Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Structural basis and pathological implications of the dimeric OS9-SEL1L-HRD1 ERAD Core Complex
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 27 January 2026

Structural basis and pathological implications of the dimeric OS9-SEL1L-HRD1 ERAD Core Complex

  • Liangguang Leo Lin  ORCID: orcid.org/0000-0003-1414-610X1,
  • Emir Maldosevic  ORCID: orcid.org/0000-0001-6796-30531,
  • Linyao Elina Zhou1,
  • Ahmad Jomaa  ORCID: orcid.org/0000-0002-5543-79421,2 &
  • …
  • Ling Qi  ORCID: orcid.org/0000-0001-8229-01841 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cryoelectron microscopy
  • Endoplasmic reticulum

Abstract

The SEL1L-HRD1 complex represents the most conserved branch of endoplasmic reticulum (ER)-associated degradation (ERAD), a critical quality-control pathway that clears misfolded ER proteins. However, the molecular organization and pathogenic mechanisms of mammalian ERAD have remained elusive. Here, we report the cryo-EM structure of the core mammalian ERAD complex, comprising the ER lectin OS9, SEL1L, and the E3 ubiquitin ligase HRD1. The structure, validated by mutagenesis and crosslinking assays, reveals a dimeric assembly of the core complex in which SEL1L and OS9 form a claw-like configuration in the ER lumen that mediates substrate engagement, while HRD1 dimerizes within the membrane that may facilitate substrate translocation. Furthermore, pathogenic SEL1L mutations at the SEL1L-OS9 (Gly585Asp) and SEL1L-HRD1 (Ser658Pro) interfaces disrupt complex formation and impair ERAD activity. A newly identified disease-associated HRD1 variant (Ala91Asp), located in transmembrane helix 3, impairs HRD1 dimerization and substrate processing. These findings provide structural and functional insights for mammalian SEL1L-HRD1 ERAD and elucidate how mutations destabilizing this machinery contribute to human disease.

Similar content being viewed by others

Structural insights into the human HRD1 ubiquitin ligase complex

Article Open access 01 July 2025

SEL1L-HRD1 interaction is required to form a functional HRD1 ERAD complex

Article Open access 16 February 2024

SEL1L–HRD1-mediated ERAD in mammals

Article 25 June 2025

Data availability

The materials and reagents used are either commercially available or available upon the request. Proteomic data are available in a public database PRIDE (PXD043674 (http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD043674) and PXD041882). The cryo-EM map and the corresponding atomic model for the ERAD complex structure have been deposited under the accession codes EMD70448 (https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-70448) (consensus map), EMD-70452 (locally refined map) and 9OG0. All data related to this study are available in the main text or the supplementary material. Source data are provided with this paper.

References

  1. Kanapin, A. et al. Mouse proteome analysis. Genome Res 13, 1335–1344 (2003).

    Google Scholar 

  2. Benham, A. M. Protein secretion and the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 4, a012872 (2012).

    Google Scholar 

  3. Lippincott-Schwartz, J., Bonifacino, J. S., Yuan, L. C. & Klausner, R. D. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell 54, 209–220 (1988).

    Google Scholar 

  4. Sommer, T. & Jentsch, S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 365, 176–179 (1993).

    Google Scholar 

  5. Jensen, T. J. et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129–135 (1995).

    Google Scholar 

  6. Ward, C. L., Omura, S. & Kopito, R. R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 121–127 (1995).

    Google Scholar 

  7. McCracken, A. A. & Brodsky, J. L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132, 291–298 (1996).

    Google Scholar 

  8. Hampton, R. Y., Gardner, R. G. & Rine, J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 7, 2029–2044 (1996).

    Google Scholar 

  9. Bordallo, J., Plemper, R. K., Finger, A. & Wolf, D. H. Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell 9, 209–222 (1998).

    Google Scholar 

  10. Biunno, I. et al. Isolation of a pancreas-specific gene located on human chromosome 14q31: expression analysis in human pancreatic ductal carcinomas. Genomics 46, 284–286 (1997).

    Google Scholar 

  11. Kaneko, M., Ishiguro, M., Niinuma, Y., Uesugi, M. & Nomura, Y. Human HRD1 protects against ER stress-induced apoptosis through ER-associated degradation. FEBS Lett. 532, 147–152 (2002).

    Google Scholar 

  12. Hwang, J. & Qi, L. Quality control in the endoplasmic reticulum: crosstalk between ERAD and UPR pathways. Trends Biochem Sci. 43, 593–605 (2018).

    Google Scholar 

  13. Wang, H. H. et al. Hypomorphic variants of SEL1L-HRD1 ER-associated degradation are associated with neurodevelopmental disorders. J. Clin. Invest. https://doi.org/10.1172/JCI170054 (2024).

  14. Weis, D. et al. Biallelic Cys141Tyr variant of SEL1L is associated with neurodevelopmental disorders, agammaglobulinemia, and premature death. J. Clin. Invest. https://doi.org/10.1172/JCI170882 (2024).

  15. Wang, H. H., Biunno, I., Sun, S. & Qi, L. SEL1L-HRD1-mediated ERAD in mammals. Nat. Cell Biol. https://doi.org/10.1038/s41556-025-01690-1 (2025).

  16. Qi, L., Tsai, B. & Arvan, P. New insights into the physiological role of endoplasmic reticulum-associated degradation. Trends Cell Biol. 27, 430–440 (2017).

    Google Scholar 

  17. Bhattacharya, A. & Qi, L. ER-associated degradation in health and disease - from substrate to organism. J. Cell Sci. 132, jcs232850 (2019).

    Google Scholar 

  18. Sha, H. et al. The ER-associated degradation adaptor protein Sel1L regulates LPL secretion and lipid metabolism. Cell Metab. 20, 458–470 (2014).

    Google Scholar 

  19. Sun, S. et al. Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival. Proc. Natl. Acad. Sci. USA 111, E582–E591 (2014).

    Google Scholar 

  20. Francisco, A. B. et al. Deficiency of suppressor enhancer Lin12 1 like (SEL1L) in mice leads to systemic endoplasmic reticulum stress and embryonic lethality. J. Biol. Chem. 285, 13694–13703 (2010).

    Google Scholar 

  21. Fujita, H. et al. The E3 ligase synoviolin controls body weight and mitochondrial biogenesis through negative regulation of PGC-1beta. EMBO J. 34, 1042–1055 (2015).

    Google Scholar 

  22. Yagishita, N. et al. Essential role of synoviolin in embryogenesis. J. Biol. Chem. 280, 7909–7916 (2005).

    Google Scholar 

  23. Ji, Y. et al. The Sel1L-Hrd1 endoplasmic reticulum-associated degradation complex manages a key checkpoint in B cell development. Cell Rep. 16, 2630–2640 (2016).

    Google Scholar 

  24. Sun, S. et al. Epithelial Sel1L is required for the maintenance of intestinal homeostasis. Mol. Biol. Cell 27, 483–490 (2016).

    Google Scholar 

  25. Bhattacharya, A. et al. Hepatic Sel1L-Hrd1 ER-associated degradation (ERAD) manages FGF21 levels and systemic metabolism via CREBH. EMBO J. 37, e99277 (2018).

    Google Scholar 

  26. Shrestha, N. et al. Sel1L-Hrd1 ER-associated degradation maintains β cell identity via TGFβ signaling. J. Clin. Invest 130, 3499–3510 (2020).

    Google Scholar 

  27. Yoshida, S. et al. Endoplasmic reticulum-associated degradation is required for nephrin maturation and kidney glomerular filtration function. J. Clin. Invest. https://doi.org/10.1172/JCI143988 (2021).

  28. Abdon, B. et al. Muscle specific ER-associated degradation maintains postnatal muscle hypertrophy and systemic energy metabolism. JCI Insight 8, e170387 (2023).

    Google Scholar 

  29. Ji, Y. et al. SEL1L-HRD1 endoplasmic reticulum-associated degradation controls STING-mediated innate immunity by limiting the size of the activable STING pool. Nat. Cell Biol. https://doi.org/10.1038/s41556-023-01138-4 (2023).

  30. Thepsuwan, P. et al. Hepatic SEL1L-HRD1 ER-associated degradation regulates systemic iron homeostasis via ceruloplasmin. Proc. Natl. Acad. Sci. USA 120, e2212644120 (2023).

    Google Scholar 

  31. Bays, N. W., Gardner, R. G., Seelig, L. P., Joazeiro, C. A. & Hampton, R. Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat. Cell Biol. 3, 24–29 (2001).

    Google Scholar 

  32. Gardner, R. G. et al. Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control Hrd1p Hrd3p. J. Cell Biol. 151, 69–82 (2000).

    Google Scholar 

  33. Mueller, B., Lilley, B. N. & Ploegh, H. L. SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. J. Cell Biol. 175, 261–270 (2006).

    Google Scholar 

  34. Mueller, B., Klemm, E. J., Spooner, E., Claessen, J. H. & Ploegh, H. L. SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc. Natl. Acad. Sci. USA 105, 12325–12330 (2008).

    Google Scholar 

  35. Bhamidipati, A., Denic, V., Quan, E. M. & Weissman, J. S. Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol. Cell 19, 741–751 (2005).

    Google Scholar 

  36. Kim, W., Spear, E. D. & Ng, D. T. Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. Mol. Cell 19, 753–764 (2005).

    Google Scholar 

  37. Szathmary, R., Bielmann, R., Nita-Lazar, M., Burda, P. & Jakob, C. A. Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol. Cell 19, 765–775 (2005).

    Google Scholar 

  38. Christianson, J. C., Shaler, T. A., Tyler, R. E. & Kopito, R. R. OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat. Cell Biol. 10, 272–282 (2008).

    Google Scholar 

  39. Hosokawa, N. et al. Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L ubiquitin ligase complex and BiP. J. Biol. Chem. 283, 20914–20924 (2008).

    Google Scholar 

  40. Lilley, B. N. & Ploegh, H. L. Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc. Natl. Acad. Sci. USA 102, 14296–14301 (2005).

    Google Scholar 

  41. Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T. A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847 (2004).

    Google Scholar 

  42. Ye, Y. et al. Inaugural Article: Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc. Natl. Acad. Sci. USA 102, 14132–14138 (2005).

    Google Scholar 

  43. Carvalho, P., Goder, V. & Rapoport, T. A. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126, 361–373 (2006).

    Google Scholar 

  44. Schoebel, S. et al. Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature 548, 352–355 (2017).

    Google Scholar 

  45. Wu, X. et al. Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex. Science 368, https://doi.org/10.1126/science.aaz2449 (2020).

  46. Hwang, J. et al. Characterization of protein complexes of the endoplasmic reticulum-associated degradation E3 ubiquitin ligase Hrd1. J. Biol. Chem. 292, 9104–9116 (2017).

    Google Scholar 

  47. Huang, C. H., Hsiao, H. T., Chu, Y. R., Ye, Y. & Chen, X. Derlin2 protein facilitates HRD1-mediated retro-translocation of sonic hedgehog at the endoplasmic reticulum. J. Biol. Chem. 288, 25330–25339 (2013).

    Google Scholar 

  48. Huang, C. H., Chu, Y. R., Ye, Y. & Chen, X. Role of HERP and a HERP-related protein in HRD1-dependent protein degradation at the endoplasmic reticulum. J. Biol. Chem. 289, 4444–4454 (2014).

    Google Scholar 

  49. Lin, L. L. et al. SEL1L-HRD1 interaction is required to form a functional HRD1 ERAD complex. Nat. Commun. 15, 1440 (2024).

    Google Scholar 

  50. van der Goot, A. T., Pearce, M. M. P., Leto, D. E., Shaler, T. A. & Kopito, R. R. Redundant and Antagonistic Roles of XTP3B and OS9 in Decoding Glycan and Non-glycan Degrons in ER-Associated Degradation. Mol. Cell 70, 516–530.e516 (2018).

    Google Scholar 

  51. Fujimori, T., Kamiya, Y., Nagata, K., Kato, K. & Hosokawa, N. Endoplasmic reticulum lectin XTP3-B inhibits endoplasmic reticulum-associated degradation of a misfolded alpha1-antitrypsin variant. FEBS J. 280, 1563–1575 (2013).

    Google Scholar 

  52. Schulz, J. et al. Conserved cytoplasmic domains promote Hrd1 ubiquitin ligase complex formation for ER-associated degradation (ERAD). J. Cell Sci. 130, 3322–3335 (2017).

    Google Scholar 

  53. Shi, G. et al. ER-associated degradation is required for vasopressin prohormone processing and systemic water homeostasis. J. Clin. Invest 127, 3897–3912 (2017).

    Google Scholar 

  54. Friberg, M. A., Spiess, M. & Rutishauser, J. Degradation of wild-type vasopressin precursor and pathogenic mutants by the proteasome. J. Biol. Chem. 279, 19441–19447 (2004).

    Google Scholar 

  55. Kikkert, M. et al. Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. J. Biol. Chem. 279, 3525–3534 (2004).

    Google Scholar 

  56. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Google Scholar 

  57. Pisa, R. & Rapoport, T. A. Disulfide-crosslink analysis of the ubiquitin ligase Hrd1 complex during endoplasmic reticulum-associated protein degradation. J. Biol. Chem. 298, 102373 (2022).

    Google Scholar 

  58. Hwang, C., Sinskey, A. J. & Lodish, H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257, 1496–1502 (1992).

    Google Scholar 

  59. Kim, G. H. et al. Hypothalamic ER-associated degradation regulates POMC maturation, feeding, and age-associated obesity. J. Clin. Invest 128, 1125–1140 (2018).

    Google Scholar 

  60. Pleiner, T. et al. Structural basis for membrane insertion by the human ER membrane protein complex. Science 369, 433–436 (2020).

    Google Scholar 

  61. Bai, L., You, Q., Feng, X., Kovach, A. & Li, H. Structure of the ER membrane complex, a transmembrane-domain insertase. Nature 584, 475–478 (2020).

    Google Scholar 

  62. Jomaa, A. et al. Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome. Nat. Commun. 8, 15470 (2017).

    Google Scholar 

  63. Jomaa, A. et al. Molecular mechanism of cargo recognition and handover by the mammalian signal recognition particle. Cell Rep. 36, 109350 (2021).

    Google Scholar 

  64. Guo, L. et al. Structural insights into the human HRD1 ubiquitin ligase complex. Nat. Commun. 16, 6007 (2025).

    Google Scholar 

  65. Rao, B. et al. The cryo-EM structure of the human ERAD retrotranslocation complex. Sci. Adv. 9, eadi5656 (2023).

    Google Scholar 

  66. Wang, Q. et al. Cryo-EM structure of the human Derlin-1/p97 complex reveals a hexameric channel in ERAD. Commun. Biol. 8, 1481 (2025).

    Google Scholar 

  67. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Google Scholar 

  68. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D. Struct. Biol. 75, 861–877 (2019).

    Google Scholar 

  69. Zhou, Z. et al. Endoplasmic reticulum-associated degradation regulates mitochondrial dynamics in brown adipocytes. Science 368, 54–60 (2020).

    Google Scholar 

  70. Kyostila, K. et al. A SEL1L mutation links a canine progressive early-onset cerebellar ataxia to the endoplasmic reticulum-associated protein degradation (ERAD) machinery. PLoS Genet 8, e1002759 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank the Qi, Jomaa, Sun labs (UVA), Arvan lab (UM), Drs. David Castle (UVA), Qinli Hu (UT Southwestern Medical Center), Maciej Gluc (UVA), Ruoya Ho (UVA), and Huan Bao (UVA) for technical support and insightful discussions; Drs. Michael Purdy and David Cooper (MEMC core, UVA), Haoran Yuan (UVA) and Riley Loyd (UVA) for assisting with the cryo-EM data collection and computational support; Dr. Chih-Chi Andrew Hu (Houston Methodist Hospital) for the Derlin-1 and Derlin-2 antibodies; and Drs. Fowzan Alkuraya and Khadijah Bakur for providing the information on the HRD1 A91D variant from the Lifera Omics Database. Cryo-EM data collection was conducted at the Molecular Electron Microscopy Core Facility (MEMC, RRID:SCR_019031) at the University of Virginia (UVA) School of Medicine (NIH G20-RR31199). We thank the Proteomics Resource Facility at University of Michigan Medical School for assisting proteomic assays. This work was supported by The Owens Family Foundation, the Searle Scholars Program (SSP-2023-106), American Cancer Society grant (#134088-IRG-19-143-33-IRG), and NIH 1R35 GM160490 to A.J.; NIH R01DK120047, R01DK120330, R35GM130292 to L.Q. L.L.L. was supported in part by National Ataxia Foundation Post-doctoral Fellowships NAF 918037. E.M. is supported by the cellular and molecular biology training program at UVA through NIH T32GM139787-3. L.E.Z. is supported by the American Heart Association Pre-doctoral Fellowship 25PRE1375196.

Author information

Authors and Affiliations

  1. Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA

    Liangguang Leo Lin, Emir Maldosevic, Linyao Elina Zhou, Ahmad Jomaa & Ling Qi

  2. Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA

    Ahmad Jomaa

Authors
  1. Liangguang Leo Lin
    View author publications

    Search author on:PubMed Google Scholar

  2. Emir Maldosevic
    View author publications

    Search author on:PubMed Google Scholar

  3. Linyao Elina Zhou
    View author publications

    Search author on:PubMed Google Scholar

  4. Ahmad Jomaa
    View author publications

    Search author on:PubMed Google Scholar

  5. Ling Qi
    View author publications

    Search author on:PubMed Google Scholar

Contributions

This study was conceived by L.L.L., A.J. and L.Q. L.L.L. purified the ERAD core complex and collected cryo-EM data. E.M. processed cryo-EM data and built the atomic model. L.L.L. designed and performed all the biochemical experiments. L.E.Z. conducted the site directed point mutagenesis and plasmid preps. L.L.L. and L.Q. wrote the manuscript. All authors contributed to data analysis and final version of the manuscript.

Corresponding authors

Correspondence to Liangguang Leo Lin, Ahmad Jomaa or Ling Qi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Peer review

Peer review information

Nature Communications thanks Kenji Inaba and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L.L., Maldosevic, E., Zhou, L.E. et al. Structural basis and pathological implications of the dimeric OS9-SEL1L-HRD1 ERAD Core Complex. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68777-7

Download citation

  • Received: 14 July 2025

  • Accepted: 16 January 2026

  • Published: 27 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68777-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing