Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
RoboA reinforces planarian stem cell fate through FoxA and Anosmin1a
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 23 January 2026

RoboA reinforces planarian stem cell fate through FoxA and Anosmin1a

  • Kuang-Tse Wang1,
  • Fu-Yu Tsai  ORCID: orcid.org/0009-0007-9573-93401,
  • Yu-Chia Chen  ORCID: orcid.org/0000-0002-4029-99032,3,
  • Catherine P. Judy1,
  • Indya E. Weathers  ORCID: orcid.org/0000-0001-8995-20134,5,6,
  • Engin Özkan  ORCID: orcid.org/0000-0002-0263-67294,5,6 &
  • …
  • Carolyn E. Adler  ORCID: orcid.org/0000-0002-3883-06541 

Nature Communications , Article number:  (2026) Cite this article

  • 761 Accesses

  • 13 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Pluripotency
  • Regeneration

Abstract

Whole-body regeneration requires adult stem cells with high plasticity to differentiate into missing cell types. Planarians possess a unique configuration of organs embedded in a vast pool of pluripotent stem cells. How stem cells integrate positional information with discrete fates remains unknown. Here, we use the planarian pharynx to define the cell fates that depend on the pioneer transcription factor FoxA. We find that Roundabout receptor RoboA suppresses aberrant pharynx cell fates by altering foxA expression, independent of the canonical ligand Slit. An RNAi screen for extracellular proteins identifies Anosmin1a as a potential partner of RoboA. Perturbing global patterning demonstrates that roboA/anosmin1a functions locally in the brain. By contrast, altering pharynx fate with foxA knockdown induces head-specific neurons in the pharynx, indicating a latent plasticity of stem cells. Our data links critical extracellular cues with cell fate decisions of highly plastic stem cells, ensuring the fidelity of organ regeneration.

Similar content being viewed by others

Fate specification is spatially intermingled across planarian stem cells

Article Open access 16 November 2023

Transcriptomic and cellular decoding of scaffolds-induced suture mesenchyme regeneration

Article Open access 23 April 2024

Inferring and perturbing cell fate regulomes in human brain organoids

Article Open access 05 October 2022

Data availability

All data are available upon request. The scRNA-seq data generated in this study have been deposited into the GEO database under Accession number GSE292456. Source data are provided with this paper.

Code availability

Codes have been deposited on Github (https://github.com/kw572/RoboA)95.

References

  1. Reddien, P. W. The Cellular and Molecular Basis for Planarian Regeneration. Cell 175, 327–345 (2018).

    Google Scholar 

  2. Tanaka, E. M. & Reddien, P. W. The cellular basis for animal regeneration. Dev. Cell 21, 172–185 (2011).

    Google Scholar 

  3. Adler, C. E. & Sánchez Alvarado, A. Types or States? Cellular Dynamics and Regenerative Potential. Trends Cell Biol. 25, 687–696 (2015).

    Google Scholar 

  4. Ivankovic, M. et al. Model systems for regeneration: planarians. Development 146, dev167684. (2019).

  5. Pearson, B. J. Finding the potency in planarians. Commun. Biol. 5, 970 (2022).

    Google Scholar 

  6. Wagner, D. E., Wang, I. E. & Reddien, P. W. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332, 811–816 (2011).

    Google Scholar 

  7. Gurley, K. A., Rink, J. C. & Sánchez Alvarado, A. Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319, 323–327 (2008).

    Google Scholar 

  8. Petersen, C. P. & Reddien, P. W. Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319, 327–330 (2008).

    Google Scholar 

  9. Molina, M. D. & Cebrià, F. Decoding stem cells: An overview on planarian stem cell heterogeneity and lineage progression. Biomolecules 11, 1532 (2021).

    Google Scholar 

  10. Vogg, M. C. et al. Stem cell-dependent formation of a functional anterior regeneration pole in planarians requires Zic and Forkhead transcription factors. Dev. Biol. 390, 136–148 (2014).

    Google Scholar 

  11. Vásquez-Doorman, C. & Petersen, C. P. zic-1 Expression in Planarian neoblasts after injury controls anterior pole regeneration. PLoS Genet 10, e1004452 (2014).

    Google Scholar 

  12. Witchley, J. N., Mayer, M., Wagner, D. E., Owen, J. H. & Reddien, P. W. Muscle cells provide instructions for planarian regeneration. Cell Rep. 4, 633–641 (2013).

    Google Scholar 

  13. Scimone, M. L., Cote, L. E., Rogers, T. & Reddien, P. W. Two FGFRL-Wnt circuits organize the planarian anteroposterior axis. Elife 5, e12845 (2016).

  14. Gurley, K. A. et al. Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response. Dev. Biol. 347, 24–39 (2010).

    Google Scholar 

  15. Lander, R. & Petersen, C. P. Wnt, Ptk7, and FGFRL expression gradients control trunk positional identity in planarian regeneration. Elife 5, e12850 (2016).

  16. Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    Google Scholar 

  17. Atabay, K. D., LoCascio, S. A., de Hoog, T. & Reddien, P. W. Self-organization and progenitor targeting generate stable patterns in planarian regeneration. Science 360, 404–409 (2018).

    Google Scholar 

  18. Hill, E. M. & Petersen, C. P. Positional information specifies the site of organ regeneration and not tissue maintenance in planarians. Elife 7, e33680 (2018).

  19. Cebrià, F., Bueno, D., Reigada, S. & Romero, R. Intercalary muscle cell renewal in planarian pharynx. Dev. Genes Evol. 209, 249–253 (1999).

    Google Scholar 

  20. Bueno, D., Espinosa, L., Baguñà, J. & Romero, R. Planarian pharynx regeneration in regenerating tail fragments monitored with cell-specific monoclonal antibodies. Dev. Genes Evol. 206, 425–434 (1997).

    Google Scholar 

  21. Baguñà, J. & Ballester, R. The nervous system in planarians: Peripheral and gastrodermal plexuses, pharynx innervation, and the relationship between central nervous system structure and the acoelomate organization: NERVOUS SYSTEM IN PLANARIANS. J. Morphol. 155, 237–252 (1978).

    Google Scholar 

  22. Adler, C. E., Seidel, C. W., McKinney, S. A. & Sánchez Alvarado, A. Selective amputation of the pharynx identifies a FoxA-dependent regeneration program in planaria. Elife 3, e02238 (2014).

    Google Scholar 

  23. Scimone, M. L., Kravarik, K. M., Lapan, S. W. & Reddien, P. W. Neoblast specialization in regeneration of the planarian Schmidtea mediterranea. Stem Cell Rep. 3, 339–352 (2014).

    Google Scholar 

  24. Bohr, T. E., Shiroor, D. A. & Adler, C. E. Planarian stem cells sense the identity of the missing pharynx to launch its targeted regeneration. Elife 10, e68830 (2021).

    Google Scholar 

  25. Fraguas, S., Barberán, S. & Cebrià, F. EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. Dev. Biol. 354, 87–101 (2011).

    Google Scholar 

  26. Cebrià, F. & Newmark, P. A. Morphogenesis defects are associated with abnormal nervous system regeneration following roboA RNAi in planarians. Development 134, 833–837 (2007).

    Google Scholar 

  27. Grieshammer, U. et al. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev. Cell 6, 709–717 (2004).

    Google Scholar 

  28. Harburg, G. et al. SLIT/ROBO2 signaling promotes mammary stem cell senescence by inhibiting Wnt signaling. Stem Cell Rep. 3, 385–393 (2014).

    Google Scholar 

  29. Koch, A. W. et al. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5. B. Dev. Cell 20, 33–46 (2011).

    Google Scholar 

  30. Biteau, B. & Jasper, H. Slit/Robo signaling regulates cell fate decisions in the intestinal stem cell lineage of Drosophila. Cell Rep. 7, 1867–1875 (2014).

    Google Scholar 

  31. Borrell, V. et al. Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 76, 338–352 (2012).

    Google Scholar 

  32. Koinuma, S., Umesono, Y., Watanabe, K. & Agata, K. Planaria FoxA (HNF3) homologue is specifically expressed in the pharynx-forming cells. Gene 259, 171–176 (2000).

    Google Scholar 

  33. Collins, J. J. et al. Genome-wide analyses reveal a role for peptide hormones in planarian germline development. PLoS Biol. 8, e1000509 (2010).

    Google Scholar 

  34. Blockus, H. & Chédotal, A. Slit-Robo signaling. Development 143, 3037–3044 (2016).

    Google Scholar 

  35. Scimone, M. L. et al. Muscle and neuronal guidepost-like cells facilitate planarian visual system regeneration. Science 368, eaba3203 (2020).

    Google Scholar 

  36. Wagner, D. E., Ho, J. J. & Reddien, P. W. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell 10, 299–311 (2012).

    Google Scholar 

  37. Eisenhoffer, G. T., Kang, H. & Sánchez Alvarado, A. Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 3, 327–339 (2008).

    Google Scholar 

  38. Tong, M., Jun, T., Nie, Y., Hao, J. & Fan, D. The Role of the Slit/Robo Signaling Pathway. J. Cancer 10, 2694–2705 (2019).

    Google Scholar 

  39. Kidd, T., Bland, K. S. & Goodman, C. S. Slit is the midline repellent for the robo receptor in Drosophila. Cell 96, 785–794 (1999).

    Google Scholar 

  40. Cebrià, F., Guo, T., Jopek, J. & Newmark, P. A. Regeneration and maintenance of the planarian midline is regulated by a slit orthologue. Dev. Biol. 307, 394–406 (2007).

    Google Scholar 

  41. Aleksandrova, N. et al. Robo1 Forms a Compact Dimer-of-Dimers Assembly. Structure 26, 320–328.e4 (2018).

    Google Scholar 

  42. Franco, B. et al. A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 353, 529–536 (1991).

    Google Scholar 

  43. Legouis, R. et al. The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 67, 423–435 (1991).

    Google Scholar 

  44. Li, D. J., McMann, C. L. & Reddien, P. W. Nuclear receptor NR4A is required for patterning at the ends of the planarian anterior-posterior axis. Elife 8, e42015 (2019).

  45. Wurtzel, O., Oderberg, I. M. & Reddien, P. W. Planarian Epidermal Stem Cells Respond to Positional Cues to Promote Cell-Type Diversity. Dev. Cell 40, 491–504.e5 (2017).

    Google Scholar 

  46. Sahu, S. et al. Ongoing repair of migration-coupled DNA damage allows planarian adult stem cells to reach wound sites. Elife 10, e63779 (2021).

  47. Guedelhoefer, O. C. 4th & Sánchez Alvarado, A. Amputation induces stem cell mobilization to sites of injury during planarian regeneration. Development 139, 3510–3520 (2012).

    Google Scholar 

  48. Park, C., Owusu-Boaitey, K. E., Valdes, G. M. & Reddien, P. W. Fate specification is spatially intermingled across planarian stem cells. Nat. Commun. 14, 7422 (2023).

    Google Scholar 

  49. Petersen, C. P. & Reddien, P. W. A wound-induced Wnt expression program controls planarian regeneration polarity. Proc. Natl. Acad. Sci. Usa. 106, 17061–17066 (2009).

    Google Scholar 

  50. Petersen, C. P. & Reddien, P. W. Polarized notum activation at wounds inhibits Wnt function to promote planarian head regeneration. Science 332, 852–855 (2011).

    Google Scholar 

  51. Scimone, M. L., Lapan, S. W. & Reddien, P. W. A forkhead transcription factor is wound-induced at the planarian midline and required for anterior pole regeneration. PLoS Genet 10, e1003999 (2014).

    Google Scholar 

  52. Felix, D. A. & Aboobaker, A. A. The TALE class homeobox gene Smed-prep defines the anterior compartment for head regeneration. PLoS Genet 6, e1000915 (2010).

    Google Scholar 

  53. Cebrià, F. et al. FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature 419, 620–624 (2002).

    Google Scholar 

  54. Fincher, C. T., Wurtzel, O., de Hoog, T., Kravarik, K. M. & Reddien, P. W. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360, eaaq1736 (2018).

  55. King, H. O., Owusu-Boaitey, K. E., Fincher, C. T. & Reddien, P. W. A transcription factor atlas of stem cell fate in planarians. Cell Rep. 43, 113843 (2024).

    Google Scholar 

  56. Ross, K. G. et al. The role of polycystic kidney disease-like homologs in planarian nervous system regeneration and function. Integr. Org. Biol. 6, obae035 (2024).

    Google Scholar 

  57. Lo, K. C. & Petersen, C. P. Map3k1 suppresses terminal differentiation of migratory eye progenitors in planarian regeneration. PLoS Genet 21, e1011457 (2025).

    Google Scholar 

  58. Canales, B. I.-I., King, H. O. & Reddien, P. W. Map3k1 is required for spatial restriction of progenitor differentiation in planarians. eLife https://doi.org/10.7554/elife.106439.1.(2025)

  59. Roberts-Galbraith, R. H. & Newmark, P. A. On the organ trail: insights into organ regeneration in the planarian. Curr. Opin. Genet. Dev. 32, 37–46 (2015).

    Google Scholar 

  60. Zhu, S. J. & Pearson, B. J. Neo)blast from the past: new insights into planarian stem cell lineages. Curr. Opin. Genet. Dev. 40, 74–80 (2016).

    Google Scholar 

  61. Raz, A. A., Wurtzel, O. & Reddien, P. W. Planarian stem cells specify fate yet retain potency during the cell cycle. Cell Stem Cell 28, 1307–1322.e5 (2021).

    Google Scholar 

  62. Zeng, A. et al. Prospectively Isolated Tetraspanin+ Neoblasts Are Adult Pluripotent Stem Cells Underlying Planaria Regeneration. Cell 173, 1593–1608.e20 (2018).

    Google Scholar 

  63. Yu, T. W., Hao, J. C., Lim, W., Tessier-Lavigne, M. & Bargmann, C. I. Shared receptors in axon guidance: SAX-3/Robo signals via UNC-34/Enabled and a Netrin-independent UNC-40/DCC function. Nat. Neurosci. 5, 1147–1154 (2002).

    Google Scholar 

  64. Jaworski, A. et al. Operational redundancy in axon guidance through the multifunctional receptor Robo3 and its ligand NELL2. Science 350, 961–965 (2015).

    Google Scholar 

  65. Barak, R. et al. Structural Principles in Robo Activation and Auto-inhibition. Cell 177, 272–285.e16 (2019).

    Google Scholar 

  66. Qu, Z., Zhang, A. & Yan, D. Robo functions as an attractive cue for glial migration through SYG-1/Neph. Elife 9, e57921 (2020).

  67. Nawrocka, W. I. et al. Nematode extracellular protein interactome expands connections between signaling pathways. bioRxiv 2024 07, 602367 (2024).

    Google Scholar 

  68. García-González, D. et al. Anosmin-1 over-expression increases adult neurogenesis in the subventricular zone and neuroblast migration to the olfactory bulb. Brain Struct. Funct. 221, 239–260 (2016).

    Google Scholar 

  69. Kallmann, F., Schoenfeld, W. A. & Barrera, S. E. The genetic aspects of primary eunuchoidism. Am. J. Ment. Defic. 203, 236 (1944).

    Google Scholar 

  70. Schwanzel-Fukuda, M., Bick, D. & Pfaff, D. W. Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Brain Res. Mol. Brain Res. 6, 311–326 (1989).

    Google Scholar 

  71. Wang, J. et al. Anosmin1 shuttles fgf to facilitate its diffusion, increase its local concentration, and induce sensory organs. Dev. Cell 46, 751–766.e12 (2018).

    Google Scholar 

  72. Hudson, M. L., Kinnunen, T., Cinar, H. N. & Chisholm, A. D. C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations. Dev. Biol. 294, 352–365 (2006).

    Google Scholar 

  73. Hu, Y. et al. Novel mechanisms of fibroblast growth factor receptor 1 regulation by extracellular matrix protein anosmin-1. J. Biol. Chem. 284, 29905–29920 (2009).

    Google Scholar 

  74. Bülow, H. E., Berry, K. L., Topper, L. H., Peles, E. & Hobert, O. Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene kal-1. Proc. Natl. Acad. Sci. Usa. 99, 6346–6351 (2002).

    Google Scholar 

  75. Tecle, E., Diaz-Balzac, C. A. & Bülow, H. E. Distinct 3-O-sulfated heparan sulfate modification patterns are required for kal-1-dependent neurite branching in a context-dependent manner in Caenorhabditis elegans. G3 (Bethesda) 3, 541–552 (2013).

    Google Scholar 

  76. Zhu, Z. et al. Identification of ROBO1/2 and SCEL as candidate genes in Kallmann syndrome with emerging bioinformatic analysis. Endocrine 67, 224–232 (2020).

    Google Scholar 

  77. Merryman, M. S., Sánchez Alvarado, A. & Jenkin, J. C. Culturing Planarians in the Laboratory. Methods Mol. Biol. 1774, 241–258 (2018).

    Google Scholar 

  78. Adler, C. E. & Sánchez Alvarado, A. Systemic RNA interference in planarians by feeding of dsRNA containing bacteria. Methods Mol. Biol. 1774, 445–454 (2018).

    Google Scholar 

  79. Rouhana, L. et al. RNA interference by feeding in vitro-synthesized double-stranded RNA to planarians: methodology and dynamics. Dev. Dyn. 242, 718–730 (2013).

    Google Scholar 

  80. Rozanski, A., Moon, H. K. & Brandl, H. PlanMine 3.0—improvements to a mineable resource of flatworm biology and biodiversity. Nucleic acids 47, D812–D820 (2019).

  81. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    Google Scholar 

  82. Hallgren, J. et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv 2022 04, 487609 (2022).

    Google Scholar 

  83. Pearson, B. J. et al. Formaldehyde-based whole-mount in situ hybridization method for planarians. Dev. Dyn. 238, 443–450 (2009).

    Google Scholar 

  84. King, R. S. & Newmark, P. A. In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea. BMC Dev. Biol. 13, 8 (2013).

    Google Scholar 

  85. Hopman, A. H., Ramaekers, F. C. & Speel, E. J. Rapid synthesis of biotin-, digoxigenin-, trinitrophenyl-, and fluorochrome-labeled tyramides and their application for In situ hybridization using CARD amplification. J. Histochem. Cytochem. 46, 771–777 (1998).

    Google Scholar 

  86. Choi, H. M. T. et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development 145, dev165753 (2018).

    Google Scholar 

  87. Kuehn, E. et al. Segment number threshold determines juvenile onset of germline cluster expansion in Platynereis dumerilii. J. Exp. Zool. B Mol. Dev. Evol. 338, 225–240 (2022).

    Google Scholar 

  88. Akiyama, Y., Agata, K. & Inoue, T. Coordination between binocular field and spontaneous self-motion specifies the efficiency of planarians’ photo-response orientation behavior. Commun. Biol. 1, 148 (2018).

    Google Scholar 

  89. Wang, K.-T. & Adler, C. E. CRISPR/Cas9-based depletion of 16S ribosomal RNA improves library complexity of single-cell RNA-sequencing in planarians. BMC Genomics 24, 625 (2023).

    Google Scholar 

  90. Guo, L. et al. Island-specific evolution of a sex-primed autosome in a sexual planarian. Nature 606, 329–334 (2022).

    Google Scholar 

  91. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Google Scholar 

  92. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Google Scholar 

  93. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Google Scholar 

  94. Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Google Scholar 

  95. Wang, K.-T. et al RoboA reinforces planarian stem cell fate through FoxA and Anosmin1a. RoboA. https://doi.org/10.5281/zenodo.18143260 (2026).

Download references

Acknowledgements

We would like to thank members of the Adler laboratory for insight on this project; T. Inoue for kindly sharing the Arrestin antibody; and T. Tumbar for critical reading of the manuscript. We thank the Cornell University Biotechnology Resource Center’s Flow Cytometry (RRID:SCR_021740), Imaging (RRID:SCR_021741), and Genomics (RRID:SCR_021727) cores for equipment and resources used in this project. This work was funded by a National Institutes of Health grant R01GM139933 to C.E.A., a Cornell University Stem Cell Program fellowship (to K-T.W), Cornell University Center for Vertebrate Genomics Scholarship (to K-T.W.) and a Taiwan Ministry of Education scholarship (to K-T.W.), and a T32 GM144292 (to I.E.W.).

Author information

Authors and Affiliations

  1. Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, NY, USA

    Kuang-Tse Wang, Fu-Yu Tsai, Catherine P. Judy & Carolyn E. Adler

  2. Department of Genetics, Harvard Medical School, Boston, MA, USA

    Yu-Chia Chen

  3. Department of Orthopedic Research, Boston Children’s Hospital, Boston, MA, USA

    Yu-Chia Chen

  4. Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, USA

    Indya E. Weathers & Engin Özkan

  5. Institute for Neuroscience, The University of Chicago, Chicago, IL, USA

    Indya E. Weathers & Engin Özkan

  6. Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA

    Indya E. Weathers & Engin Özkan

Authors
  1. Kuang-Tse Wang
    View author publications

    Search author on:PubMed Google Scholar

  2. Fu-Yu Tsai
    View author publications

    Search author on:PubMed Google Scholar

  3. Yu-Chia Chen
    View author publications

    Search author on:PubMed Google Scholar

  4. Catherine P. Judy
    View author publications

    Search author on:PubMed Google Scholar

  5. Indya E. Weathers
    View author publications

    Search author on:PubMed Google Scholar

  6. Engin Özkan
    View author publications

    Search author on:PubMed Google Scholar

  7. Carolyn E. Adler
    View author publications

    Search author on:PubMed Google Scholar

Contributions

K-T.W., Y-C.C. and C.E.A. conceived the study. C.E.A. supervised the research and acquired funding. K-T.W., Y-C.C., F-Y.T. and C.P.J. performed the ISH, RNAi, qRT-PCR and imaging experiments. K-T.W. generated the sequencing data and performed all statistical analyses. I.E.W. and E.O. performed biochemical assays. K-T.W. and C.E.A. wrote the original draft. All authors edited, read, and approved the manuscript.

Corresponding author

Correspondence to Carolyn E. Adler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Peer Review file

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Reporting Summary

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, KT., Tsai, FY., Chen, YC. et al. RoboA reinforces planarian stem cell fate through FoxA and Anosmin1a. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68656-1

Download citation

  • Received: 17 April 2025

  • Accepted: 13 January 2026

  • Published: 23 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68656-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing