.M.B. and M.O.d.l.C. K.J.M.B. and M.O.d.l.C. supervised the research and secured funding. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Monica Olvera de la Cruz or Kyle J. M. Bishop.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Lorenzo Caprini and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Video 1

Supplementary Video 2

Supplementary Video 3

Supplementary Video 4

Supplementary Video 5

Supplementary Video 6

Supplementary Video 7

Supplementary Video 8

Supplementary Video 9

Supplementary Video 10

Supplementary Video 11

Supplementary Video 12

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leyva, S.G., Zhang, Z., Olvera de la Cruz, M. et al. Self-oscillating synchronematic colloids. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68552-8

Download citation

  • Received: 16 July 2025

  • Accepted: 06 January 2026

  • Published: 23 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68552-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing