Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Efficient implementation of a quantum algorithm with a trapped ion qudit
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 January 2026

Efficient implementation of a quantum algorithm with a trapped ion qudit

  • Xiaoyang Shi  ORCID: orcid.org/0009-0004-9069-12351,
  • Jasmine Sinanan-Singh1,
  • Timothy J. Burke  ORCID: orcid.org/0000-0001-8937-660X1,
  • John Chiaverini  ORCID: orcid.org/0000-0001-7123-84601,2 &
  • …
  • Isaac L. Chuang1 

Nature Communications , Article number:  (2026) Cite this article

  • 1088 Accesses

  • 1 Citations

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Quantum information
  • Qubits

Abstract

Demonstration of quantum advantage remains challenging due to the increased overhead of controlling large quantum systems. While significant effort has been devoted to qubit-based devices, qudits (d-level systems) offer potential advantages in both hardware efficiency and algorithmic performance. In this paper, we demonstrate multi-tone control of a single trapped ion qudit of up to eight levels, as well as the implementation of Grover’s search algorithm on a qudit with dimensions five and eight, achieving operation fidelity of 96.8(3)% and 69(6)%, respectively, which correspond to 99.9(1)% and 97.1(3) % squared statistical overlap, respectively, with the expected result for a single iteration of the Grover search algorithm. The performance is competitive when compared to qubit-based systems; moreover, the sequence requires only \({{{\mathcal{O}}}}(d)\) single-qudit gates and no entangling gates. This work highlights the potential of using qudits for efficient implementations of quantum algorithms.

Similar content being viewed by others

Native qudit entanglement in a trapped ion quantum processor

Article Open access 19 April 2023

Noisy qudit vs multiple qubits: conditions on gate efficiency for enhancing fidelity

Article Open access 10 June 2024

Demonstration of measurement-free universal logical quantum computation

Article Open access 26 January 2026

Data availability

The data generated in this study have been deposited in the Zenodo database under accession code https://doi.org/10.5281/zenodo.1747904659.

Code availability

The code for simulations is available upon request.

References

  1. Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

    Google Scholar 

  2. Manetsch, H. J. et al. A tweezer array with 6,100 highly coherent atomic qubits. Nature 647, 60–67 (2025).

  3. Bruzewicz, C. D., Chiaverini, J., Mcconnell, R. & Sage, J. M. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).

    Google Scholar 

  4. Henriet, L. et al. Quantum computing with neutral atoms. Quantum 4, 327 (2020).

    Google Scholar 

  5. Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    Google Scholar 

  6. Monz, T. et al. Realization of a scalable shor algorithm. Science 351, 1068–1070 (2016).

    Google Scholar 

  7. Figgatt, C. et al. Complete 3-qubit grover search on a programmable quantum computer. Nat. Commun. 8, 1918 (2017).

    Google Scholar 

  8. Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995).

    Google Scholar 

  9. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

  10. AbuGhanem, M. Characterizing grover search algorithm on large-scale superconducting quantum computers. Sci. Rep. 15, 1281 (2025).

    Google Scholar 

  11. Nikolaeva, A. S., Kiktenko, E. O. & Fedorov, A. K. Generalized toffoli gate decomposition using ququints: Towards realizing grover’s algorithm with qudits. Entropy 25, 387 (2023).

    Google Scholar 

  12. Saeedi, M. & Pedram, M. Linear-depth quantum circuits for n-qubit toffoli gates with no ancilla. Phys. Rev. A 87, 062318 (2013).

    Google Scholar 

  13. Lubinski, T. et al. Application-oriented performance benchmarks for quantum computing. IEEE Trans. Quantum Eng. 4, 1–32 (2023).

    Google Scholar 

  14. Muthukrishnan, A. & Stroud, C. R. Multivalued logic gates for quantum computation. Phys. Rev. A 62, 052309 (2000).

    Google Scholar 

  15. Ivanov, S. S., Tonchev, H. S. & Vitanov, N. V. Time-efficient implementation of quantum search with qudits. Phys. Rev. A 85, 062321 (2012).

    Google Scholar 

  16. Saha, A., Majumdar, R., Saha, D., Chakrabarti, A. & Sur-Kolay, S. Asymptotically improved circuit for a d-ary grover’s algorithm with advanced decomposition of the n-qudit Toffoli gate. Phys. Rev. A 105, 062453 (2022).

    Google Scholar 

  17. Kiktenko, E. O., Nikolaeva, A. S., Xu, P., Shlyapnikov, G. V. & Fedorov, A. K. Scalable quantum computing with qudits on a graph. Phys. Rev. A 101, 022304 (2020).

    Google Scholar 

  18. Kiktenko, E. O., Nikolaeva, A. S. & Fedorov, A. K. Colloquium: qudits for decomposing multiqubit gates and realizing quantum algorithms. Rev. Mod. Phys. 97, 021003 (2025).

    Google Scholar 

  19. Nikolaeva, A. S. et al. Scalable improvement of the generalized toffoli gate realization using trapped-ion-based qutrits. Phys. Rev. Lett. 135, 060601 (2025).

    Google Scholar 

  20. DeBry, K. et al. Error correction of a logical qubit encoded in a single atomic ion. Preprint at https://doi.org/10.48550/arXiv.2503.13908 (2025).

  21. Li, Y. et al. Beating the break-even point with autonomous quantum error correction. Preprint at https://doi.org/10.48550/arXiv.2504.16746 (2025).

  22. Chiesa, A. et al. Molecular nanomagnets as qubits with embedded quantum-error correction. J. Phys. Chem. Lett. 11, 8610–8615 (2020).

    Google Scholar 

  23. Ma, S. et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279–284 (2023).

    Google Scholar 

  24. Omanakuttan, S., Mitra, A., Meier, E. J., Martin, M. J. & Deutsch, I. H. Qudit entanglers using quantum optimal control. PRX Quantum 4, 040333 (2023).

    Google Scholar 

  25. Omanakuttan, S., Buchemmavari, V., Gross, J. A., Deutsch, I. H. & Marvian, M. Fault-tolerant quantum computation using large spin-cat codes. PRX Quantum 5, 020355 (2024).

    Google Scholar 

  26. Yu, X. et al. Schrödinger cat states of a nuclear spin qudit in silicon. Nat. Phys. 21, 362–367 (2025).

    Google Scholar 

  27. Fernández de Fuentes, I. et al. Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields. Nat. Commun. 15, 1380 (2024).

    Google Scholar 

  28. Godfrin, C. et al. Operating quantum states in single magnetic molecules: Implementation of grover’s quantum algorithm. Phys. Rev. Lett. 119, 187702 (2017).

    Google Scholar 

  29. Champion, E., Wang, Z., Parker, R. W. & Blok, M. S. Efficient control of a transmon qudit using effective spin-7/2 rotations. Phys. Rev. X 15, 021096 (2025).

    Google Scholar 

  30. Goss, N. et al. High-fidelity qutrit entangling gates for superconducting circuits. Nat. Commun. 13, 7481 (2022).

    Google Scholar 

  31. Fischer, L. E. et al. Universal qudit gate synthesis for transmons. PRX Quantum 4, 030327 (2023).

    Google Scholar 

  32. Neeley, M. et al. Emulation of a quantum spin with a superconducting phase qudit. Science 325, 722–725 (2009).

    Google Scholar 

  33. Chi, Y. et al. A programmable qudit-based quantum processor. Nat. Commun. 13, 1166 (2022).

    Google Scholar 

  34. Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

    Google Scholar 

  35. Low, P. J., Zutt, N. C., Tathed, G. A. & Senko, C. Quantum logic operations and algorithms in a single 25-level atomic qudit. Nat. Commun. Preprint at https://doi.org/10.48550/arXiv.2507.15799 (2025).

  36. Hrmo, P. et al. Native qudit entanglement in a trapped ion quantum processor. Nat. Commun. 14, 2242 (2023).

    Google Scholar 

  37. Ringbauer, M. et al. A universal qudit quantum processor with trapped ions. Nat. Phys. 18, 1053–1057 (2022).

    Google Scholar 

  38. Brennen, G. K., O’Leary, D. P. & Bullock, S. S. Criteria for exact qudit universality. Phys. Rev. A 71, 052318 (2005).

    Google Scholar 

  39. Löschnauer, C. et al. Scalable, high-fidelity all-electronic control of trapped-ion qubits. PRX Quantum 6, 040313 (2025).

    Google Scholar 

  40. Ballance, C. J., Harty, T. P., Linke, N. M., Sepiol, M. A. & Lucas, D. M. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016).

    Google Scholar 

  41. Low, P. J., White, B. & Senko, C. Control and readout of a 13-level trapped ion qudit. npj Quantum Inf. 11, 1–10 (2025).

    Google Scholar 

  42. Shi, X. et al. Long-lived metastable-qubit memory. Phys. Rev. A 111, L020601 (2025).

    Google Scholar 

  43. An, F. A. et al. High fidelity state preparation and measurement of ion hyperfine qubits with \(\frac{1}{2}\). Phys. Rev. Lett. 129, 130501 (2022).

    Google Scholar 

  44. Sotirova, A. et al. High-fidelity heralded quantum state preparation and measurement. Preprint at https://doi.org/10.48550/arXiv.2409.05805 (2024).

  45. Hradil, Z. Quantum-state estimation. Phys. Rev. A 55, R1561–R1564 (1997).

    Google Scholar 

  46. Roy, T. et al. Programmable superconducting processor with native three-qubit gates. Phys. Rev. Appl. 14, 014072 (2020).

    Google Scholar 

  47. Wang, P. et al. Single ion qubit with estimated coherence time exceeding one hour. Nat. Commun. 12, 233 (2021).

  48. Low, P. J., White, B. M., Cox, A. A., Day, M. L. & Senko, C. Practical trapped-ion protocols for universal qudit-based quantum computing. Phys. Rev. Res. 2, 033128 (2020).

    Google Scholar 

  49. Sutherland, R. T. et al. Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence. Phys. Rev. A 101, 042334 (2020).

    Google Scholar 

  50. Weber, M. A. et al. Robust and fast microwave-driven quantum logic for trapped-ion qubits. Phys. Rev. A 110, L010601 (2024).

    Google Scholar 

  51. Marks, J., Jochym-O’Connor, T. & Gheorghiu, V. Comparison of memory thresholds for planar qudit geometries. N. J. Phys. 19, 113022 (2017).

    Google Scholar 

  52. Keppens, J., Eggerickx, Q., Levajac, V., Simion, G. & Sorée, B. Qudit vs. qubit: simulated performance of error-correction codes in higher dimensions. Phys. Rev. A 112, 032435 (2025).

    Google Scholar 

  53. Wineland, D. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998).

    Google Scholar 

  54. Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    Google Scholar 

  55. Mehta, K. K. et al. Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 11, 1066–1070 (2016).

    Google Scholar 

  56. Leuenberger, M. N. & Loss, D. The Grover algorithm with large nuclear spins in semiconductors. Phys. Rev. B 68, 165317 (2003).

    Google Scholar 

  57. McKay, D. C., Wood, C. J., Sheldon, S., Chow, J. M. & Gambetta, J. M. Efficient z gates for quantum computing. Phys. Rev. A 96, 022330 (2017).

    Google Scholar 

  58. Bullock, S. S., O’Leary, D. P. & Brennen, G. K. Asymptotically optimal quantum circuits for d-level systems. Phys. Rev. Lett. 94, 230502 (2005).

    Google Scholar 

  59. Shi, X., Sinanan-Singh, J., Burke, T. J., Chiaverini, J. & Chuang, I. L. Efficient implementation of a quantum algorithm with a trapped ion qudit. https://doi.org/10.5281/zenodo.17479046 (2025).

Download references

Acknowledgements

I.L.C. acknowledges support by the NSF Center for Ultracold Atoms. This research was supported by the U.S. Army Research Office through grant W911NF-24-1-0379. This material is based upon work supported by the Department of Defense under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of Defense.

Author information

Authors and Affiliations

  1. Center for Ultracold Atoms, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA

    Xiaoyang Shi, Jasmine Sinanan-Singh, Timothy J. Burke, John Chiaverini & Isaac L. Chuang

  2. Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA

    John Chiaverini

Authors
  1. Xiaoyang Shi
    View author publications

    Search author on:PubMed Google Scholar

  2. Jasmine Sinanan-Singh
    View author publications

    Search author on:PubMed Google Scholar

  3. Timothy J. Burke
    View author publications

    Search author on:PubMed Google Scholar

  4. John Chiaverini
    View author publications

    Search author on:PubMed Google Scholar

  5. Isaac L. Chuang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

X.S and T.B carried out experimental studies. X.S and J.S performed simulation and analysis. J.C and I.C supervised the work.

Corresponding author

Correspondence to Xiaoyang Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Evgeniy Kiktenko and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Sinanan-Singh, J., Burke, T.J. et al. Efficient implementation of a quantum algorithm with a trapped ion qudit. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68746-0

Download citation

  • Received: 11 August 2025

  • Accepted: 15 January 2026

  • Published: 21 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68746-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing