Abstract
Whole-body regeneration requires adult stem cells with high plasticity to differentiate into missing cell types. Planarians possess a unique configuration of organs embedded in a vast pool of pluripotent stem cells. How stem cells integrate positional information with discrete fates remains unknown. Here, we use the planarian pharynx to define the cell fates that depend on the pioneer transcription factor FoxA. We find that Roundabout receptor RoboA suppresses aberrant pharynx cell fates by altering foxA expression, independent of the canonical ligand Slit. An RNAi screen for extracellular proteins identifies Anosmin1a as a potential partner of RoboA. Perturbing global patterning demonstrates that roboA/anosmin1a functions locally in the brain. By contrast, altering pharynx fate with foxA knockdown induces head-specific neurons in the pharynx, indicating a latent plasticity of stem cells. Our data links critical extracellular cues with cell fate decisions of highly plastic stem cells, ensuring the fidelity of organ regeneration.
Similar content being viewed by others
Data availability
All data are available upon request. The scRNA-seq data generated in this study have been deposited into the GEO database under Accession number GSE292456. Source data are provided with this paper.
Code availability
Codes have been deposited on Github (https://github.com/kw572/RoboA)95.
References
Reddien, P. W. The Cellular and Molecular Basis for Planarian Regeneration. Cell 175, 327–345 (2018).
Tanaka, E. M. & Reddien, P. W. The cellular basis for animal regeneration. Dev. Cell 21, 172–185 (2011).
Adler, C. E. & Sánchez Alvarado, A. Types or States? Cellular Dynamics and Regenerative Potential. Trends Cell Biol. 25, 687–696 (2015).
Ivankovic, M. et al. Model systems for regeneration: planarians. Development 146, dev167684. (2019).
Pearson, B. J. Finding the potency in planarians. Commun. Biol. 5, 970 (2022).
Wagner, D. E., Wang, I. E. & Reddien, P. W. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332, 811–816 (2011).
Gurley, K. A., Rink, J. C. & Sánchez Alvarado, A. Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319, 323–327 (2008).
Petersen, C. P. & Reddien, P. W. Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319, 327–330 (2008).
Molina, M. D. & Cebrià, F. Decoding stem cells: An overview on planarian stem cell heterogeneity and lineage progression. Biomolecules 11, 1532 (2021).
Vogg, M. C. et al. Stem cell-dependent formation of a functional anterior regeneration pole in planarians requires Zic and Forkhead transcription factors. Dev. Biol. 390, 136–148 (2014).
Vásquez-Doorman, C. & Petersen, C. P. zic-1 Expression in Planarian neoblasts after injury controls anterior pole regeneration. PLoS Genet 10, e1004452 (2014).
Witchley, J. N., Mayer, M., Wagner, D. E., Owen, J. H. & Reddien, P. W. Muscle cells provide instructions for planarian regeneration. Cell Rep. 4, 633–641 (2013).
Scimone, M. L., Cote, L. E., Rogers, T. & Reddien, P. W. Two FGFRL-Wnt circuits organize the planarian anteroposterior axis. Elife 5, e12845 (2016).
Gurley, K. A. et al. Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response. Dev. Biol. 347, 24–39 (2010).
Lander, R. & Petersen, C. P. Wnt, Ptk7, and FGFRL expression gradients control trunk positional identity in planarian regeneration. Elife 5, e12850 (2016).
Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).
Atabay, K. D., LoCascio, S. A., de Hoog, T. & Reddien, P. W. Self-organization and progenitor targeting generate stable patterns in planarian regeneration. Science 360, 404–409 (2018).
Hill, E. M. & Petersen, C. P. Positional information specifies the site of organ regeneration and not tissue maintenance in planarians. Elife 7, e33680 (2018).
Cebrià, F., Bueno, D., Reigada, S. & Romero, R. Intercalary muscle cell renewal in planarian pharynx. Dev. Genes Evol. 209, 249–253 (1999).
Bueno, D., Espinosa, L., Baguñà, J. & Romero, R. Planarian pharynx regeneration in regenerating tail fragments monitored with cell-specific monoclonal antibodies. Dev. Genes Evol. 206, 425–434 (1997).
Baguñà, J. & Ballester, R. The nervous system in planarians: Peripheral and gastrodermal plexuses, pharynx innervation, and the relationship between central nervous system structure and the acoelomate organization: NERVOUS SYSTEM IN PLANARIANS. J. Morphol. 155, 237–252 (1978).
Adler, C. E., Seidel, C. W., McKinney, S. A. & Sánchez Alvarado, A. Selective amputation of the pharynx identifies a FoxA-dependent regeneration program in planaria. Elife 3, e02238 (2014).
Scimone, M. L., Kravarik, K. M., Lapan, S. W. & Reddien, P. W. Neoblast specialization in regeneration of the planarian Schmidtea mediterranea. Stem Cell Rep. 3, 339–352 (2014).
Bohr, T. E., Shiroor, D. A. & Adler, C. E. Planarian stem cells sense the identity of the missing pharynx to launch its targeted regeneration. Elife 10, e68830 (2021).
Fraguas, S., Barberán, S. & Cebrià, F. EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. Dev. Biol. 354, 87–101 (2011).
Cebrià, F. & Newmark, P. A. Morphogenesis defects are associated with abnormal nervous system regeneration following roboA RNAi in planarians. Development 134, 833–837 (2007).
Grieshammer, U. et al. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev. Cell 6, 709–717 (2004).
Harburg, G. et al. SLIT/ROBO2 signaling promotes mammary stem cell senescence by inhibiting Wnt signaling. Stem Cell Rep. 3, 385–393 (2014).
Koch, A. W. et al. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5. B. Dev. Cell 20, 33–46 (2011).
Biteau, B. & Jasper, H. Slit/Robo signaling regulates cell fate decisions in the intestinal stem cell lineage of Drosophila. Cell Rep. 7, 1867–1875 (2014).
Borrell, V. et al. Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 76, 338–352 (2012).
Koinuma, S., Umesono, Y., Watanabe, K. & Agata, K. Planaria FoxA (HNF3) homologue is specifically expressed in the pharynx-forming cells. Gene 259, 171–176 (2000).
Collins, J. J. et al. Genome-wide analyses reveal a role for peptide hormones in planarian germline development. PLoS Biol. 8, e1000509 (2010).
Blockus, H. & Chédotal, A. Slit-Robo signaling. Development 143, 3037–3044 (2016).
Scimone, M. L. et al. Muscle and neuronal guidepost-like cells facilitate planarian visual system regeneration. Science 368, eaba3203 (2020).
Wagner, D. E., Ho, J. J. & Reddien, P. W. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell 10, 299–311 (2012).
Eisenhoffer, G. T., Kang, H. & Sánchez Alvarado, A. Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 3, 327–339 (2008).
Tong, M., Jun, T., Nie, Y., Hao, J. & Fan, D. The Role of the Slit/Robo Signaling Pathway. J. Cancer 10, 2694–2705 (2019).
Kidd, T., Bland, K. S. & Goodman, C. S. Slit is the midline repellent for the robo receptor in Drosophila. Cell 96, 785–794 (1999).
Cebrià, F., Guo, T., Jopek, J. & Newmark, P. A. Regeneration and maintenance of the planarian midline is regulated by a slit orthologue. Dev. Biol. 307, 394–406 (2007).
Aleksandrova, N. et al. Robo1 Forms a Compact Dimer-of-Dimers Assembly. Structure 26, 320–328.e4 (2018).
Franco, B. et al. A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 353, 529–536 (1991).
Legouis, R. et al. The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 67, 423–435 (1991).
Li, D. J., McMann, C. L. & Reddien, P. W. Nuclear receptor NR4A is required for patterning at the ends of the planarian anterior-posterior axis. Elife 8, e42015 (2019).
Wurtzel, O., Oderberg, I. M. & Reddien, P. W. Planarian Epidermal Stem Cells Respond to Positional Cues to Promote Cell-Type Diversity. Dev. Cell 40, 491–504.e5 (2017).
Sahu, S. et al. Ongoing repair of migration-coupled DNA damage allows planarian adult stem cells to reach wound sites. Elife 10, e63779 (2021).
Guedelhoefer, O. C. 4th & Sánchez Alvarado, A. Amputation induces stem cell mobilization to sites of injury during planarian regeneration. Development 139, 3510–3520 (2012).
Park, C., Owusu-Boaitey, K. E., Valdes, G. M. & Reddien, P. W. Fate specification is spatially intermingled across planarian stem cells. Nat. Commun. 14, 7422 (2023).
Petersen, C. P. & Reddien, P. W. A wound-induced Wnt expression program controls planarian regeneration polarity. Proc. Natl. Acad. Sci. Usa. 106, 17061–17066 (2009).
Petersen, C. P. & Reddien, P. W. Polarized notum activation at wounds inhibits Wnt function to promote planarian head regeneration. Science 332, 852–855 (2011).
Scimone, M. L., Lapan, S. W. & Reddien, P. W. A forkhead transcription factor is wound-induced at the planarian midline and required for anterior pole regeneration. PLoS Genet 10, e1003999 (2014).
Felix, D. A. & Aboobaker, A. A. The TALE class homeobox gene Smed-prep defines the anterior compartment for head regeneration. PLoS Genet 6, e1000915 (2010).
Cebrià, F. et al. FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature 419, 620–624 (2002).
Fincher, C. T., Wurtzel, O., de Hoog, T., Kravarik, K. M. & Reddien, P. W. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360, eaaq1736 (2018).
King, H. O., Owusu-Boaitey, K. E., Fincher, C. T. & Reddien, P. W. A transcription factor atlas of stem cell fate in planarians. Cell Rep. 43, 113843 (2024).
Ross, K. G. et al. The role of polycystic kidney disease-like homologs in planarian nervous system regeneration and function. Integr. Org. Biol. 6, obae035 (2024).
Lo, K. C. & Petersen, C. P. Map3k1 suppresses terminal differentiation of migratory eye progenitors in planarian regeneration. PLoS Genet 21, e1011457 (2025).
Canales, B. I.-I., King, H. O. & Reddien, P. W. Map3k1 is required for spatial restriction of progenitor differentiation in planarians. eLife https://doi.org/10.7554/elife.106439.1.(2025)
Roberts-Galbraith, R. H. & Newmark, P. A. On the organ trail: insights into organ regeneration in the planarian. Curr. Opin. Genet. Dev. 32, 37–46 (2015).
Zhu, S. J. & Pearson, B. J. Neo)blast from the past: new insights into planarian stem cell lineages. Curr. Opin. Genet. Dev. 40, 74–80 (2016).
Raz, A. A., Wurtzel, O. & Reddien, P. W. Planarian stem cells specify fate yet retain potency during the cell cycle. Cell Stem Cell 28, 1307–1322.e5 (2021).
Zeng, A. et al. Prospectively Isolated Tetraspanin+ Neoblasts Are Adult Pluripotent Stem Cells Underlying Planaria Regeneration. Cell 173, 1593–1608.e20 (2018).
Yu, T. W., Hao, J. C., Lim, W., Tessier-Lavigne, M. & Bargmann, C. I. Shared receptors in axon guidance: SAX-3/Robo signals via UNC-34/Enabled and a Netrin-independent UNC-40/DCC function. Nat. Neurosci. 5, 1147–1154 (2002).
Jaworski, A. et al. Operational redundancy in axon guidance through the multifunctional receptor Robo3 and its ligand NELL2. Science 350, 961–965 (2015).
Barak, R. et al. Structural Principles in Robo Activation and Auto-inhibition. Cell 177, 272–285.e16 (2019).
Qu, Z., Zhang, A. & Yan, D. Robo functions as an attractive cue for glial migration through SYG-1/Neph. Elife 9, e57921 (2020).
Nawrocka, W. I. et al. Nematode extracellular protein interactome expands connections between signaling pathways. bioRxiv 2024 07, 602367 (2024).
García-González, D. et al. Anosmin-1 over-expression increases adult neurogenesis in the subventricular zone and neuroblast migration to the olfactory bulb. Brain Struct. Funct. 221, 239–260 (2016).
Kallmann, F., Schoenfeld, W. A. & Barrera, S. E. The genetic aspects of primary eunuchoidism. Am. J. Ment. Defic. 203, 236 (1944).
Schwanzel-Fukuda, M., Bick, D. & Pfaff, D. W. Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Brain Res. Mol. Brain Res. 6, 311–326 (1989).
Wang, J. et al. Anosmin1 shuttles fgf to facilitate its diffusion, increase its local concentration, and induce sensory organs. Dev. Cell 46, 751–766.e12 (2018).
Hudson, M. L., Kinnunen, T., Cinar, H. N. & Chisholm, A. D. C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations. Dev. Biol. 294, 352–365 (2006).
Hu, Y. et al. Novel mechanisms of fibroblast growth factor receptor 1 regulation by extracellular matrix protein anosmin-1. J. Biol. Chem. 284, 29905–29920 (2009).
Bülow, H. E., Berry, K. L., Topper, L. H., Peles, E. & Hobert, O. Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene kal-1. Proc. Natl. Acad. Sci. Usa. 99, 6346–6351 (2002).
Tecle, E., Diaz-Balzac, C. A. & Bülow, H. E. Distinct 3-O-sulfated heparan sulfate modification patterns are required for kal-1-dependent neurite branching in a context-dependent manner in Caenorhabditis elegans. G3 (Bethesda) 3, 541–552 (2013).
Zhu, Z. et al. Identification of ROBO1/2 and SCEL as candidate genes in Kallmann syndrome with emerging bioinformatic analysis. Endocrine 67, 224–232 (2020).
Merryman, M. S., Sánchez Alvarado, A. & Jenkin, J. C. Culturing Planarians in the Laboratory. Methods Mol. Biol. 1774, 241–258 (2018).
Adler, C. E. & Sánchez Alvarado, A. Systemic RNA interference in planarians by feeding of dsRNA containing bacteria. Methods Mol. Biol. 1774, 445–454 (2018).
Rouhana, L. et al. RNA interference by feeding in vitro-synthesized double-stranded RNA to planarians: methodology and dynamics. Dev. Dyn. 242, 718–730 (2013).
Rozanski, A., Moon, H. K. & Brandl, H. PlanMine 3.0—improvements to a mineable resource of flatworm biology and biodiversity. Nucleic acids 47, D812–D820 (2019).
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
Hallgren, J. et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv 2022 04, 487609 (2022).
Pearson, B. J. et al. Formaldehyde-based whole-mount in situ hybridization method for planarians. Dev. Dyn. 238, 443–450 (2009).
King, R. S. & Newmark, P. A. In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea. BMC Dev. Biol. 13, 8 (2013).
Hopman, A. H., Ramaekers, F. C. & Speel, E. J. Rapid synthesis of biotin-, digoxigenin-, trinitrophenyl-, and fluorochrome-labeled tyramides and their application for In situ hybridization using CARD amplification. J. Histochem. Cytochem. 46, 771–777 (1998).
Choi, H. M. T. et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development 145, dev165753 (2018).
Kuehn, E. et al. Segment number threshold determines juvenile onset of germline cluster expansion in Platynereis dumerilii. J. Exp. Zool. B Mol. Dev. Evol. 338, 225–240 (2022).
Akiyama, Y., Agata, K. & Inoue, T. Coordination between binocular field and spontaneous self-motion specifies the efficiency of planarians’ photo-response orientation behavior. Commun. Biol. 1, 148 (2018).
Wang, K.-T. & Adler, C. E. CRISPR/Cas9-based depletion of 16S ribosomal RNA improves library complexity of single-cell RNA-sequencing in planarians. BMC Genomics 24, 625 (2023).
Guo, L. et al. Island-specific evolution of a sex-primed autosome in a sexual planarian. Nature 606, 329–334 (2022).
Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Wang, K.-T. et al RoboA reinforces planarian stem cell fate through FoxA and Anosmin1a. RoboA. https://doi.org/10.5281/zenodo.18143260 (2026).
Acknowledgements
We would like to thank members of the Adler laboratory for insight on this project; T. Inoue for kindly sharing the Arrestin antibody; and T. Tumbar for critical reading of the manuscript. We thank the Cornell University Biotechnology Resource Center’s Flow Cytometry (RRID:SCR_021740), Imaging (RRID:SCR_021741), and Genomics (RRID:SCR_021727) cores for equipment and resources used in this project. This work was funded by a National Institutes of Health grant R01GM139933 to C.E.A., a Cornell University Stem Cell Program fellowship (to K-T.W), Cornell University Center for Vertebrate Genomics Scholarship (to K-T.W.) and a Taiwan Ministry of Education scholarship (to K-T.W.), and a T32 GM144292 (to I.E.W.).
Author information
Authors and Affiliations
Contributions
K-T.W., Y-C.C. and C.E.A. conceived the study. C.E.A. supervised the research and acquired funding. K-T.W., Y-C.C., F-Y.T. and C.P.J. performed the ISH, RNAi, qRT-PCR and imaging experiments. K-T.W. generated the sequencing data and performed all statistical analyses. I.E.W. and E.O. performed biochemical assays. K-T.W. and C.E.A. wrote the original draft. All authors edited, read, and approved the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Wang, KT., Tsai, FY., Chen, YC. et al. RoboA reinforces planarian stem cell fate through FoxA and Anosmin1a. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68656-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-68656-1


