Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Ectopic cambia in wisteria vines are associated with the expression of conserved KNOX genes
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 30 January 2026

Ectopic cambia in wisteria vines are associated with the expression of conserved KNOX genes

  • Israel L. Cunha-Neto  ORCID: orcid.org/0000-0002-0914-99741,
  • Anthony A. Snead  ORCID: orcid.org/0000-0002-5020-87292,
  • Jacob B. Landis  ORCID: orcid.org/0000-0002-5631-53653,
  • Nicole I. Callery4,
  • Aman Y. Husbands4,
  • Chelsea D. Specht  ORCID: orcid.org/0000-0001-7746-512X3 &
  • …
  • Joyce G. Onyenedum  ORCID: orcid.org/0000-0002-1047-98075 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Evolutionary developmental biology
  • Plant stem cell
  • Stem-cell niche
  • Transcriptomics

Abstract

Secondary vascular growth is a conserved mechanism that gives rise to vascular tissues produced via a single vascular cambium. Molecular mechanisms underlying this process are characterized mainly in model species with typical vascular architectures, while the genetics underlying ecologically-important atypical vascular architectures remain unexplored. We use developmental anatomy, comparative transcriptomics, molecular evolutionary analyses, and heterologous gene expression to address this knowledge gap, investigating how multiple ectopic cambia (EC) form in the woody vine Japanese wisteria. Anatomical studies show EC in Japanese wisteria arise from cortical parenchyma, and cambium-specific transcriptome comparisons reveal that genes acting as regulators of typical cambium development in model species are likewise associated with EC development. Gene trees of KNOX genes suggest that duplication events may contribute to EC formation, including a Fabaceae-specific duplication of KNAT2/6, which is detected as being under positive selection. We also demonstrate that KNOX genes from Japanese wisteria show canonical KNOX-like activity in heterologous functional assays, although no vascular aberrations were observed. Overall, these findings provide the first insights into the genetics of EC formation in “natural variants”, advancing our understanding of the molecular mechanisms regulating vascular variants in seed plants.

Data availability

The datasets generated and/or analyzed during the current study are publicly available. The RNA sequencing data are available in SRA [SRR28389658], [SRR29802342-SRR29802358]. Other datasets generated in this study have been deposited in the GitHub database (Cunha-Neto et al.87; https://github.com/anthonysnead/Fabaceae-Ectopic_Cambia_Transcriptomics) and Figshare (Cunha-Neto et al.88; https://doi.org/10.6084/m9.figshare.26524381). Source data are provided with this paper.

Code availability

A custom R script was written for gene expression analyses and is available on GitHub (https://github.com/anthonysnead/Fabaceae-Ectopic_Cambia_Transcriptomics).

References

  1. Hunziker, P. & Greb, T. Stem cells and differentiation in vascular tissues. Annu. Rev. Plant Biol. 75, 11.1–11.27 (2024).

    Google Scholar 

  2. Lanner, R. M. Why do trees live so long? Ageing Res. Rev. 1, 653–671 (2002).

    Google Scholar 

  3. Sillett, S. C. et al. Increasing wood production through old age in tall trees. For. Ecol. Manag. 259, 976–994 (2010).

    Google Scholar 

  4. Rowe, N. P. & Speck, T. The evolution of angiosperm lianescence: a perspective from xylem structure-function. in Ecology of lianas. 221–250 (JohnWiley & Sons, Chichester, 2015).

  5. Fischer, J. B. & Ewers, F. W. Structural responses to stem injury in vines. in The Biology of Vines. 99–124 (Cambridge University Press, Cambridge, 1991).

  6. Cunha-Neto, I. L. Vascular variants in seed plants—a developmental perspective. AoB PLANTS 15, 1–15 (2023).

    Google Scholar 

  7. Cunha-Neto, I. L. & Onyenedum, J. G. Ectopic cambia: connections between natural and experimental vascular mutants. Am. J. Bot. 110, e16246 (2023).

    Google Scholar 

  8. Terrazas, T., Aguilar-Rodríguez, S. & Ojanguren, C. T. Development of successive cambia, cambial activity, and their relationship to physiological traits in Ipomoea arborescens (Convolvulaceae) seedlings. Am. J. Bot. 98, 765–774 (2011).

    Google Scholar 

  9. Robert, E. M. R. et al. Successive cambia: a developmental oddity or an adaptive structure? PLoS ONE 6, e16558 (2011).

    Google Scholar 

  10. Nejapa, R., Cabanillas, P. A. & Pace, M. R. Cortical origin of the successive cambia in the stems of the charismatic temperate lianescent genus Wisteria (Fabaceae) and its systematic importance. Bot. J. Linn. Soc. 199, 667–677 (2022).

    Google Scholar 

  11. Cunha-Neto, I. L. & Onyenedum, J. G. How to climb and grow stronger: lessons from ornamental wisterias. Arnoldia 80, 38–47 (2023).

    Google Scholar 

  12. Trusty, J. L., Lockaby, B. G., Zipperer, W. C. & Goertzen, L. R. Horticulture, hybrid cultivars and exotic plant invasion: a case study of Wisteria (Fabaceae). Bot. J. Linn. Soc. 158, 593–601 (2008).

    Google Scholar 

  13. Tamaio, N., Vieira, R. C. & Angyalossy, V. Origin of successive cambia on the stem in three species of Menispermaceae. Rev. bras. Bot. 32, 839–848 (2009).

    Google Scholar 

  14. Turley, E. K. & Etchells, J. P. Laying it on thick: a study in secondary growth. J. Exp. Bot. 73, 665–679 (2022).

    Google Scholar 

  15. Groover, A. The vascular cambium revisited. IAWA J. 44, 531–538 (2023).

    Google Scholar 

  16. Robischon, M., Du, J., Miura, E. & Groover, A. The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. Plant Physiol. 155, 1214–1225 (2011).

    Google Scholar 

  17. Zhu, Y., Song, D., Sun, J., Wang, X. & Li, L. PtrHB7, a class III HD-zip gene, plays a critical role in regulation of vascular cambium differentiation in Populus. Mol. Plant 6, 1331–1343 (2013).

    Google Scholar 

  18. Zhu, Y., Song, D., Xu, P., Sun, J. & Li, L. An HD-ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus. Plant Biotechnol. J. 16, 808–817 (2018).

    Google Scholar 

  19. Kucukoglu, M., Nilsson, J., Zheng, B., Chaabouni, S. & Nilsson, O. WUSCHEL - RELATED HOMEOBOX 4 (WOX 4) -like genes regulate cambial cell division activity and secondary growth in Populus trees. N. Phytol. 215, 642–657 (2017).

    Google Scholar 

  20. Zhang, J. et al. Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. Nat. Plants 5, 1033–1042 (2019).

    Google Scholar 

  21. Zhang, J. et al. Molecular features of secondary vascular tissue regeneration after bark girdling in Populus. N. Phytol. 192, 869–884 (2011).

    Google Scholar 

  22. Zhang, Y., Wang, X., Zhang, J. & He, X.-Q. Plant in situ tissue regeneration: dynamics, mechanisms and implications for forestry research. For. Res. 3, 3–8 (2023).

    Google Scholar 

  23. Schrader, J. et al. A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell 16, 2278–2292 (2004).

    Google Scholar 

  24. Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).

    Google Scholar 

  25. UniProt Consortium UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res 51, D523–D531 (2023).

    Google Scholar 

  26. Hoffman, G. E. & Roussos, P. Dream: powerful differential expression analysis for repeated measures designs. Bioinformatics 37, 192–201 (2021).

    Google Scholar 

  27. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Google Scholar 

  28. Hay, A. & Tsiantis, M. KNOX genes: versatile regulators of plant development and diversity. Development 137, 3153–3165 (2010).

    Google Scholar 

  29. Ma, J., Mei, G., Liu, H. & Li, H. Overexpression of a novel LcKNOX transcription factor from liriodendron chinense induces lobed leaves in arabidopsis thaliana. Forests 11, 33 (2020).

    Google Scholar 

  30. Larsson, E., Sitbon, F. & von Arnold, S. Differential regulation of Knotted1-like genes during establishment of the shoot apical meristem in Norway spruce (Picea abies). Plant Cell Rep. 31, 1053–1060 (2012).

    Google Scholar 

  31. Shani, E. et al. Stage-specific regulation of solanum lycopersicum leaf maturation by class 1 KNOTTED1-LIKE HOMEOBOX proteins. Plant Cell 21, 3078–3092 (2009).

    Google Scholar 

  32. Zhuang, Y. et al. Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition. Nat. Plants 8, 233–244 (2022).

    Google Scholar 

  33. Landis, J. B. et al. Impact of whole-genome duplication events on diversification rates in angiosperms. Am. J. Bot. 105, 348–363 (2018).

    Google Scholar 

  34. Zhang, T. et al. Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages. Nat. Commun. 15, 3305 (2024).

    Google Scholar 

  35. Terrazas, T. Origin and activity of successive cambia in cycas (Cycadales). Am. J. Bot. 78, 1335–1344 (1991).

    Google Scholar 

  36. Carlquist, S. Wood anatomy of Gnetales in a functional, ecological, and evolutionary context. Aliso https://doi.org/10.5642/aliso.20123001.05 (2012).

  37. Groover, A. T. et al. The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium. Plant Mol. Biol. 61, 917–932 (2006).

    Google Scholar 

  38. Du, J., Mansfield, S. D. & Groover, A. T. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth. Plant J. 60, 1000–1014 (2009).

    Google Scholar 

  39. Liebsch, D. et al. Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl. Development 141, 4311–4319 (2014).

    Google Scholar 

  40. Byrne, M. E. et al. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408, 967–971 (2000).

    Google Scholar 

  41. Semiarti, E. et al. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates the formation of a symmetric lamina, the establishment of venation and the repression of meristem-related homeobox genes in leaves. Development 128, 1771–1783 (2001).

    Google Scholar 

  42. Byrne, M. E., Simorowski, J. & Martienssen, R. A. ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development 129, 1957–1965 (2002).

    Google Scholar 

  43. Woerlen, N. et al. Repression of BLADE-ON-PETIOLE genes by KNOX homeodomain protein BREVIPEDICELLUS is essential for differentiation of secondary xylem in Arabidopsis root. Planta 245, 1079–1090 (2017).

    Google Scholar 

  44. Kim, M.-H. et al. Wood transcriptome profiling identifies critical pathway genes of secondary wall biosynthesis and novel regulators for vascular cambium development in Populus. Genes 10, 690 (2019).

    Google Scholar 

  45. Zhao, Y. et al. KNAT 2/6b, a class I KNOX gene, impedes xylem differentiation by regulating NAC domain transcription factors in poplar. N. Phytol. 225, 1531–1544 (2020).

    Google Scholar 

  46. Smith, H. M. S. & Hake, S. The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. Plant Cell 15, 1717–1727 (2003).

    Google Scholar 

  47. Khan, M. et al. Antagonistic Interaction of BLADE-ON-PETIOLE1 and 2 with BREVIPEDICELLUS and PENNYWISE regulates Arabidopsis inflorescence architecture. Plant Physiol. 158, 946–960 (2012).

    Google Scholar 

  48. Ragni, L., Belles-Boix, E., Günl, M. & Pautot, V. Interaction of KNAT6 and KNAT2 with BREVIPEDICELLUS and PENNYWISE in Arabidopsis Inflorescences. Plant Cell 20, 888–900 (2008).

    Google Scholar 

  49. Champagne, C. E. M. et al. Compound leaf development and evolution in the legumes. Plant Cell 19, 3369–3378 (2007).

    Google Scholar 

  50. Johnson, L. A. & Douglas, C. J. Populus trichocarpa MONOPTEROS/AUXIN RESPONSE FACTOR5 (ARF5) genes: comparative structure, sub-functionalization, and Populus – Arabidopsis microsynteny. This article is one of a selection of papers published in the Special Issue on Poplar Research in Canada. Can. J. Bot. 85, 1058–1070 (2007).

    Google Scholar 

  51. Smetana, O. et al. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 565, 485–489 (2019).

    Google Scholar 

  52. Chen, J. et al. Differential regulation of auxin and cytokinin during the secondary vascular tissue regeneration in Populus trees. N. Phytol. 224, 188–201 (2019).

    Google Scholar 

  53. Etchells, J. P., Provost, C. M. & Turner, S. R. Plant vascular cell division is maintained by an interaction between PXY and ethylene signalling. PLoS Genet 8, e1002997 (2012).

    Google Scholar 

  54. Wybouw, B., Zhang, X. & Mähönen, A. P. Vascular cambium stem cells: past, present and future. N. Phytol. 243, 851–865 (2024).

    Google Scholar 

  55. Dai, X. et al. Cell-type-specific PtrWOX4a and PtrVCS2 form a regulatory nexus with a histone modification system for stem cambium development in Populus trichocarpa. Nat. Plants 9, 96–111 (2023).

    Google Scholar 

  56. Groover, A. Roles for epigenetics in wood formation and stress response in trees–from basic biology to forest management. Front. Epigenet. Epigenom. https://doi.org/10.3389/freae.2025.1476499 (2025).

  57. Lima, A. C. et al. Liana's attachment to supports leads to profound changes in xylem anatomy and transcriptional profile of cambium and differentiating xylem. Plant, Cell Environ. 47, 5172–5188 (2024).

    Google Scholar 

  58. Plunkert, M. L., Martínez-Gómez, J., Madrigal, Y., Hernández, A. I. & Tribble, C. M. Tuber, or not tuber: molecular and morphological basis of underground storage organ development. Curr. Opin. Plant Biol. 80, 102544 (2024).

    Google Scholar 

  59. Tribble, C. M., Martínez-Gómez, J., Alzate-Guarín, F., Rothfels, C. J. & Specht, C. D. Comparative transcriptomics of a monocotyledonous geophyte reveals shared molecular mechanisms of underground storage organ formation. Evol. Dev. 23, 155–173 (2021).

    Google Scholar 

  60. Barbosa, A. C. F., Pace, M. R., Witovisk, L. & Angyalossy, V. A new method to obtain good anatomical slides of heterogeneous plant parts. IAWA J. 31, 373–383 (2010).

    Google Scholar 

  61. Qiu, Z. et al. Genome-wide analysis reveals dynamic changes in expression of microRNAs during vascular cambium development in Chinese fir, Cunninghamia lanceolata. J. Exp. Bot. 66, 3041–3054 (2015).

    Google Scholar 

  62. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Google Scholar 

  63. Chikhi, R. & Medvedev, P. Informed and automated k-mer size selection for genome assembly. Bioinformatics 30, 31–37 (2014).

    Google Scholar 

  64. Rivera-Vicéns, R. E., Garcia-Escudero, C. A., Conci, N., Eitel, M. & Wörheide, G. TransPi-a comprehensive Transcriptome Analysis Pipeline for de novo transcriptome assembly. Mol. Ecol. Resour. 22, 2070–2086 (2022).

    Google Scholar 

  65. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Google Scholar 

  66. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Google Scholar 

  67. Davidson, N. M. & Oshlack, A. Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 15, 410 (2014).

    Google Scholar 

  68. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Google Scholar 

  69. Li, H., Jiang, F., Wu, P., Wang, K. & Cao, Y. A high-quality genome sequence of model legume lotus japonicus (MG-20) provides insights into the evolution of root nodule symbiosis. Genes 11, 483 (2020).

    Google Scholar 

  70. Tang, H. et al. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 15, 312 (2014).

    Google Scholar 

  71. Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).

    Google Scholar 

  72. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Google Scholar 

  73. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Google Scholar 

  74. Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11, R14 (2010).

    Google Scholar 

  75. Hoffman, G. E. & Schadt, E. E. variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinforma. 17, 483 (2016).

    Google Scholar 

  76. Phillips, H. R., Landis, J. B. & Specht, C. D. Revisiting floral fusion: the evolution and molecular basis of a developmental innovation. J. Exp. Bot. 71, 3390–3404 (2020).

    Google Scholar 

  77. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Google Scholar 

  78. Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644–652 (2011).

    Google Scholar 

  79. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma. 10, 421 (2009).

    Google Scholar 

  80. Aparicio-Puerta, E. et al. sRNAbench and sRNAtoolbox 2022 update: accurate miRNA and sncRNA profiling for model and non-model organisms. Nucleic Acids Res. 50, W710–W717 (2022).

    Google Scholar 

  81. Jin, Y. & Qian, H. V. PhyloMaker2: an updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335–339 (2022).

    Google Scholar 

  82. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Google Scholar 

  83. Ranwez, V., Harispe, S., Delsuc, F. & Douzery, E. J. P. MACSE: multiple alignment of coding sequences accounting for frameshifts and stop codons. PLOS ONE 6, e22594 (2011).

    Google Scholar 

  84. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Google Scholar 

  85. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Google Scholar 

  86. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Google Scholar 

  87. Cunha-Neto, I. L., Snead, A. A., Landis, J. B., Callery, N. I. & Husbands, A. Y. et al. Ectopic cambia in Japanese wisteria (Wisteria floribunda) vines are associated with the expression of conserved KNOX genes. GitHub https://doi.org/10.5281/zenodo.18200460 (2026).

  88. Cunha-Neto, I. L., Snead, A. A., Landis, J. B., Callery, N. I. & Husbands, A. Y. et al. Ectopic cambia in Japanese wisteria (Wisteria floribunda) vines are associated with the expression of conserved KNOX genes. Figshare https://doi.org/10.6084/m9.figshare.26524381 (2026).

Download references

Acknowledgments

We thank undergraduate research technician Danielle C. Sonnenleiter (Cornell University) for assistance in data collection, past and current members of the Onyenedum lab for continuous feedback, especially Angelique A. Acevedo, for assistance in growing the bean plants, and Mariane S. S. Baena for insightful discussions. We also thank Jocelyn Rose’s lab at Cornell University for allowing access to the cryostat. We want to acknowledge the Arnold Arboretum of Harvard University for providing access to the living collections and financial support through a Sargent Award for Visiting Scholars (I.L.C.N.). This work was supported in part through the NYU IT High Performance Computing resources, services, and staff expertise, as well as the Boyce Thompson Institute’s Computational Biology Center and Cornell’s BioHPC. This work was funded by startup laboratory funds from Cornell University’s College of Agriculture and Life Sciences and New York University, and NSF 2401675 to J.G.O., and startup laboratory funds from Florida International University to I.L.C.N.

Author information

Authors and Affiliations

  1. International Center for Tropical Botany, Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USA

    Israel L. Cunha-Neto

  2. Department of Biology, New York University, New York, NY, USA

    Anthony A. Snead

  3. School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA

    Jacob B. Landis & Chelsea D. Specht

  4. Department of Biology, University of Pennsylvania, Philadelphia, PA, USA

    Nicole I. Callery & Aman Y. Husbands

  5. Department of Environmental Studies, New York University, New York, NY, USA

    Joyce G. Onyenedum

Authors
  1. Israel L. Cunha-Neto
    View author publications

    Search author on:PubMed Google Scholar

  2. Anthony A. Snead
    View author publications

    Search author on:PubMed Google Scholar

  3. Jacob B. Landis
    View author publications

    Search author on:PubMed Google Scholar

  4. Nicole I. Callery
    View author publications

    Search author on:PubMed Google Scholar

  5. Aman Y. Husbands
    View author publications

    Search author on:PubMed Google Scholar

  6. Chelsea D. Specht
    View author publications

    Search author on:PubMed Google Scholar

  7. Joyce G. Onyenedum
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: I.L.C.-N. J.G.O. Methodology: I.L.C.-N., A.A.S., J.B.L., N.I.C., A.Y.H., C.D.S, and J.G.O. Investigation: I.L.C.-N., J.B.L., A.A.S., N.I.C., A.Y.H., and J.G.O. Data curation: I.L.C.-N., A.A.S., and A.Y.H. Writing – Original Draft: I.L.C.-N., J.B.L., A.A.S., and J.G.O. Writing – Review & Editing: I.L.C.-N., A.A.S., J.B.L., N.I.C., A.Y.H., C.D.S., and J.G.O.

Corresponding authors

Correspondence to Israel L. Cunha-Neto or Joyce G. Onyenedum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Information

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Supplementary Data 7

Supplementary Data 8

Supplementary Data 9

Supplementary Data 10

Supplementary Data 11

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha-Neto, I.L., Snead, A.A., Landis, J.B. et al. Ectopic cambia in wisteria vines are associated with the expression of conserved KNOX genes. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68669-w

Download citation

  • Received: 09 August 2024

  • Accepted: 13 January 2026

  • Published: 30 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68669-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Developmental insights from non-traditional model organisms

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing