Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Automated mapping of DNA replication fork progression in human cells with ForkML
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 23 January 2026

Automated mapping of DNA replication fork progression in human cells with ForkML

  • Victoria Rojat  ORCID: orcid.org/0009-0008-3901-62681 na1,
  • Diletta Ciardo  ORCID: orcid.org/0000-0003-0253-47621 na1,
  • Alan Tourancheau  ORCID: orcid.org/0000-0001-7989-346X1 na1,
  • Florence Proux1,
  • Etienne Jean1,
  • Jean-Michel Arbona2 nAff6,
  • Benjamin Audit  ORCID: orcid.org/0000-0003-2683-99903,
  • Gael A. Millot  ORCID: orcid.org/0000-0002-0591-35094,
  • Frédéric Bonhomme  ORCID: orcid.org/0000-0001-6797-289X5,
  • Paola B. Arimondo  ORCID: orcid.org/0000-0001-5175-43965,
  • Olivier Hyrien  ORCID: orcid.org/0000-0001-8879-675X1 &
  • …
  • Benoît Le Tallec  ORCID: orcid.org/0000-0002-9274-64101 

Nature Communications , Article number:  (2026) Cite this article

  • 1710 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • DNA replication
  • DNA sequencing
  • Functional genomics
  • Nanopores

Abstract

Current approaches to mapping fork progression in the human genome suffer from drastically low throughput. Here, we introduce ForkML, a nanopore sequencing-based method automatically positioning thousands of individual fork velocities by tracking BrdU incorporation into replicating DNA after double pulse-labelling of asynchronous cells. ForkML recovers known human fork speed, accurately detects replication stress, and, crucially, connects replication dynamics to genomic and chromatin contexts, exposing fork slowdown in early-replicating transcribed regions.

Similar content being viewed by others

Genome-wide mapping of individual replication fork velocities using nanopore sequencing

Article Open access 08 June 2022

Genome-wide measurement of DNA replication fork directionality and quantification of DNA replication initiation and termination with Okazaki fragment sequencing

Article 18 January 2023

A high-resolution, nanopore-based artificial intelligence assay for DNA replication stress in human cancer cells

Article Open access 19 August 2025

Data availability

Nanopore sequencing data generated in this study have been deposited in the ENA database under accession code PRJEB90580. HCT116 GLOE-seq data from ref. 10 used in this study are available in NCBI’s BioProject database under accession code PRJNA554350 (GSM4305465 and GSM4305466). HCT116 high-resolution Repli-seq data from ref. 34 used in this study are available in NCBI’s Gene Expression Omnibus repository under accession code GSE137764 (supplementary file GSE137764_HCT_GaussiansGSE137764_mooth_scaled_autosome.mat.gz). HCT116 chromatin subcompartment data from ref. 35 used in this study are available on GitHub (https://github.com/mirnylab/heterochromatin-paper) (HCT116_Unsynchronized.hg38.50000.clusters.E1-E9.chr1-22.kmeans8_5.labeled.dense.bed file). Additional datasets, including training files (for R9 and R10 chemistries), BrdU basecalling model (for R9 chemistry) and fork detection (for R9 and R10 chemistries) models, as well as processed external datasets, have been deposited on Zenodo (https://doi.org/10.5281/zenodo.15706384) Source data are available at https://github.com/touala/ForkML38.

Code availability

ForkML software is available on GitHub (https://github.com/touala/ForkML)38. Custom R scripts for leading/lagging strand synthesis rate statistical analysis can be accessed at https://gitlab.pasteur.fr/gmillot/anova_contrasts/-/tree/v12.8.

References

  1. Saxena, S. & Zou, L. Hallmarks of DNA replication stress. Mol. Cell 82, 2298–2314 (2022).

    Google Scholar 

  2. Wang, N., Xu, S. & Egli, D. Replication stress in mammalian embryo development, differentiation, and reprogramming. Trends Cell Biol. 33, 872–886 (2023).

    Google Scholar 

  3. Hwang, Y. et al. Global increase in replication fork speed during a p57(KIP2)-regulated erythroid cell fate switch. Sci. Adv. 3, e1700298 (2017).

    Google Scholar 

  4. Nakatani, T. et al. DNA replication fork speed underlies cell fate changes and promotes reprogramming. Nat. Genet. 54, 318–327 (2022).

    Google Scholar 

  5. Do, B. T. et al. Nucleotide depletion promotes cell fate transitions by inducing DNA replication stress. Dev. Cell 59, 2203–2221 e2215 (2024).

    Google Scholar 

  6. Wang, J. et al. DNA replication fork speed acts as a pacer in cortical neurogenesis. Nat. Commun. 16, 10121 (2025).

    Google Scholar 

  7. Techer, H. et al. Replication dynamics: biases and robustness of DNA fiber analysis. J. Mol. Biol. 425, 4845–4855 (2013).

    Google Scholar 

  8. Hennion, M. et al. FORK-seq: replication landscape of the Saccharomyces cerevisiae genome by nanopore sequencing. Genome Biol. 21, 125 (2020).

    Google Scholar 

  9. Theulot, B. et al. Genome-wide mapping of individual replication fork velocities using nanopore sequencing. Nat. Commun. 13, 3295 (2022).

    Google Scholar 

  10. Sriramachandran, A. M. et al. Genome-wide nucleotide-resolution mapping of DNA replication patterns, single-strand breaks, and lesions by GLOE-seq. Mol. Cell 78, 975–985 e977 (2020).

    Google Scholar 

  11. Petermann, E., Helleday, T. & Caldecott, K. W. Claspin promotes normal replication fork rates in human cells. Mol. Biol. Cell 19, 2373–2378 (2008).

    Google Scholar 

  12. Fu, H. et al. The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage. Nat. Commun. 6, 6746 (2015).

    Google Scholar 

  13. Jones, M. J. K. et al. A high-resolution, nanopore-based artificial intelligence assay for DNA replication stress in human cancer cells. Nat. Commun. 16, 7732 (2025).

    Google Scholar 

  14. van den Berg, J. et al. Quantifying DNA replication speeds in single cells by scEdU-seq. Nat. Methods 21, 1175–1184 (2024).

    Google Scholar 

  15. Wang, W. et al. Genome-wide mapping of human DNA replication by optical replication mapping supports a stochastic model of eukaryotic replication. Mol. Cell 81, 2975–2988 e2976 (2021).

    Google Scholar 

  16. Blin, M. et al. DNA molecular combing-based replication fork directionality profiling. Nucleic Acids Res. 49, e69 (2021).

    Google Scholar 

  17. Carrington, J. T. et al. Most human DNA replication initiation is dispersed throughout the genome with only a minority within previously identified initiation zones. Genome Biol. 26, 122 (2025).

    Google Scholar 

  18. Muller, C. A. et al. Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads. Nat. Methods 16, 429–436 (2019).

    Google Scholar 

  19. Claussin, C., Vazquez, J. & Whitehouse, I. Single-molecule mapping of replisome progression. Mol. Cell 82, 1372–1382 e1374 (2022).

    Google Scholar 

  20. Theulot, B. et al. Telomere-to-telomere DNA replication timing profiling using single-molecule sequencing with Nanotiming. Nat. Commun. 16, 242 (2025).

    Google Scholar 

  21. Thiyagarajan, S., Rogers, A. M., Muller, C. A. & Nieduszynski, C. A. Single-molecule landscape of DNA replication pausing. Preprint at https://doi.org/10.1101/2025.08.14.670160 (2025).

  22. Cheng, T. et al. Transcription-replication conflict resolution by nuclear RNA interference. Mol. Cell 85, 3930–3946 e3935 (2025).

    Google Scholar 

  23. Díez-Santos, I. et al. Single-molecule sequencing maps replication dynamics across the fission yeast genome, including centromeres. Preprint at https://doi.org/10.1101/2025.07.16.665067 (2025).

  24. Totanes, F. I. G. et al. A genome-wide map of DNA replication at single-molecule resolution in the malaria parasite Plasmodium falciparum. Nucleic Acids Res. 51, 2709–2724 (2023).

    Google Scholar 

  25. Castellano, C. M. et al. The genetic landscape of origins of replication in P. falciparum. Nucleic Acids Res. 52, 660–676 (2024).

    Google Scholar 

  26. Totanes, F. I. G. et al. DNA replication dynamics are associated with genome composition in Plasmodium species. Nucleic Acids Res. 53, gkaf111 (2025).

  27. de Oliveira Vitarelli, M. et al. Integrating high-throughput analysis to create an atlas of replication origins in Trypanosoma cruzi in the context of genome structure and variability. mBio 15, e0031924 (2024).

    Google Scholar 

  28. Damasceno, J. D. et al. Leishmania major chromosomes are replicated from a single high-efficiency locus supplemented by thousands of lower efficiency initiation events. Cell Rep. 44, 116094 (2025).

    Google Scholar 

  29. Han, D., Shepherd, C., Benton, M. L. & Nordman, J. T. Nanopore-based sequencing of active DNA replication reveals key principles of metazoan replication fork progression, origin and termination sites. Preprint at https://doi.org/10.1101/2025.09.26.678856 (2025).

  30. Jaworski, J. J. et al. ecDNA replication is disorganized and vulnerable to replication stress. Nucleic Acids Res. 53, gkaf711 (2025).

  31. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Google Scholar 

  32. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. (2025).

  33. Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. Preprint at https://doi.org/10.48550/arXiv.1505.04597 (2015).

  34. Zhao, P. A., Sasaki, T. & Gilbert, D. M. High-resolution Repli-Seq defines the temporal choreography of initiation, elongation and termination of replication in mammalian cells. Genome Biol. 21, 76 (2020).

    Google Scholar 

  35. Spracklin, G. et al. Diverse silent chromatin states modulate genome compartmentalization and loop extrusion barriers. Nat. Struct. Mol. Biol. 30, 38–51 (2023).

    Google Scholar 

  36. Hinrichs, A. S. et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 34, D590–D598 (2006).

    Google Scholar 

  37. Kirstein, N. et al. Human ORC/MCM density is low in active genes and correlates with replication time but does not delimit initiation zones. eLife 10, e62161 (2021).

  38. Tourancheau, A. touala/ForkML: updated GitHub on 20251223 (v0.2.0). Zenodo, https://doi.org/10.5281/zenodo.18038657 (2025).

Download references

Acknowledgements

The authors thank Magali Hennion for fruitful discussions, Laurent Lacroix for helpful discussions and critical reading of the manuscript, IBENS GenomiqueENS facility for their assistance with nanopore sequencing and IBENS IT platform and BioClust computing cluster (Labex Memolife) for data management. This work was supported by grants from Fondation pour la Recherche Médicale [FRM EQU202203014910 to O.H.], Agence Nationale pour la Recherche [NanoPoRep ANR-18-CE45-0002, HUDROR ANR-19-CE12-0028 and SMAHGR ANR-23-CE12-0021 to B.A. and O.H.] and Région Île-de-France [DIM1Health 2019 grant to the project EpiK to P.B.A. for the LC/MS-MS equipment]. V.R. was supported by fellowships from the Ministère de l’Enseignement Supérieur et de la Recherche and Fondation pour la Recherche médicale [FRM FDT202404018224].

Author information

Author notes
  1. Jean-Michel Arbona

    Present address: IBDM, UMR7288, Case 907, Parc Scientifique de Luminy, Marseille, France

  2. These authors contributed equally: Victoria Rojat, Diletta Ciardo, Alan Tourancheau.

Authors and Affiliations

  1. IBENS, Département de biologie, École Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France

    Victoria Rojat, Diletta Ciardo, Alan Tourancheau, Florence Proux, Etienne Jean, Olivier Hyrien & Benoît Le Tallec

  2. Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, INSERM, U1293, Université Claude Bernard Lyon 1, Lyon, France

    Jean-Michel Arbona

  3. CNRS, ENS de Lyon, LPENSL, UMR5672, Lyon, France

    Benjamin Audit

  4. Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France

    Gael A. Millot

  5. Epigenetic Chemical Biology EpiCBio, Institut Pasteur, CNRS UMR3523 Chem4Life, Université Paris Cité, Paris, France

    Frédéric Bonhomme & Paola B. Arimondo

Authors
  1. Victoria Rojat
    View author publications

    Search author on:PubMed Google Scholar

  2. Diletta Ciardo
    View author publications

    Search author on:PubMed Google Scholar

  3. Alan Tourancheau
    View author publications

    Search author on:PubMed Google Scholar

  4. Florence Proux
    View author publications

    Search author on:PubMed Google Scholar

  5. Etienne Jean
    View author publications

    Search author on:PubMed Google Scholar

  6. Jean-Michel Arbona
    View author publications

    Search author on:PubMed Google Scholar

  7. Benjamin Audit
    View author publications

    Search author on:PubMed Google Scholar

  8. Gael A. Millot
    View author publications

    Search author on:PubMed Google Scholar

  9. Frédéric Bonhomme
    View author publications

    Search author on:PubMed Google Scholar

  10. Paola B. Arimondo
    View author publications

    Search author on:PubMed Google Scholar

  11. Olivier Hyrien
    View author publications

    Search author on:PubMed Google Scholar

  12. Benoît Le Tallec
    View author publications

    Search author on:PubMed Google Scholar

Contributions

V.R., D.C. and F.P. performed the experiments and nanopore sequencing. A.T., D.C. and E.J. performed the computational studies. J.M.A. implemented BrdU detection with ONT’s Megalodon programme. G.A.M. and A.T. performed the statistical analyses. F.B. and P.B.A. carried out mass spectrometry analysis. A.T., B.L.T., D.C., V.R., B.A. and O.H. analysed the data. B.L.T. designed the project, supervised the study and wrote the manuscript with inputs from the other authors.

Corresponding author

Correspondence to Benoît Le Tallec.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Jeroen van den Berg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Supplementary Data 7

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojat, V., Ciardo, D., Tourancheau, A. et al. Automated mapping of DNA replication fork progression in human cells with ForkML. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68750-4

Download citation

  • Received: 25 July 2025

  • Accepted: 15 January 2026

  • Published: 23 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68750-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research