Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Photo-induced selective N-N bond construction via harnessing nitrene release and transfer
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 27 January 2026

Photo-induced selective N-N bond construction via harnessing nitrene release and transfer

  • Mingming Yu  ORCID: orcid.org/0009-0007-4705-75481,
  • Jing Feng1,2,
  • Xingyu Wang3,
  • Xinyuan Xiang1,
  • Ye Hu4,
  • Ze-Hua Wang1,
  • Ze-Feng Xu1,
  • Jialong Jie  ORCID: orcid.org/0000-0003-3652-31484,
  • Hongmei Su  ORCID: orcid.org/0000-0001-7384-65234,
  • Hao Tang  ORCID: orcid.org/0000-0003-0323-03493 &
  • …
  • Chuan-Ying Li  ORCID: orcid.org/0000-0001-9400-68301,2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Synthetic chemistry methodology

Abstract

Nitrogen incorporation is fundamental in organic synthesis for functional materials, pharmaceuticals, and agrochemicals. While C–N bond formation has gained great progress, N-N bond construction remains challenging: existing methods rely on prefunctionalized precursors, and direct coupling is hindered by narrow substrate scope and poor reactivity control. Although transition-metal-catalyzed nitrene strategies exhibit high efficacy for intermolecular N–H insertion, nitrene-mediated N–N coupling under metal-free conditions has rarely been explored. Herein, we report a broadly applicable sulfilimine-based approach for selective N–N coupling. By leveraging sulfilimines as nitrene precursors, we achieve controlled release of highly reactive nitrene intermediates, enabling intermolecular N-N coupling with amines. This strategy provides an alternative pathway for nitrene-mediated N-H insertion reaction over conventional methods, providing a streamlined route for constructing complex N–N-containing architectures.

Similar content being viewed by others

Nitrene-mediated intermolecular N–N coupling for efficient synthesis of hydrazides

Article 22 March 2021

Nitrene transfer catalysts for enantioselective C–N bond formation

Article 28 June 2021

Upgrading of nitrate to hydrazine through cascading electrocatalytic ammonia production with controllable N-N coupling

Article Open access 03 October 2024

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files. Experimental procedures, 1H NMR spectra, 13C NMR spectra, EPR spectra are available in the supplementary information. Source Data are provided with this paper. The X-ray crystallographic coordinates for the structures of compounds 53 and 70 reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers 2445166 and 2445167. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. All data are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Blair, L. M. & Sperry, J. Natural products containing a nitrogen–nitrogen bond. J. Nat. Prod. 76, 794–812 (2013).

    Google Scholar 

  2. Chen, L., Deng, Z. & Zhao, C. Nitrogen–nitrogen bond formation reactions involved in natural product biosynthesis. ACS Chem. Biol. 16, 559–570 (2021).

    Google Scholar 

  3. He, H.-Y., Niikura, H., Du, Y.-L. & Ryan, K. S. Synthetic and biosynthetic routes to nitrogen–nitrogen bonds. Chem. Soc. Rev. 51, 2991–3046 (2022).

    Google Scholar 

  4. Tabey, A., Vemuri, P. Y. & Patureau, F. W. Cross-dehydrogenative N–N couplings. Chem. Sci. 12, 14343–14352 (2021).

    Google Scholar 

  5. Ahmed, F. S., Helmy, Y. S. & Helmy, W. S. Toxicity and biochemical impact of methoxyfenozide/spinetoram mixture on susceptible and methoxyfenozide-selected strains of Spodoptera littoralis (Lepidoptera: Noctuidae). Sci. Rep. 12, 6974 (2022).

    Google Scholar 

  6. Zhou, C. H. & Wang, Y. Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem. 19, 239–280 (2012).

    Google Scholar 

  7. Ragnarsson, U. Synthetic methodology for alkyl substituted hydrazines. Chem. Soc. Rev. 30, 205–213 (2001).

    Google Scholar 

  8. Jiang, Y.-S. et al. Photoinduced difunctionalization of diazenes enabled by N–N radical coupling. Org. Lett. 25, 6671–6676 (2023).

    Google Scholar 

  9. Zhao, W. E., Fan Yang, J. X. & Zeng, X. I. Advances on the synthesis of N-N bonds. Chin. J. Org. Chem. 42, 1336–1345 (2022).

    Google Scholar 

  10. Schmidt, M. W., Truong, P. N. & Gordon, M. S. pi-Bond strengths in the second and third periods. J. Am. Chem. Soc. 109, 5217–5227 (1987).

    Google Scholar 

  11. Li, G., Miller, S. P. & Radosevich, A. T. PIII/PV=O-Catalyzed intermolecular N–N Bond formation: cross-selective reductive coupling of nitroarenes and anilines. J. Am. Chem. Soc. 143, 14464–14469 (2021).

    Google Scholar 

  12. Diccianni, J. B., Hu, C. & Diao, T. N−N nond forming reductive elimination via a mixed-valent nickel(II)–nickel(III) intermediate. Angew. Chem. Int. Ed. 55, 7534–7538 (2016).

    Google Scholar 

  13. Pearce, A. J. et al. Multicomponent pyrazole synthesis from alkynes, nitriles, and titanium imido complexes via oxidatively induced N–N Bond coupling. J. Am. Chem. Soc. 142, 4390–4399 (2020).

    Google Scholar 

  14. Wang, Y.-P., Guo, Z.-Z., Qu, J.-P. & Kang, Y.-B. Photocatalytic one-step synthesis of unsymmetrical azines. Org. Lett. 27, 1626–1630 (2025).

    Google Scholar 

  15. Rosen, B. R., Werner, E. W., O’Brien, A. G. & Baran, P. S. Total synthesis of Dixiamycin B by electrochemical oxidation. J. Am. Chem. Soc. 136, 5571–5574 (2014).

    Google Scholar 

  16. Ryan, M. C., Martinelli, J. R. & Stahl, S. S. Cu-Catalyzed aerobic oxidative N–N coupling of carbazoles and diarylamines including selective cross-coupling. J. Am. Chem. Soc. 140, 9074–9077 (2018).

    Google Scholar 

  17. Hu, J.-L., Wu, Y., Gao, Y., Wang, Y. & Wang, P. Recent advances in catalytic nitrogen–nitrogen bond formation reactions. ACS Catal. 14, 5735–5778 (2024).

    Google Scholar 

  18. Vemuri, P. Y. & Patureau, F. W. Cross-dehydrogenative N–N coupling of aromatic and aliphatic methoxyamides with benzotriazoles. Org. Lett. 23, 3902–3907 (2021).

    Google Scholar 

  19. Tombari, R. J. et al. Calculated oxidation potentials predict reactivity in Baeyer–Mills reactions. Org. Biomol. Chem. 19, 7575–7580 (2021).

    Google Scholar 

  20. Maestre, L. et al. Functional-group-tolerant, silver-catalyzed N–N Bond formation by nitrene transfer to amines. J. Am. Chem. Soc. 139, 2216–2223 (2017).

    Google Scholar 

  21. Kono, M., Harada, S. & Nemoto, T. Chemoselective intramolecular formal insertion reaction of Rh–nitrenes into an amide bond over C−H insertion. Chem. –A Eur. J. 25, 3119–3124 (2019).

    Google Scholar 

  22. Wang, H. et al. Nitrene-mediated intermolecular N–N coupling for efficient synthesis of hydrazides. Nat. Chem. 13, 378–385 (2021).

    Google Scholar 

  23. Chakraborty, S. et al. Copper-stabilized nitrene radical in N─N coupling: facile synthesis of hydrazides and pyrazole. Angew. Chem. Int. Ed. 64, e202509056 (2025).

    Google Scholar 

  24. Barbor, J. P. et al. Development of a nickel-catalyzed N–N coupling for the synthesis of hydrazides. J. Am. Chem. Soc. 145, 15071–15077 (2023).

    Google Scholar 

  25. Li, F. et al. Photosensitization enables Pauson-Khand–type reactions with nitrenes. Science 383, 498–503 (2024).

    Google Scholar 

  26. Empel, C. & Koenigs, R. M. Visible-light-mediated amination reactions via nitrene intermediates. Chem. Catal. 2, 2506–2514 (2022).

    Google Scholar 

  27. Yao, M., Chen, G., Zhang, X., Yusuf, A. & Xu, X. Recent advances on light-mediated nitrene transfer reactions: An Emerging Area. Eur. J. Org. Chem. 28, e202401404 (2025).

    Google Scholar 

  28. Song, L. et al. An unexpected synthesis of azepinone derivatives through a metal-free photochemical cascade reaction. Nat. Commun. 14, 831 (2023).

    Google Scholar 

  29. Tian, X., Song, L. & Hashmi, A. S. K. Synthesis of carbazoles and related heterocycles from sulfilimines by intramolecular C−H aminations. Angew. Chem. Int. Ed. 59, 12342–12346 (2020).

    Google Scholar 

  30. Empel, C., Pham, Q. H. & Koenigs, R. M. Spin states matter─from fundamentals toward synthetic methodology development and drug discovery. Acc. Chem. Res. 57, 2717–2727 (2024).

    Google Scholar 

  31. Cai, B.-G., Empel, C., Yao, W.-Z., Koenigs, R. M. & Xuan, J. Azoxy compounds—from synthesis to reagents for azoxy group transfer reactions. Angew. Chem. Int. Ed. 62, e202312031 (2023).

    Google Scholar 

  32. Mitchell, J. K., Hussain, W. A., Bansode, A. H., O’Connor, R. M. & Parasram, M. Aziridination via nitrogen-atom transfer to olefins from photoexcited azoxy-triazenes. J. Am. Chem. Soc. 146, 9499–9505 (2024).

    Google Scholar 

  33. Kobayashi, Y., Masakado, S. & Takemoto, Y. Photoactivated N-acyliminoiodinanes applied to amination: an ortho-methoxymethyl group stabilizes reactive precursors. Angew. Chem. Int. Ed. 57, 693–697 (2017).

    Google Scholar 

  34. Guo, Y., Pei, C. & Koenigs, R. M. A combined experimental and theoretical study on the reactivity of nitrenes and nitrene radical anions. Nat. Commun. 13, 86 (2022).

    Google Scholar 

  35. Lang, K., Torker, S., Wojtas, L. & Zhang, X. P. Asymmetric induction and enantiodivergence in catalytic radical C–H amination via enantiodifferentiative H-atom abstraction and stereoretentive radical substitution. J. Am. Chem. Soc. 141, 12388–12396 (2019).

    Google Scholar 

  36. Ju, M. et al. Tunable catalyst-controlled syntheses of β- and γ-amino alcohols enabled by silver-catalysed nitrene transfer. Nat. Catal. 2, 899–908 (2019).

    Google Scholar 

  37. Kuijpers, P. F., van der Vlugt, I. J. I., Schneider, S. & de Bruin, B. Nitrene radical intermediates in catalytic synthesis. Chem. Eur. J. 23, 13819–13829 (2017).

    Google Scholar 

  38. Noda, H., Tang, X. & Shibasaki, M. Catalyst-controlled chemoselective nitrene transfers. Helv. Chim. Acta 104, e2100140 (2021).

    Google Scholar 

  39. Wentrup, C. Carbenes and nitrenes: recent developments in fundamental chemistry. Angew. Chem. Int. Ed. 57, 11508–11521 (2018).

    Google Scholar 

  40. Antoni, P. W. et al. Dibenzothiophenesulfilimines: a convenient approach to intermolecular rhodium-catalysed C−H amidation. Chem. Eur. J. 26, 8235–8238 (2020).

    Google Scholar 

  41. Tian, X., Song, L. & Hashmi, A. S. K. -Imino gold carbene intermediates from readily accessible sulfilimines: intermolecular access to structural diversity. Chem. Eur. J. 26, 3197–3204 (2020).

    Google Scholar 

  42. Tian, X. et al. Sulfilimines as versatile nitrene transfer reagents: facile access to diverse aza-heterocycles. Angew. Chem. Int. Ed. 58, 3589–3593 (2019).

    Google Scholar 

  43. Wiezorek, S., Lamers, P. & Bolm, C. Conversion and degradation pathways of sulfoximines. Chem. Soc. Rev. 48, 5408–5423 (2019).

    Google Scholar 

  44. Bizet, V., Hendriks, C. M. M. & Bolm, C. Sulfur imidations: access to sulfimides and sulfoximines. Chem. Soc. Rev. 44, 3378–3390 (2015).

    Google Scholar 

  45. Morita, H. et al. Generation of nitrene by the photolysis of N-substituted iminodibenzothiophene. J. Org. Chem. 73, 7159–7163 (2008).

    Google Scholar 

  46. Yu, T., Jin, Z., Ji, Y., Yang, A. & Jia, P. Photoredox-catalyzed difunctionalization of alkenes with sulfilimines. Org. Lett. 26, 7944–7948 (2024).

    Google Scholar 

  47. Desikan, V., Liu, Y., Toscano, J. P. & Jenks, W. S. Photochemistry of N-acetyl-, N-trifluoroacetyl-, N-mesyl-, and N-tosyldibenzothiophene sulfilimines. J. Org. Chem. 73, 4398–4414 (2008).

    Google Scholar 

  48. Desikan, V., Liu, Y., Toscano, J. P. & Jenks, W. S. Photochemistry of sulfilimine-based nitrene precursors:  generation of both singlet and triplet benzoylnitrene. J. Org. Chem. 72, 6848–6859 (2007).

    Google Scholar 

  49. Autrey, T. & Schuster, G. B. Are aroylnitrenes ground-state singlets? photochemistry of beta.-naphthoyl azide. J. Am. Chem. Soc. 109, 5814–5820 (1987).

    Google Scholar 

  50. Sigman, M. E., Autrey, T. & Schuster, G. B. Aroylnitrenes with singlet ground states: photochemistry of acetyl-substituted aroyl and aryloxycarbonyl azides. J. Am. Chem. Soc. 110, 4297–4305 (1988).

    Google Scholar 

  51. Pritchina, E. A. et al. Matrix isolation, time-resolved IR, and computational study of the photochemistry of benzoyl azide. Phys. Chem. Chem. Phys. 5, 1010–1018 (2003).

    Google Scholar 

  52. Liu, J., Mandel, S., Hadad, C. M. & Platz, M. S. A comparison of acetyl- and methoxycarbonylnitrenes by computational methods and a laser flash photolysis study of benzoylnitrene. J. Org. Chem. 69, 8583–8593 (2004).

    Google Scholar 

Download references

Acknowledgements

We are grateful for the support of this work by the National Natural Science Foundation of China (22271254 to C.Y.L., 22401256 to M.Y., 22303062 to H.T., 22473014 to J.J., 21933005 to H.S.), the National Key R&D Program of China (2022YFA1505400 to J.J.), the Natural Science Foundation of Zhejiang province (LQN25B020003 to M.Y.) and Science Foundation of Zhejiang Sci-Tech University (ZSTU) (24262196-Y to M.Y.). We also acknowledge Q. Yang (Wuhan University) for assistance with electron paramagnetic resonance (EPR) experiments.

Author information

Authors and Affiliations

  1. School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, China

    Mingming Yu, Jing Feng, Xinyuan Xiang, Ze-Hua Wang, Ze-Feng Xu & Chuan-Ying Li

  2. Keyi College, Zhejiang Sci-Tech University, Shaoxing, China

    Jing Feng & Chuan-Ying Li

  3. College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China

    Xingyu Wang & Hao Tang

  4. College of Chemistry, Beijing Normal University, Beijing, China

    Ye Hu, Jialong Jie & Hongmei Su

Authors
  1. Mingming Yu
    View author publications

    Search author on:PubMed Google Scholar

  2. Jing Feng
    View author publications

    Search author on:PubMed Google Scholar

  3. Xingyu Wang
    View author publications

    Search author on:PubMed Google Scholar

  4. Xinyuan Xiang
    View author publications

    Search author on:PubMed Google Scholar

  5. Ye Hu
    View author publications

    Search author on:PubMed Google Scholar

  6. Ze-Hua Wang
    View author publications

    Search author on:PubMed Google Scholar

  7. Ze-Feng Xu
    View author publications

    Search author on:PubMed Google Scholar

  8. Jialong Jie
    View author publications

    Search author on:PubMed Google Scholar

  9. Hongmei Su
    View author publications

    Search author on:PubMed Google Scholar

  10. Hao Tang
    View author publications

    Search author on:PubMed Google Scholar

  11. Chuan-Ying Li
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.Y.L. and M.Y. conceived the work. M.Y., J.F. and Z.F.X. designed the experiments and analysed the data. J.F., X.X. and Z.H.W. performed the synthetic experiments. X.W. and H.T. contributed to the DFT calculation. J.J. and H.S. designed and analysed mechanistic investigations using time-resolved spectroscopy. Y.H. performed time-resolved spectroscopy experiments. M.Y. and C.Y.L. described original manuscript and all authors revised.

Corresponding authors

Correspondence to Mingming Yu, Jialong Jie, Hongmei Su, Hao Tang or Chuan-Ying Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Tiezheng Jia and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Feng, J., Wang, X. et al. Photo-induced selective N-N bond construction via harnessing nitrene release and transfer. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68674-z

Download citation

  • Received: 07 August 2025

  • Accepted: 14 January 2026

  • Published: 27 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68674-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing