Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Probing the molecular structure at graphite–water interfaces by correlating 3D-AFM and SHINERS
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 31 January 2026

Probing the molecular structure at graphite–water interfaces by correlating 3D-AFM and SHINERS

  • Lalith Krishna Samanth Bonagiri  ORCID: orcid.org/0000-0001-5491-20971,2 na1,
  • Diana M. Arvelo3 na1,
  • Fujia Zhao  ORCID: orcid.org/0000-0002-6913-13111,4 na1,
  • Jaehyeon Kim  ORCID: orcid.org/0000-0002-4137-15161,4,
  • Qian Ai1,4,
  • Shan Zhou  ORCID: orcid.org/0000-0002-6476-32801,4,
  • Kaustubh S. Panse1,4,
  • Ricardo Garcia  ORCID: orcid.org/0000-0002-7115-19283 &
  • …
  • Yingjie Zhang  ORCID: orcid.org/0000-0002-2704-88941,4,5 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electrochemistry
  • Imaging techniques
  • Physical chemistry
  • Raman spectroscopy
  • Surface chemistry

Abstract

Water at solid surfaces is key for many processes ranging from biological signal transduction to membrane separation and renewable energy conversion. However, under realistic conditions, which often include environmental and surface charge variations, the interfacial water structure remains elusive. Here we overcome this limit by combining three-dimensional atomic force microscopy (3D-AFM) and interface-sensitive shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) to characterize the graphite–water interfacial structure in situ. Through correlative analysis of the spatial liquid density maps and vibrational peaks within ≈2 nm of the graphite surface, we find the existence of two interfacial configurations at open circuit potential, a transient state where pristine water exhibits strong hydrogen bond (H-bond) breaking effects, and a steady state with hydrocarbons dominating the interface and weak H-bond breaking in the surrounding water. At sufficiently negative potentials, both states transition into a stable structure featuring pristine water with a broader distribution of H-bond configurations. Our three-state model resolves many long-standing controversies on interfacial water structure.

Data availability

The data that support the findings of this study are available from the corresponding authors upon request. Unprocessed spectroscopic data are provided as Supplementary Data 1. Source data are provided with this paper.

References

  1. Björneholm, O. et al. Water at interfaces. Chem. Rev. 116, 7698–7726 (2016).

    Google Scholar 

  2. Mondal, J. A., Nihonyanagi, S., Yamaguchi, S. & Tahara, T. Structure and orientation of water at charged lipid monolayer/water interfaces probed by heterodyne-detected vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 132, 10656–10657 (2010).

    Google Scholar 

  3. Pham, T. A., Ping, Y. & Galli, G. Modelling heterogeneous interfaces for solar water splitting. Nat. Mater. 16, 401 (2017).

    Google Scholar 

  4. Wang, T. et al. Enhancing oxygen reduction electrocatalysis by tuning interfacial hydrogen bonds. Nat. Catal. 4, 753–762 (2021).

    Google Scholar 

  5. Omta, A. W., Kropman, M. F., Woutersen, S. & Bakker, H. J. Negligible effect of ions on the hydrogen-bond structure in liquid water. Science 301, 347–349 (2003).

    Google Scholar 

  6. Uhlig, M. R., Martin-Jimenez, D. & Garcia, R. Atomic-scale mapping of hydrophobic layers on graphene and few-layer MoS2 and WSe2 in water. Nat. Commun. 10, 2606 (2019).

    Google Scholar 

  7. Seibert, S., Klassen, S., Latus, A., Bechstein, R. & Kühnle, A. Origin of ubiquitous stripes at the graphite–water interface. Langmuir 36, 7789–7794 (2020).

    Google Scholar 

  8. Lucky, C. & Schreier, M. Mind the interface: the role of adsorption in electrocatalysis. ACS Nano 18, 6008–6015 (2024).

    Google Scholar 

  9. Martin-Jimenez, D., Chacon, E., Tarazona, P. & Garcia, R. Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface. Nat. Commun. 7, 12164 (2016).

    Google Scholar 

  10. Miyazawa, K. et al. A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy. Nanoscale 8, 7334–7342 (2016).

    Google Scholar 

  11. Umeda, K. et al. Atomic-resolution three-dimensional hydration structures on a heterogeneously charged surface. Nat. Commun. 8, 2111 (2017).

    Google Scholar 

  12. Tang, Z., Lin, S. & Wang, Z. L. Unveiling contact-electrification effect on interfacial water oscillation. Adv. Mater. 36, 2407507 (2024).

    Google Scholar 

  13. Nakouzi, E. et al. Moving beyond the solvent-tip approximation to determine site-specific variations of interfacial water structure through 3D force microscopy. J. Phys. Chem. C 125, 1282–1291 (2021).

    Google Scholar 

  14. Söngen, H. et al. Resolving point defects in the hydration structure of calcite (10.4) with three-dimensional atomic force microscopy. Phys. Rev. Lett. 120, 116101 (2018).

    Google Scholar 

  15. Asakawa, H., Yoshioka, S., Nishimura, K. & Fukuma, T. Spatial distribution of lipid headgroups and water molecules at membrane/water interfaces visualized by three-dimensional scanning force microscopy. ACS Nano 6, 9013–9020 (2012).

    Google Scholar 

  16. Kim, J., Zhao, F., Bonagiri, L. K. S., Ai, Q. & Zhang, Y. Electrical double layers modulate the growth of solid–electrolyte interphases. Chem. Mater. 36, 9156–9166 (2024).

    Google Scholar 

  17. Tian, C. S. & Shen, Y. R. Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy. Proc. Natl. Acad. Sci. 106, 15148–15153 (2009).

    Google Scholar 

  18. Velasco-Velez, J.-J. et al. The structure of interfacial water on gold electrodes studied by X-ray absorption spectroscopy. Science 346, 831–834 (2014).

    Google Scholar 

  19. Li, C.-Y. et al. In situ probing of electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18, 697–701 (2019).

    Google Scholar 

  20. Toney, M. F. et al. Voltage-dependent ordering of water molecules at an electrode–electrolyte interface. Nature 368, 444–446 (1994).

    Google Scholar 

  21. Poynor, A. et al. How water meets a hydrophobic surface. Phys. Rev. Lett. 97, 266101 (2006).

    Google Scholar 

  22. Schwendel, D. et al. Interaction of water with self-assembled monolayers: neutron reflectivity measurements of the water density in the interface region. Langmuir 19, 2284–2293 (2003).

    Google Scholar 

  23. Li, C.-Y. et al. Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations. Nat. Commun. 13, 5330 (2022).

    Google Scholar 

  24. Montenegro, A. et al. Asymmetric response of interfacial water to applied electric fields. Nature 594, 62–65 (2021).

    Google Scholar 

  25. Garcia, R. Interfacial liquid water on graphite, graphene, and 2D materials. ACS Nano 17, 51–69 (2023).

    Google Scholar 

  26. Yang, S. et al. Nature of the electrical double layer on suspended graphene electrodes. J. Am. Chem. Soc. 144, 13327–13333 (2022).

    Google Scholar 

  27. Maccarini, M. et al. Density depletion at solid−liquid interfaces: a neutron reflectivity study. Langmuir 23, 598–608 (2007).

    Google Scholar 

  28. Utsunomiya, T., Yokota, Y., Enoki, T. & Fukui, K. Potential-dependent hydration structures at aqueous solution/graphite interfaces by electrochemical frequency modulation atomic force microscopy. Chem. Commun. 50, 15537–15540 (2014).

    Google Scholar 

  29. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    Google Scholar 

  30. Ai, Q., Bonagiri, L. K. S., Farokh Payam, A., Aluru, N. R. & Zhang, Y. Toward quantitative interpretation of 3D atomic force microscopy at solid–liquid interfaces. J. Phys. Chem. C 129, 5273–5286 (2025).

    Google Scholar 

  31. Dong, J.-C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).

    Google Scholar 

  32. Li, J. F. et al. Extraordinary enhancement of Raman scattering from pyridine on single-crystal Au and Pt electrodes by shell-isolated Au nanoparticles. J. Am. Chem. Soc. 133, 15922–15925 (2011).

    Google Scholar 

  33. Ai, Q. et al. Nucleation at solid–liquid interfaces is accompanied by the reconfiguration of electrical double layers. Proc. Natl. Acad. Sci. 122, e2421635122 (2025).

    Google Scholar 

  34. Zou, L., Li, L., Song, H. & Morris, G. Using mesoporous carbon electrodes for brackish water desalination. Water Res. 42, 2340–2348 (2008).

    Google Scholar 

  35. Chakrabarti, M. H. et al. Application of carbon materials in redox flow batteries. J. Power Sources 253, 150–166 (2014).

    Google Scholar 

  36. Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009).

    Google Scholar 

  37. Zhang, W. et al. Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem. Soc. Rev. 45, 715–752 (2016).

    Google Scholar 

  38. Lee, H., Lee, H.-B. -R., Kwon, S., Salmeron, M. & Park, J. Y. Internal and external atomic steps in graphite exhibit dramatically different physical and chemical properties. ACS Nano 9, 3814–3819 (2015).

    Google Scholar 

  39. Ye, Z. & Martini, A. Atomic friction at exposed and buried graphite step edges: experiments and simulations. Appl. Phys. Lett. 106, 231603 (2015).

    Google Scholar 

  40. Arvelo, D. M., Uhlig, M. R., Comer, J. & García, R. Interfacial layering of hydrocarbons on pristine graphite surfaces immersed in water. Nanoscale 14, 14178–14184 (2022).

    Google Scholar 

  41. Benaglia, S. et al. Tip charge dependence of three-dimensional AFM mapping of concentrated ionic solutions. Phys. Rev. Lett. 127, 196101 (2021).

    Google Scholar 

  42. Kilpatrick, J. I., Loh, S.-H. & Jarvis, S. P. Directly probing the effects of ions on hydration forces at interfaces. J. Am. Chem. Soc. 135, 2628–2634 (2013).

    Google Scholar 

  43. Uhlig, M. R. & Garcia, R. In situ atomic-scale imaging of interfacial water under 3D nanoscale confinement. Nano Lett. 21, 5593–5598 (2021).

    Google Scholar 

  44. Fukuma, T. & Garcia, R. Atomic- and molecular-resolution mapping of solid–liquid interfaces by 3D atomic force microscopy. ACS Nano 12, 11785–11797 (2018).

    Google Scholar 

  45. Kim, J., Zhao, F., Zhou, S., Panse, K. S. & Zhang, Y. Spectroscopic investigation of the structure of a pyrrolidinium-based ionic liquid at electrified interfaces. J. Chem. Phys. 156, 114701 (2022).

    Google Scholar 

  46. Vidano, R. P., Fischbach, D. B., Willis, L. J. & Loehr, T. M. Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun 39, 341–344 (1981).

    Google Scholar 

  47. Kakihana, M. & Osada, M. Raman spectroscopy as a characterization tool for carbon materials. In Carbon Alloys. (eds Yasuda, E. et al.) 285–298 (Elsevier Science, Oxford, 2003).

  48. Kuhar, N., Sil, S., Verma, T. & Umapathy, S. Challenges in application of Raman spectroscopy to biology and materials. RSC Adv 8, 25888–25908 (2018).

    Google Scholar 

  49. Yu, Y. et al. New C−H stretching vibrational spectral features in the Raman spectra of gaseous and liquid ethanol. J. Phys. Chem. C 111, 8971–8978 (2007).

    Google Scholar 

  50. Hurst, J. M., Li, L. & Liu, H. Adventitious hydrocarbons and the graphite-water interface. Carbon 134, 464–469 (2018).

    Google Scholar 

  51. Larkin, P. J. IR and Raman spectra–structure correlations: characteristic group frequencies. In Infrared and Raman Spectroscopy (Second Edition) (ed. Larkin, P. J.) 85–134 (Elsevier, 2018).

  52. Tolman, N. L., Li, S., Zlotnikov, S. B., McQuain, A. D. & Liu, H. Characterization of environmental airborne hydrocarbon contaminants by surface-enhanced Raman scattering. J. Chem. Phys. 160, 154708 (2024).

    Google Scholar 

  53. Larkin, P. J. General outline for IR and Raman spectral interpretation. In Infrared and Raman Spectroscopy. (Second Edition) (ed. Larkin, P. J.) 135–151 (Elsevier, 2018).

  54. Tainter, C. J., Ni, Y., Shi, L. & Skinner, J. L. Hydrogen bonding and OH-stretch spectroscopy in water: Hexamer (Cage), liquid surface, liquid, and ice. J. Phys. Chem. Lett. 4, 12–17 (2013).

    Google Scholar 

  55. Medders, G. R. & Paesani, F. Infrared and Raman spectroscopy of liquid water through “first-principles” many-body molecular dynamics. J. Chem. Theory Comput. 11, 1145–1154 (2015).

    Google Scholar 

  56. Kananenka, A. A. & Skinner, J. L. Fermi resonance in OH-stretch vibrational spectroscopy of liquid water and the water hexamer. J. Chem. Phys. 148, 244107 (2018).

    Google Scholar 

  57. Shen, L. et al. Interfacial structure of water as a new descriptor of the hydrogen evolution reaction. Angew. Chem. Int. Ed. 59, 22397–22402 (2020).

    Google Scholar 

  58. Scatena, L. F., Brown, M. G. & Richmond, G. L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001).

    Google Scholar 

  59. Ji, N., Ostroverkhov, V., Tian, C. S. & Shen, Y. R. Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy. Phys. Rev. Lett. 100, 096102 (2008).

    Google Scholar 

  60. Murphy, W. F. & Bernstein, H. J. Raman spectra and an assignment of the vibrational stretching region of water. J. Phys. Chem. 76, 1147–1152 (1972).

    Google Scholar 

  61. Paolantoni, M., Lago, N. F., Albertí, M. & Laganà, A. Tetrahedral ordering in water: Raman profiles and their temperature dependence. J. Phys. Chem. A 113, 15100–15105 (2009).

    Google Scholar 

  62. Pullanchery, S., Kulik, S., Rehl, B., Hassanali, A. & Roke, S. Charge transfer across C–H⋅⋅⋅O hydrogen bonds stabilizes oil droplets in water. Science 374, 1366–1370 (2021).

    Google Scholar 

  63. Qiao, M.-X., Zhang, Y., Zhai, L.-F. & Sun, M. Corrosion of graphite electrode in electrochemical advanced oxidation processes: degradation protocol and environmental implication. Chem. Eng. J. 344, 410–418 (2018).

    Google Scholar 

  64. Kumeda, T. et al. Surface extraction process during initial oxidation of Pt(111): effect of hydrophilic/hydrophobic cations in alkaline media. J. Am. Chem. Soc. 146, 10312–10320 (2024).

    Google Scholar 

  65. Ataka, K., Yotsuyanagi, T. & Osawa, M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. 100, 10664–10672 (1996).

    Google Scholar 

  66. Chattopadhyay, A. & Boxer, S. G. Vibrational Stark effect spectroscopy. J. Am. Chem. Soc. 117, 1449–1450 (1995).

    Google Scholar 

  67. Andrews, S. S. & Boxer, S. G. Vibrational Stark effects of nitriles I. Methods and experimental results. J. Phys. Chem. A 104, 11853–11863 (2000).

    Google Scholar 

  68. Villo, P., Shatskiy, A., Kärkäs, M. D. & Lundberg, H. Electrosynthetic C−O bond activation in alcohols and alcohol derivatives. Angew. Chem. Int. Ed. 62, e202211952 (2023).

    Google Scholar 

  69. Gagyi Palffy, E., Starzewski, P., Labani, A. & Fontana, A. Electrochemical reduction of polyaromatic compounds. J. Appl. Electrochem. 24, 337–343 (1994).

    Google Scholar 

  70. King, J. F. & Mitch, W. A. Electrochemical reduction of halogenated organic contaminants using carbon-based cathodes: a review. Crit. Rev. Environ. Sci. Technol. 54, 342–367 (2024).

    Google Scholar 

  71. Bewig, K. W. & Zisman, W. A. The Wetting of gold and platinum by water. J. Phys. Chem. 69, 4238–4242 (1965).

    Google Scholar 

  72. Park, J. Y. How titanium dioxide cleans itself. Science 361, 753–753 (2018).

    Google Scholar 

  73. Grundner, M. & Jacob, H. Investigations on hydrophilic and hydrophobic silicon (100) wafer surfaces by X-ray photoelectron and high-resolution electron energy loss-spectroscopy. Appl. Phys. A 39, 73–82 (1986).

    Google Scholar 

  74. Zhou, S., Panse, K. S., Motevaselian, M. H., Aluru, N. R. & Zhang, Y. Three-dimensional molecular mapping of ionic liquids at electrified interfaces. ACS Nano 14, 17515–17523 (2020).

    Google Scholar 

  75. Bonagiri, L. K. S. et al. Real-space charge density profiling of electrode–electrolyte interfaces with angstrom depth resolution. ACS Nano 16, 19594–19604 (2022).

    Google Scholar 

  76. Panse, K. S. et al. Innermost ion association configuration is a key structural descriptor of ionic liquids at electrified interfaces. J. Phys. Chem. Lett. 13, 9464–9472 (2022).

    Google Scholar 

  77. Payam, A. F., Martin-Jimenez, D. & Garcia, R. Force reconstruction from tapping mode force microscopy experiments. Nanotechnology 26, 185706 (2015).

    Google Scholar 

  78. Hölscher, H. Quantitative measurement of tip-sample interactions in amplitude modulation atomic force microscopy. Appl. Phys. Lett. 89, 123109 (2006).

    Google Scholar 

Download references

Acknowledgments

L.K.S.B., F.Z., J.K., Q.A., S.Z., K.S.P., and Y.Z. acknowledge support from the National Science Foundation under Grant No. 2339175, the Beckman Young Investigator Award provided by the Arnold and Mabel Beckman Foundation, and the Sloan Research Fellowship from the Alfred P. Sloan Foundation. L.K.S.B. acknowledges support from the TechnipFMC Educational Fund Fellowship. J.K. was partially supported by a PPG-MRL Graduate Research Assistantship. Q.A. acknowledges support from the PPG-MRL Graduate Research Assistantship program. R.G. acknowledges financial support from Ministerio de Ciencia e Innovación grants PID2022-136851NB-I00/AEI/10.13039/501100011033 and EUR2022-134029, as well as the European Commission Horizon Europe MSCA Doctoral Network NANORAM, Grant No. 101120146. R.G. also acknowledges Zhen Tang for helping to process some AFM images.

Author information

Author notes
  1. These authors contributed equally: Lalith Krishna Samanth Bonagiri, Diana M. Arvelo, Fujia Zhao.

Authors and Affiliations

  1. Materials Research Laboratory, University of Illinois, Urbana, IL, USA

    Lalith Krishna Samanth Bonagiri, Fujia Zhao, Jaehyeon Kim, Qian Ai, Shan Zhou, Kaustubh S. Panse & Yingjie Zhang

  2. Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, USA

    Lalith Krishna Samanth Bonagiri

  3. Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, Spain

    Diana M. Arvelo & Ricardo Garcia

  4. Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA

    Fujia Zhao, Jaehyeon Kim, Qian Ai, Shan Zhou, Kaustubh S. Panse & Yingjie Zhang

  5. Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA

    Yingjie Zhang

Authors
  1. Lalith Krishna Samanth Bonagiri
    View author publications

    Search author on:PubMed Google Scholar

  2. Diana M. Arvelo
    View author publications

    Search author on:PubMed Google Scholar

  3. Fujia Zhao
    View author publications

    Search author on:PubMed Google Scholar

  4. Jaehyeon Kim
    View author publications

    Search author on:PubMed Google Scholar

  5. Qian Ai
    View author publications

    Search author on:PubMed Google Scholar

  6. Shan Zhou
    View author publications

    Search author on:PubMed Google Scholar

  7. Kaustubh S. Panse
    View author publications

    Search author on:PubMed Google Scholar

  8. Ricardo Garcia
    View author publications

    Search author on:PubMed Google Scholar

  9. Yingjie Zhang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.Z. designed the experiments in Urbana. R.G. designed the experiments in Madrid. L.K.S.B., D.M.A., F.Z., Q.A., S.Z., and K.S.P. conducted 3D-AFM experiments and initial analyses. F.Z. and J.K. synthesized Au/SiO2 nanoparticles and performed SHINERS measurements. L.K.S.B. and F.Z. performed electroanalytical measurements. L.K.S.B., D.M.A., and F.Z. conducted in-depth data analyses. Y.Z. and R.G. supervised the work. L.K.S.B., F.Z., R.G., and Y.Z. wrote the manuscript with input from all co-authors.

Corresponding authors

Correspondence to Ricardo Garcia or Yingjie Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Description of Additional Supplementary Files

Supplementary Data 1

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonagiri, L.K.S., Arvelo, D.M., Zhao, F. et al. Probing the molecular structure at graphite–water interfaces by correlating 3D-AFM and SHINERS. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68667-y

Download citation

  • Received: 26 June 2025

  • Accepted: 09 January 2026

  • Published: 31 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68667-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing