Abstract
Demonstration of quantum advantage remains challenging due to the increased overhead of controlling large quantum systems. While significant effort has been devoted to qubit-based devices, qudits (d-level systems) offer potential advantages in both hardware efficiency and algorithmic performance. In this paper, we demonstrate multi-tone control of a single trapped ion qudit of up to eight levels, as well as the implementation of Grover’s search algorithm on a qudit with dimensions five and eight, achieving operation fidelity of 96.8(3)% and 69(6)%, respectively, which correspond to 99.9(1)% and 97.1(3) % squared statistical overlap, respectively, with the expected result for a single iteration of the Grover search algorithm. The performance is competitive when compared to qubit-based systems; moreover, the sequence requires only \({{{\mathcal{O}}}}(d)\) single-qudit gates and no entangling gates. This work highlights the potential of using qudits for efficient implementations of quantum algorithms.
Similar content being viewed by others
Data availability
The data generated in this study have been deposited in the Zenodo database under accession code https://doi.org/10.5281/zenodo.1747904659.
Code availability
The code for simulations is available upon request.
References
Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).
Manetsch, H. J. et al. A tweezer array with 6,100 highly coherent atomic qubits. Nature 647, 60–67 (2025).
Bruzewicz, C. D., Chiaverini, J., Mcconnell, R. & Sage, J. M. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).
Henriet, L. et al. Quantum computing with neutral atoms. Quantum 4, 327 (2020).
Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).
Monz, T. et al. Realization of a scalable shor algorithm. Science 351, 1068–1070 (2016).
Figgatt, C. et al. Complete 3-qubit grover search on a programmable quantum computer. Nat. Commun. 8, 1918 (2017).
Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).
AbuGhanem, M. Characterizing grover search algorithm on large-scale superconducting quantum computers. Sci. Rep. 15, 1281 (2025).
Nikolaeva, A. S., Kiktenko, E. O. & Fedorov, A. K. Generalized toffoli gate decomposition using ququints: Towards realizing grover’s algorithm with qudits. Entropy 25, 387 (2023).
Saeedi, M. & Pedram, M. Linear-depth quantum circuits for n-qubit toffoli gates with no ancilla. Phys. Rev. A 87, 062318 (2013).
Lubinski, T. et al. Application-oriented performance benchmarks for quantum computing. IEEE Trans. Quantum Eng. 4, 1–32 (2023).
Muthukrishnan, A. & Stroud, C. R. Multivalued logic gates for quantum computation. Phys. Rev. A 62, 052309 (2000).
Ivanov, S. S., Tonchev, H. S. & Vitanov, N. V. Time-efficient implementation of quantum search with qudits. Phys. Rev. A 85, 062321 (2012).
Saha, A., Majumdar, R., Saha, D., Chakrabarti, A. & Sur-Kolay, S. Asymptotically improved circuit for a d-ary grover’s algorithm with advanced decomposition of the n-qudit Toffoli gate. Phys. Rev. A 105, 062453 (2022).
Kiktenko, E. O., Nikolaeva, A. S., Xu, P., Shlyapnikov, G. V. & Fedorov, A. K. Scalable quantum computing with qudits on a graph. Phys. Rev. A 101, 022304 (2020).
Kiktenko, E. O., Nikolaeva, A. S. & Fedorov, A. K. Colloquium: qudits for decomposing multiqubit gates and realizing quantum algorithms. Rev. Mod. Phys. 97, 021003 (2025).
Nikolaeva, A. S. et al. Scalable improvement of the generalized toffoli gate realization using trapped-ion-based qutrits. Phys. Rev. Lett. 135, 060601 (2025).
DeBry, K. et al. Error correction of a logical qubit encoded in a single atomic ion. Preprint at https://doi.org/10.48550/arXiv.2503.13908 (2025).
Li, Y. et al. Beating the break-even point with autonomous quantum error correction. Preprint at https://doi.org/10.48550/arXiv.2504.16746 (2025).
Chiesa, A. et al. Molecular nanomagnets as qubits with embedded quantum-error correction. J. Phys. Chem. Lett. 11, 8610–8615 (2020).
Ma, S. et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279–284 (2023).
Omanakuttan, S., Mitra, A., Meier, E. J., Martin, M. J. & Deutsch, I. H. Qudit entanglers using quantum optimal control. PRX Quantum 4, 040333 (2023).
Omanakuttan, S., Buchemmavari, V., Gross, J. A., Deutsch, I. H. & Marvian, M. Fault-tolerant quantum computation using large spin-cat codes. PRX Quantum 5, 020355 (2024).
Yu, X. et al. Schrödinger cat states of a nuclear spin qudit in silicon. Nat. Phys. 21, 362–367 (2025).
Fernández de Fuentes, I. et al. Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields. Nat. Commun. 15, 1380 (2024).
Godfrin, C. et al. Operating quantum states in single magnetic molecules: Implementation of grover’s quantum algorithm. Phys. Rev. Lett. 119, 187702 (2017).
Champion, E., Wang, Z., Parker, R. W. & Blok, M. S. Efficient control of a transmon qudit using effective spin-7/2 rotations. Phys. Rev. X 15, 021096 (2025).
Goss, N. et al. High-fidelity qutrit entangling gates for superconducting circuits. Nat. Commun. 13, 7481 (2022).
Fischer, L. E. et al. Universal qudit gate synthesis for transmons. PRX Quantum 4, 030327 (2023).
Neeley, M. et al. Emulation of a quantum spin with a superconducting phase qudit. Science 325, 722–725 (2009).
Chi, Y. et al. A programmable qudit-based quantum processor. Nat. Commun. 13, 1166 (2022).
Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).
Low, P. J., Zutt, N. C., Tathed, G. A. & Senko, C. Quantum logic operations and algorithms in a single 25-level atomic qudit. Nat. Commun. Preprint at https://doi.org/10.48550/arXiv.2507.15799 (2025).
Hrmo, P. et al. Native qudit entanglement in a trapped ion quantum processor. Nat. Commun. 14, 2242 (2023).
Ringbauer, M. et al. A universal qudit quantum processor with trapped ions. Nat. Phys. 18, 1053–1057 (2022).
Brennen, G. K., O’Leary, D. P. & Bullock, S. S. Criteria for exact qudit universality. Phys. Rev. A 71, 052318 (2005).
Löschnauer, C. et al. Scalable, high-fidelity all-electronic control of trapped-ion qubits. PRX Quantum 6, 040313 (2025).
Ballance, C. J., Harty, T. P., Linke, N. M., Sepiol, M. A. & Lucas, D. M. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016).
Low, P. J., White, B. & Senko, C. Control and readout of a 13-level trapped ion qudit. npj Quantum Inf. 11, 1–10 (2025).
Shi, X. et al. Long-lived metastable-qubit memory. Phys. Rev. A 111, L020601 (2025).
An, F. A. et al. High fidelity state preparation and measurement of ion hyperfine qubits with \(\frac{1}{2}\). Phys. Rev. Lett. 129, 130501 (2022).
Sotirova, A. et al. High-fidelity heralded quantum state preparation and measurement. Preprint at https://doi.org/10.48550/arXiv.2409.05805 (2024).
Hradil, Z. Quantum-state estimation. Phys. Rev. A 55, R1561–R1564 (1997).
Roy, T. et al. Programmable superconducting processor with native three-qubit gates. Phys. Rev. Appl. 14, 014072 (2020).
Wang, P. et al. Single ion qubit with estimated coherence time exceeding one hour. Nat. Commun. 12, 233 (2021).
Low, P. J., White, B. M., Cox, A. A., Day, M. L. & Senko, C. Practical trapped-ion protocols for universal qudit-based quantum computing. Phys. Rev. Res. 2, 033128 (2020).
Sutherland, R. T. et al. Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence. Phys. Rev. A 101, 042334 (2020).
Weber, M. A. et al. Robust and fast microwave-driven quantum logic for trapped-ion qubits. Phys. Rev. A 110, L010601 (2024).
Marks, J., Jochym-O’Connor, T. & Gheorghiu, V. Comparison of memory thresholds for planar qudit geometries. N. J. Phys. 19, 113022 (2017).
Keppens, J., Eggerickx, Q., Levajac, V., Simion, G. & Sorée, B. Qudit vs. qubit: simulated performance of error-correction codes in higher dimensions. Phys. Rev. A 112, 032435 (2025).
Wineland, D. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998).
Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).
Mehta, K. K. et al. Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 11, 1066–1070 (2016).
Leuenberger, M. N. & Loss, D. The Grover algorithm with large nuclear spins in semiconductors. Phys. Rev. B 68, 165317 (2003).
McKay, D. C., Wood, C. J., Sheldon, S., Chow, J. M. & Gambetta, J. M. Efficient z gates for quantum computing. Phys. Rev. A 96, 022330 (2017).
Bullock, S. S., O’Leary, D. P. & Brennen, G. K. Asymptotically optimal quantum circuits for d-level systems. Phys. Rev. Lett. 94, 230502 (2005).
Shi, X., Sinanan-Singh, J., Burke, T. J., Chiaverini, J. & Chuang, I. L. Efficient implementation of a quantum algorithm with a trapped ion qudit. https://doi.org/10.5281/zenodo.17479046 (2025).
Acknowledgements
I.L.C. acknowledges support by the NSF Center for Ultracold Atoms. This research was supported by the U.S. Army Research Office through grant W911NF-24-1-0379. This material is based upon work supported by the Department of Defense under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of Defense.
Author information
Authors and Affiliations
Contributions
X.S and T.B carried out experimental studies. X.S and J.S performed simulation and analysis. J.C and I.C supervised the work.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Evgeniy Kiktenko and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Shi, X., Sinanan-Singh, J., Burke, T.J. et al. Efficient implementation of a quantum algorithm with a trapped ion qudit. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68746-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-68746-0


