Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. review articles
  4. article
Printing technologies for monitoring crop health
Download PDF
Download PDF
  • Review Article
  • Open access
  • Published: 24 January 2026

Printing technologies for monitoring crop health

  • David Panáček1,
  • Vojtěch Kupka  ORCID: orcid.org/0000-0002-7628-29192,
  • Martin-Alex Nalepa  ORCID: orcid.org/0009-0000-0241-79162,3,
  • Ivan Dědek2,
  • Ruslan Álvarez-Diduk  ORCID: orcid.org/0000-0002-9876-15744,
  • Selin Olenik1,5,
  • Jose Flauzino  ORCID: orcid.org/0000-0002-0437-44351,
  • Jan Zdražil2,6,7,
  • Petr Jakubec2,
  • Lukáš Zdražil  ORCID: orcid.org/0000-0002-5284-98452,8,
  • Lukáš Spíchal  ORCID: orcid.org/0000-0001-6483-86282,
  • Keval K. Sonigara  ORCID: orcid.org/0000-0002-3385-02269,
  • Radek Zbořil  ORCID: orcid.org/0000-0002-3147-21962,8,
  • Martin Pumera6,9,
  • Arben Merkoçi  ORCID: orcid.org/0000-0003-2486-80854,10,
  • Joseph Wang  ORCID: orcid.org/0000-0002-4921-967411,
  • Nuria De Diego  ORCID: orcid.org/0000-0003-4539-26962,
  • Firat Güder  ORCID: orcid.org/0000-0001-5454-06091,5,12 &
  • …
  • Michal Otyepka  ORCID: orcid.org/0000-0002-1066-56772,13 

Nature Communications , Article number:  (2026) Cite this article

  • 1028 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Plant stress responses
  • Sensors
  • Sensors and probes

Abstract

Agricultural production requires low-cost sensors capable of delivering reliable, high-resolution data across large areas. Rising food demand, limited arable land, and severe soil degradation have accelerated the adoption of precision agriculture, which relies on real-time monitoring of soil, plant, and environmental conditions. Central to this shift is the development of scalable sensor technologies enabled by advances in materials science. Printing techniques, including inkjet, screen, aerosol jet, 3D printing, and direct laser writing, offer versatile routes to fabricate flexible, large-area, and plant-integrated sensors. This Review surveys recent progress in printable low-dimensional materials for agricultural sensing, examines their physicochemical properties in relation to sensor performance, and discusses key challenges and future opportunities requiring interdisciplinary integration.

Similar content being viewed by others

Accelerating adoption of species-agnostic plant sensors for precision farming

Article 07 January 2025

Additive modeling of zonal level crop production in Ethiopia

Article Open access 11 April 2025

Potential unintended consequences of agricultural land use change driven by dietary transitions

Article Open access 10 January 2024

References

  1. Van Dijk, M., Morley, T., Rau, M. L. & Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2, 494–501 (2021).

    Google Scholar 

  2. Li, G. et al. Integrated biotechnological and AI innovations for crop improvement. Nature 643, 925–937 (2025).

    Google Scholar 

  3. Fereres, E. & Villalobos, F. J. Agronomy and the sustainability of crop production. in Principles of Agronomy for Sustainable Agriculture 625–640 (Springer International Publishing, 2024).

  4. Cao, Y. et al. Nanofabrication of silk microneedles for high-throughput micronutrient delivery and continuous sap monitoring in plants. Nat. Nanotechnol. https://www.nature.com/articles/s41565-025-01923-2 (2025).

  5. Atkinson, J. T. et al. Real-time bioelectronic sensing of environmental contaminants. Nature 611, 548–553 (2022).

    Google Scholar 

  6. Bunge, A. C., Wood, A., Halloran, A. & Gordon, L. J. A systematic scoping review of the sustainability of vertical farming, plant-based alternatives, food delivery services and blockchain in food systems. Nat. Food 3, 933–941 (2022).

    Google Scholar 

  7. Hasegawa, T. et al. Extreme climate events increase risk of global food insecurity and adaptation needs. Nat. Food 2, 587–595 (2021).

    Google Scholar 

  8. Chemla, Y. et al. Hyperspectral reporters for long-distance and wide-area detection of gene expression in living bacteria. Nat. Biotechnol. https://www.nature.com/articles/s41587-025-02622-y (2025).

  9. Bukhamsin, A. H. et al. In vivo dynamics of indole- and phenol-derived plant hormones: long-term, continuous, and minimally invasive phytohormone sensor. Sci. Adv. 11, eads8733 (2025).

  10. Kim, D. et al. Toward the 3rd generation of smart farming: materials, devices, and systems for E-plant technologies. Adv. Funct. Mater. 36, e12264 (2025).

  11. Fiorello, I., Ronzan, M., Speck, T., Sinibaldi, E. & Mazzolai, B. A biohybrid self-dispersing miniature machine using wild oat fruit awns for reforestation and precision agriculture. Adv. Mater. 36, 2313906 (2024).

    Google Scholar 

  12. Agathokleous, E. et al. Adapting crop production to climate change and air pollution at different scales. Nat. Food 4, 854–865 (2023).

    Google Scholar 

  13. Wang, Y. et al. GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet. Nat. Commun. 13, 5913 (2022).

    Google Scholar 

  14. Coatsworth, P. et al. Time-resolved chemical monitoring of whole plant roots with printed electrochemical sensors and machine learning. Sci. Adv. 10, eadj6315 (2024).

    Google Scholar 

  15. Coatsworth, P., Gonzalez-Macia, L., Collins, A. S. P., Bozkurt, T. & Güder, F. Continuous monitoring of chemical signals in plants under stress. Nat. Rev. Chem. 7, 7–25 (2023).

    Google Scholar 

  16. Lan, L. et al. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens. Bioelectron. 165, 112360 (2020).

    Google Scholar 

  17. Merkoçi, A. Smart nanobiosensors in agriculture. Nat. Food 2, 920–921 (2021).

    Google Scholar 

  18. Li, Z. et al. Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor. Matter 4, 2553–2570 (2021).

    Google Scholar 

  19. Tholl, D., Hossain, O., Weinhold, A., Röse, U. S. R. & Wei, Q. Trends and applications in plant volatile sampling and analysis. Plant J. 106, 314–325 (2021).

    Google Scholar 

  20. Shabala, S. Non-invasive microelectrode ion flux measurements in plant stress physiology. in Plant Electrophysiology: Theory and Methods 35–71 (Springer, 2006).

  21. Pottosin, I. et al. Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. J. Exp. Bot. 65, 1271–1283 (2014).

    Google Scholar 

  22. Choi, Y. S. et al. Real-time monitoring of volatile organic compound-mediated plant intercommunication using surface-enhanced Raman scattering nanosensor. Adv. Sci. 12, 2412732 (2025).

    Google Scholar 

  23. Verma, V., Ravindran, P. & Kumar, P. P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 16, 86 (2016).

    Google Scholar 

  24. Sun, Y. & Fernie, A. R. Plant secondary metabolism in a fluctuating world: climate change perspectives. Trends Plant Sci. 29, 560–571 (2024).

    Google Scholar 

  25. Karpinska, B. & Foyer, C. H. Superoxide signalling and antioxidant processing in the plant nucleus. J. Exp. Bot. 75, 4599–4610 (2024).

    Google Scholar 

  26. Kasote, D. M., Jayaprakasha, G. K. & Patil, B. S. Leaf disc assays for rapid measurement of antioxidant activity. Sci. Rep. 9, 1884 (2019).

    Google Scholar 

  27. Kikuta, S. B. & Richter, H. Leaf discs or press saps? A comparison of techniques for the determination of osmotic potentials in freeze-thawed leaf material. J. Exp. Bot. 43, 1039–1044 (1992).

    Google Scholar 

  28. Oburger, E. et al. Evaluation of a novel tool for sampling root exudates from soil-grown plants compared to conventional techniques. Environ. Exp. Bot. 87, 235–247 (2013).

    Google Scholar 

  29. Taylor, S. L. Functional Plant Ecology 2nd edn. Annals of Botany 102, 878–879 (CRC Press, 2008).

  30. Ameer, S., Ibrahim, H., Kulsoom, F. N. U., Ameer, G. & Sher, M. Real-time detection and measurements of nitrogen, phosphorous & potassium from soil samples: a comprehensive review. J. Soils Sediments 24, 2565–2583 (2024).

    Google Scholar 

  31. Wu, X. et al. Rapid and in-field sensing of hydrogen peroxide in plant by hydrogel microneedle patch. Small 20, 2402024 (2024).

    Google Scholar 

  32. Lee, G., Wei, Q. & Zhu, Y. Emerging wearable sensors for plant health monitoring. Adv. Funct. Mater. 31, 2106475 (2021).

    Google Scholar 

  33. Luo, Y. et al. A morphable ionic electrode based on thermogel for non-invasive hairy plant electrophysiology. Adv. Mater. 33, 2007848 (2021).

    Google Scholar 

  34. Chai, Y. et al. Cohabiting plant-wearable sensor in situ monitors water transport in plant. Adv. Sci. 8, 2003642 (2021).

    Google Scholar 

  35. Balaish, M. & Rupp, J. L. M. Widening the range of trackable environmental and health pollutants for Li-garnet-based sensors. Adv. Mater. 33, 2100314 (2021).

    Google Scholar 

  36. Li, W. et al. An on-demand plant-based actuator created using conformable electrodes. Nat. Electron. 4, 134–142 (2021).

    Google Scholar 

  37. Giraldo, J. P., Wu, H., Newkirk, G. M. & Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541–553 (2019).

    Google Scholar 

  38. Grell, M. et al. Point-of-use sensors and machine learning enable low-cost determination of soil nitrogen. Nat. Food 2, 981–989 (2021).

    Google Scholar 

  39. Collins, A. S. P. et al. Parallel, continuous monitoring and quantification of programmed cell death in plant tissue. Adv. Sci. 11, 2400225 (2024).

    Google Scholar 

  40. Parrilla, M. et al. A 3D-printed hollow microneedle-based electrochemical sensing device for in situ plant health monitoring. Biosens. Bioelectron. 251, 116131 (2024).

    Google Scholar 

  41. Zhou, S., Zhou, J., Pan, Y., Wu, Q. & Ping, J. Wearable electrochemical sensors for plant small-molecule detection. Trends Plant Sci. 29, 219–231 (2024).

    Google Scholar 

  42. Hu, H. et al. Machine learning-powered activatable NIR-II fluorescent nanosensor for in vivo monitoring of plant stress responses. Nat. Commun. 16, 5114 (2025).

    Google Scholar 

  43. Zdrazil, J. et al. Next-generation high-throughput phenotyping with trait prediction through adaptable multi-task computational intelligence. Comput. Electron. Agric. 235, 110390 (2025).

    Google Scholar 

  44. Leal, V. G., Silva-Neto, H. A., Da Silva, S. G., Coltro, W. K. T. & Petruci, J. F. D. S. AirQuality lab-on-a-drone: a low-cost 3D-printed analytical IoT platform for vertical monitoring of gaseous H2S. Anal. Chem. 95, 14350–14356 (2023).

    Google Scholar 

  45. Kim, T. H. et al. Flexible biomimetic block copolymer composite for temperature and long-wave infrared sensing. Sci. Adv. 9, eade0423 (2023).

    Google Scholar 

  46. Rueda, M. P., Domínguez-Vidal, A., Llorent-Martínez, E. J., Aranda, V. & Ayora-Cañada, M. J. Monitoring organic matter transformation of olive oil production residues in a full-scale composting plant by fluorescence spectroscopy. Environ. Technol. Innov. 35, 103695 (2024).

    Google Scholar 

  47. Guo, H., Cheng, Y., Liu, J. & Wang, Z. Low-cost and precise traditional Chinese medicinal tree pest and disease monitoring using UAV RGB image only. Sci. Rep. 14, 25562 (2024).

    Google Scholar 

  48. Danilevicz, M. F., Bayer, P. E., Nestor, B. J., Bennamoun, M. & Edwards, D. Resources for image-based high-throughput phenotyping in crops and data sharing challenges. Plant Physiol. 187, 699–715 (2021).

    Google Scholar 

  49. De Almeida, D. R. A. et al. Remote sensing approaches to monitor tropical forest restoration: current methods and future possibilities. J. Appl. Ecol. 62, 188–206 (2025).

    Google Scholar 

  50. Newman, S. J. & Furbank, R. T. Explainable machine learning models of major crop traits from satellite-monitored continent-wide field trial data. Nat. Plants 7, 1354–1363 (2021).

    Google Scholar 

  51. Akiyama, R. et al. Seasonal pigment fluctuation in diploid and polyploid Arabidopsis revealed by machine learning-based phenotyping method PlantServation. Nat. Commun. 14, 5792 (2023).

    Google Scholar 

  52. Sanders, L. M. et al. Biological research and self-driving labs in deep space supported by artificial intelligence. Nat. Mach. Intell. 5, 208–219 (2023).

    Google Scholar 

  53. Strand, E. J. et al. Ultrathin screen-printed plant wearable capacitive sensors for environmental monitoring. Adv. Sens. Res. 4, 2400177 (2025).

    Google Scholar 

  54. Chen, K., Biswas, A., Cai, S., Huang, J. & Andrews, J. Inkjet printed potentiometric sensors for nitrate detection directly in soil enabled by a hydrophilic passivation layer. Adv. Mater. Technol. 9, 2301140 (2024).

  55. Ogbeide, O. et al. Inkjet-printed rGO/binary metal oxide sensor for predictive gas sensing in a mixed environment. Adv. Funct. Mater. 32, 2113348 (2022).

    Google Scholar 

  56. Padhiary, M., Barbhuiya, J. A., Roy, D. & Roy, P. 3D printing applications in smart farming and food processing. Smart Agric. Technol. 9, 100553 (2024).

    Google Scholar 

  57. Du, Y. et al. Autonomous aerosol and plasma co-jet printing of metallic devices at ambient temperature. Small 21, 2409751 (2025).

  58. Guyll, B. I., Petersen, L. D., Pint, C. L. & Secor, E. B. Enhanced resolution, throughput, and stability of aerosol jet printing via in line heating. Adv. Funct. Mater. 34, 2316426 (2024).

    Google Scholar 

  59. Aftab, S. et al. Laser-induced graphene for advanced sensing: comprehensive review of applications. ACS Sens. 9, 4536–4554 (2024).

    Google Scholar 

  60. Deshmukh, S., Ghosh, K., Pykal, M., Otyepka, M. & Pumera, M. Laser-induced MXene-functionalized graphene nanoarchitectonics-based microsupercapacitor for health monitoring application. ACS Nano 17, 20537–20550 (2023).

    Google Scholar 

  61. Ban, S. et al. Recent advances in implantable sensors and electronics using printable materials for advanced healthcare. Biosens. Bioelectron. 257, 116302 (2024).

    Google Scholar 

  62. Wang, P. et al. Well-defined in-textile photolithography towards permeable textile electronics. Nat. Commun. 15, 887 (2024).

    Google Scholar 

  63. Wang, F. et al. Inkjet printed multifunctional graphene sensors for flexible and wearable electronics. Adv. Electron. Mater. 11, 2400689 (2024).

  64. Zheng, S. et al. Skin-inspired, multifunctional, and 3D-printable flexible sensor based on triple-responsive hydrogel for signal conversion in skin interface electronics health management. Small 21, 2408745 (2025).

    Google Scholar 

  65. Ren, D. et al. Sulfur-functionalized carbon nanotubes with inlaid nanographene for 3D-printing micro-supercapacitors and a flexible self-powered sensing system. ACS Nano 18, 20706–20715 (2024).

    Google Scholar 

  66. Alsharif, A. A. et al. Hybrid 3D printing of a nature-inspired flexible self-adhesive biopatch for multi-biosignal sensing. Adv. Funct. Mater. 34, 2406341 (2024).

    Google Scholar 

  67. Liu, Y., Ahmad, M., Venditti, R. A., Velev, O. D. & Zhu, Y. Sustainable soft electronics combining recyclable metal nanowire circuits and biodegradable gel film substrates. Adv. Electron. Mater. 10, 2300792 (2024).

    Google Scholar 

  68. Viola, F. A. et al. All-organic transistors printed on a biodegradable and bioderived substrate for sustainable bioelectronics. Mater. Today Bio 29, 101274 (2024).

    Google Scholar 

  69. Wang, Y. et al. Stretchable, biodegradable dual cross-linked chitin hydrogels with high strength and toughness and their potential applications in flexible electronics. ACS Sustain. Chem. Eng. 11, 7083–7093 (2023).

    Google Scholar 

  70. Chen, W. et al. Directly printable and adhesive liquid metal ink for wearable devices. Adv. Funct. Mater. 35, 2411647 (2025).

    Google Scholar 

  71. Xian, S. et al. Flexible triboelectric sensor based on catalyst-diffusion self-encapsulated conductive liquid-metal-silicone ink for somatosensory soft robotic system. Adv. Funct. Mater. 35, 2412293 (2025).

    Google Scholar 

  72. Chung, K. Y. et al. Naturally crosslinked biocompatible carbonaceous liquid metal aqueous ink printing wearable electronics for multi-sensing and energy harvesting. Nano Micro Lett. 16, 149 (2024).

    Google Scholar 

  73. Wang, X. et al. Extrusion printing of surface-functionalized metal-organic framework inks for a high-performance wearable volatile organic compound sensor. Adv. Sci. 11, 2400207 (2024).

    Google Scholar 

  74. Sole-Gras, M. et al. Vapor-induced phase-separation-enabled versatile direct ink writing. Nat. Commun. 15, 3058 (2024).

    Google Scholar 

  75. Yan, B. et al. Polymer-regulating MXene@dopamine electroactive gel-inks for textile-based multi-protective wearables. Adv. Funct. Mater. 34, 2401097 (2024).

    Google Scholar 

  76. Ling, Y. et al. Conventional non-fluorescent polymers: unconventional security inks for data storage and multidimensional photonic cryptography. Adv. Mater. 35, 2303641 (2023).

    Google Scholar 

  77. Park, S. et al. Highly conductive ink based on self-aligned single-walled carbon nanotubes through inter-fiber sliding in cellulose fibril networks. Adv. Sci. 11, 2402854 (2024).

    Google Scholar 

  78. Zhou, G. et al. 3D printed nitrogen-doped thick carbon architectures for supercapacitor: ink rheology and electrochemical performance. Adv. Sci. 10, 2206320 (2023).

    Google Scholar 

  79. Shar, A., Glass, P., Park, S. H. & Joung, D. 3D printable one-part carbon nanotube-elastomer ink for health monitoring applications. Adv. Funct. Mater. 33, 2211079 (2023).

    Google Scholar 

  80. Zhu, J., He, Y., Wang, Y. & Cai, L.-H. Voxelated bioprinting of modular double-network bio-ink droplets. Nat. Commun. 15, 5902 (2024).

    Google Scholar 

  81. Silvestri, A. et al. An electroactive and self-assembling bio-ink, based on protein-stabilized nanoclusters and graphene, for the manufacture of fully inkjet-printed paper-based analytical devices. Small 19, 2300163 (2023).

    Google Scholar 

  82. Xie, M. et al. Volumetric additive manufacturing of pristine silk-based (bio)inks. Nat. Commun. 14, 210 (2023).

    Google Scholar 

  83. Rim, Y. S., Bae, S., Chen, H., De Marco, N. & Yang, Y. Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 28, 4415–4440 (2016).

    Google Scholar 

  84. Nouseen, S. & Pumera, M. MXene 3D/4D printing: ink formulation and electrochemical energy storage applications. Adv. Funct. Mater. 35, 2421987 (2025).

  85. Suresh, R. R. et al. Fabrication of screen-printed electrodes: opportunities and challenges. J. Mater. Sci. 56, 8951–9006 (2021).

    Google Scholar 

  86. Conti, S. et al. Printed transistors made of 2D material-based inks. Nat. Rev. Mater. 8, 651–667 (2023).

    Google Scholar 

  87. McManus, D. et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12, 343–350 (2017).

    Google Scholar 

  88. Xia, Y. et al. Recent progress in photolithography technique to fabricate micro-supercapacitors. J. Energy Storage 114, 115862 (2025).

    Google Scholar 

  89. Parida, B. et al. Recent developments in upscalable printing techniques for perovskite solar cells. Adv. Sci. 9, 2200308 (2022).

    Google Scholar 

  90. Rauf, S. et al. Fully screen-printed and gentle-to-skin wet ECG electrodes with compact wireless readout for cardiac diagnosis and remote monitoring. ACS Nano 18, 10074–10087 (2024).

    Google Scholar 

  91. Poletti, F. et al. Graphene-paper-based electrodes on plastic and textile supports as new platforms for amperometric biosensing. Adv. Funct. Mater. 32, 2107941 (2022).

    Google Scholar 

  92. Wu, K. et al. Screen printing of graphene-based nanocomposite inks for flexible organic integrated circuits. Org. Electron. 108, 106603 (2022).

    Google Scholar 

  93. Chao, M. et al. Breathable Ti3C2T x MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 15, 9746–9758 (2021).

    Google Scholar 

  94. Xiang, L. et al. Wafer-scale high-yield manufacturing of degradable electronics for environmental monitoring. Adv. Funct. Mater. 29, 1905518 (2019).

    Google Scholar 

  95. Yoon, J. et al. Three-dimensional printed poly(vinyl alcohol) substrate with controlled on-demand degradation for transient electronics. ACS Nano 12, 6006–6012 (2018).

    Google Scholar 

  96. Lomeri, H. J. et al. Integration of a paper-based supercapacitor and flexible perovskite mini-module: toward self-powered portable and wearable electronics. Adv. Funct. Mater. 34, 2313267 (2024).

    Google Scholar 

  97. Meder, F. et al. Ultraconformable, self-adhering surface electrodes for measuring electrical signals in plants. Adv. Mater. Technol. 6, 2001182 (2021).

    Google Scholar 

  98. Ait-Mammar, W. et al. All-inkjet-printed humidity sensors for the detection of relative humidity in air and soil—towards the direct fabrication on plant leaves. MRS Adv. 5, 965–973 (2020).

    Google Scholar 

  99. Shah, M. A., Lee, D.-G., Lee, B.-Y. & Hur, S. Classifications and applications of inkjet printing technology: a review. IEEE Access 9, 140079–140102 (2021).

    Google Scholar 

  100. Vaghasiya, J. V. & Pumera, M. The rise of 3D/4D-printed water harvesting materials. Mater. Today 78, 46–74 (2024).

    Google Scholar 

  101. Zhang, N. et al. 3D printing of micro-nano devices and their applications. Microsyst. Nanoeng. 11, 35 (2025).

    Google Scholar 

  102. Pak, K. et al. Fabrication of multifunctional wearable interconnect E-textile platform using direct ink writing (DIW) 3D printing. Npj Flex. Electron. 9, 48 (2025).

    Google Scholar 

  103. Yu, C. et al. Industrial-scale deposition of nanocrystalline silicon oxide for 26.4%-efficient silicon heterojunction solar cells with copper electrodes. Nat. Energy 8, 1375–1385 (2023).

    Google Scholar 

  104. Chen, C. et al. Perovskite solar cells based on screen-printed thin films. Nature 612, 266–271 (2022).

    Google Scholar 

  105. Yin, L. et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 5, 694–705 (2022).

    Google Scholar 

  106. Liu, J.-Z. et al. Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation. Sci. Adv. 11, eadr2158 (2025).

    Google Scholar 

  107. Chen, W. et al. Nanobinders advance screen-printed flexible thermoelectrics. Science 386, 1265–1271 (2024).

    Google Scholar 

  108. Andersson Ersman, P. et al. All-printed large-scale integrated circuits based on organic electrochemical transistors. Nat. Commun. 10, 5053 (2019).

    Google Scholar 

  109. Moin, A. et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4, 54–63 (2020).

    Google Scholar 

  110. Cinti, S., Moscone, D. & Arduini, F. Preparation of paper-based devices for reagentless electrochemical (bio)sensor strips. Nat. Protoc. 14, 2437–2451 (2019).

    Google Scholar 

  111. Lipani, L. et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13, 504–511 (2018).

    Google Scholar 

  112. Lemarchand, J. et al. Challenges, prospects, and emerging applications of inkjet-printed electronics: a chemist's point of view. Angew. Chem. Int. Ed. 61, e202200166 (2022).

    Google Scholar 

  113. Chen, C. et al. Screen-printing technology for scale manufacturing of perovskite solar cells. Adv. Sci. 10, 2303992 (2023).

    Google Scholar 

  114. Thiruppathi, M., Natarajan, T. & Zen, J.-M. Anthracene boronic acid functionalized activated screen-printed carbon electrode: a strategy for direct phosphate voltammetric detection. Sens. Actuators B Chem. 394, 134436 (2023).

    Google Scholar 

  115. Li, X. et al. All-MXene-printed RF resonators as wireless plant wearable sensors for in situ ethylene detection. Small 19, 2207889 (2023).

    Google Scholar 

  116. Shao, B. et al. Wireless electrochemical sensor for the detection of phytoregulator indole-3-acetic acid using gold nanoparticles and three-dimensional reduced graphene oxide modified screen printed carbon electrode. Talanta 253, 124030 (2023).

    Google Scholar 

  117. Seker, S., Surucu, O., Economou, A. & Wang, J. “On-plant” wearable electrochemical sensor for atmospheric lead monitoring. Talanta 287, 127654 (2025).

    Google Scholar 

  118. Hossain, N. I. & Tabassum, S. A hybrid multifunctional physicochemical sensor suite for continuous monitoring of crop health. Sci. Rep. 13, 9848 (2023).

    Google Scholar 

  119. Li, Y. et al. Plant-wearable sensors for intelligent forestry monitoring. Adv. Sustain. Syst. 7, 2200333 (2023).

    Google Scholar 

  120. Khater, M., De La Escosura-Muñiz, A. & Merkoçi, A. Biosensors for plant pathogen detection. Biosens. Bioelectron. 93, 72–86 (2017).

    Google Scholar 

  121. Khater, M., De La Escosura-Muñiz, A., Quesada-González, D. & Merkoçi, A. Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Anal. Chim. Acta 1046, 123–131 (2019).

    Google Scholar 

  122. Khater, M., Escosura-Muñiz, A. D. L., Altet, L. & Merkoçi, A. In situ plant virus nucleic acid isothermal amplification detection on gold nanoparticle-modified electrodes. Anal. Chem. 91, 4790–4796 (2019).

    Google Scholar 

  123. Potts, S. et al. Enhancing the performance of the mesoporous TiO2 film in printed perovskite photovoltaics through high-speed imaging and ink rheology techniques. Adv. Funct. Mater. 34, 2401959 (2024).

    Google Scholar 

  124. Wu, H. et al. Aqueous MXene/Xanthan gum hybrid inks for screen-printing electromagnetic shielding, joule heater, and piezoresistive sensor. Small 18, 2107087 (2022).

    Google Scholar 

  125. Park, H. J. et al. Fluid-dynamics-processed highly stretchable, conductive, and printable graphene inks for real-time monitoring sweat during stretching exercise. Adv. Funct. Mater. 31, 2011059 (2021).

    Google Scholar 

  126. Bellani, S. et al. Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors. Adv. Funct. Mater. 29, 1807659 (2019).

    Google Scholar 

  127. Pinilla, S., Coelho, J., Li, K., Liu, J. & Nicolosi, V. Two-dimensional material inks. Nat. Rev. Mater. 7, 717–735 (2022).

    Google Scholar 

  128. Hatala, M., Gemeiner, P., Hvojnik, M. & Mikula, M. The effect of the ink composition on the performance of carbon-based conductive screen printing inks. J. Mater. Sci. Mater. Electron. 30, 1034–1044 (2019).

    Google Scholar 

  129. Li, Z. et al. Inkjet printed disposable high-rate on-paper microsupercapacitors. Adv. Funct. Mater. 32, 2108773 (2022).

    Google Scholar 

  130. Kaliyaraj Selva Kumar, A., Zhang, Y., Li, D. & Compton, R. G. A mini-review: how reliable is the drop casting technique? Electrochem. Commun. 121, 106867 (2020).

    Google Scholar 

  131. Sekhar, P. K. et al. Sensor reproducibility analysis challenges and potential solutions. ECS Sens. Plus 3, 046401 (2024).

    Google Scholar 

  132. Singh, S., Wang, J. & Cinti, S. Review—an overview on recent progress in screen-printed electroanalytical (bio)sensors. ECS Sens. Plus 1, 023401 (2022).

    Google Scholar 

  133. Camargo, J. R., Silva, T. A., Rivas, G. A. & Janegitz, B. C. Novel eco-friendly water-based conductive ink for the preparation of disposable screen-printed electrodes for sensing and biosensing applications. Electrochim. Acta 409, 139968 (2022).

    Google Scholar 

  134. Franco, M. et al. Environmentally friendlier printable conductive and piezoresistive sensing materials compatible with conformable electronics. ACS Appl. Polym. Mater. 5, 7144–7154 (2023).

    Google Scholar 

  135. You, K. et al. On-demand picoliter-level-droplet inkjet printing for micro fabrication and functional applications. Small 20, 2402638 (2024).

    Google Scholar 

  136. Wang, M. et al. Printable molecule-selective core–shell nanoparticles for wearable and implantable sensing. Nat. Mater. https://www.nature.com/articles/s41563-024-02096-4 (2025).

  137. Liu, D. et al. A wearable in-sensor computing platform based on stretchable organic electrochemical transistors. Nat. Electron. 7, 1176–1185 (2024).

    Google Scholar 

  138. Choi, Y. J. et al. Weight-reconfigurable neuromorphic computing systems for analog signal integration. Adv. Funct. Mater. 34, 2316664 (2024).

    Google Scholar 

  139. Islam, M. R., Afroj, S., Novoselov, K. S. & Karim, N. Inkjet-printed 2D heterostructures for smart textile micro-supercapacitors. Adv. Funct. Mater. 34, 2410666 (2024).

    Google Scholar 

  140. Che, J. et al. Inkjet printing of all aqueous inks to flexible microcapacitors for high-energy storage. Adv. Funct. Mater. 33, 2301544 (2023).

    Google Scholar 

  141. Chen, B. et al. Tuning the structure, conductivity, and wettability of laser-induced graphene for multiplexed open microfluidic environmental biosensing and energy storage devices. ACS Nano 16, 15–28 (2022).

    Google Scholar 

  142. Carou-Senra, P. et al. Inkjet printing of pharmaceuticals. Adv. Mater. 36, 2309164 (2024).

    Google Scholar 

  143. Jeon, H. et al. Cyber-physical watermarking with inkjet edible bioprinting. Adv. Funct. Mater. 32, 2112479 (2022).

    Google Scholar 

  144. Guo, J. et al. Coding cell micropatterns through peptide inkjet printing for arbitrary biomineralized architectures. Adv. Funct. Mater. 28, 1800228 (2018).

    Google Scholar 

  145. Tian, L., Liu, J., Chen, X., Branicio, P. S. & Lei, Q. Mechanisms and strategies to achieve stability in inkjet printed 2D materials electronics. Adv. Electron. Mater. 11, 2400143 (2025).

    Google Scholar 

  146. Zub, K., Hoeppener, S. & Schubert, U. S. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv. Mater. 34, 2105015 (2022).

    Google Scholar 

  147. Anagnostou, K. et al. Water-based graphene oxide inks for inkjet-printed flexible moisture energy generators. Sci. Rep. 15, 24685 (2025).

  148. Nalepa, M.-A. et al. Graphene derivative-based ink advances inkjet printing technology for fabrication of electrochemical sensors and biosensors. Biosens. Bioelectron. 256, 116277 (2024).

    Google Scholar 

  149. Nalepa, M. et al. Scalable fabrication of electrochemical sensors via inkjet printing of functionalized graphene for pesticide detection. Adv. Mater. Technol. 11, e01765 (2026).

  150. Rosati, G. et al. Introducing all-inkjet-printed microneedles for in-vivo biosensing. Sci. Rep. 14, 29975 (2024).

    Google Scholar 

  151. Bihar, E. et al. Self-healable stretchable printed electronic cryogels for in-vivo plant monitoring. Npj Flex. Electron. 7, 48 (2023).

    Google Scholar 

  152. Furqan, C. M. et al. Humidity sensor based on gallium nitride for real time monitoring applications. Sci. Rep. 11, 11088 (2021).

    Google Scholar 

  153. Nayak, L., Mohanty, S., Nayak, S. K. & Ramadoss, A. A review on inkjet printing of nanoparticle inks for flexible electronics. J. Mater. Chem. C 7, 8771–8795 (2019).

    Google Scholar 

  154. Sajedi-Moghaddam, A., Rahmanian, E. & Naseri, N. Inkjet-printing technology for supercapacitor application: current state and perspectives. ACS Appl. Mater. Interfaces 12, 34487–34504 (2020).

    Google Scholar 

  155. Gu, B. et al. Multi-material electrohydrodynamic printing of bioelectronics with sub-microscale 3D gold pillars for in vitro extra- and intra-cellular electrophysiological recordings. Adv. Sci. 12, 2407969 (2025).

    Google Scholar 

  156. Wang, D. et al. Large area polymer semiconductor sub-microwire arrays by coaxial focused electrohydrodynamic jet printing for high-performance OFETs. Nat. Commun. 13, 6214 (2022).

    Google Scholar 

  157. Maroli, G. et al. Wearable, battery-free, wireless multiplexed printed sensors for heat stroke prevention with mussel-inspired bio-adhesive membranes. Biosens. Bioelectron. 260, 116421 (2024).

    Google Scholar 

  158. Carota, A. G. et al. Low-cost inkjet-printed nanostructured biosensor based on CRISPR/Cas12a system for pathogen detection. Biosens. Bioelectron. 258, 116340 (2024).

    Google Scholar 

  159. Dams, B. et al. Remote three-dimensional printing of polymer structures using drones. In Proc. Institution of Civil Engineers Construction Materials 173, 3–14 (Emerald Publishing, 2020).

  160. Fang, Z. et al. 3D printable elastomers with exceptional strength and toughness. Nature 631, 783–788 (2024).

    Google Scholar 

  161. Machado, T. O. et al. A renewably sourced, circular photopolymer resin for additive manufacturing. Nature 629, 1069–1074 (2024).

    Google Scholar 

  162. Zhang, W. et al. Printing of 3D photonic crystals in titania with complete bandgap across the visible spectrum. Nat. Nanotechnol. 19, 1813–1820 (2024).

    Google Scholar 

  163. Wang, Y., Yi, C., Tian, W., Liu, F. & Cheng, G. J. Free-space direct nanoscale 3D printing of metals and alloys enabled by two-photon decomposition and ultrafast optical trapping. Nat. Mater. 23, 1645–1653 (2024).

    Google Scholar 

  164. Liu, F., Christou, A., Dahiya, A. S. & Dahiya, R. From printed devices to vertically stacked, 3D flexible hybrid systems. Adv. Mater. 37, 2411151 (2025).

    Google Scholar 

  165. Wang, Z. et al. 3D-printed perfused models of the penis for the study of penile physiology and for restoring erectile function in rabbits and pigs. Nat. Biomed. Eng. https://www.nature.com/articles/s41551-025-01367-y (2025).

  166. Wu, S. J. et al. A 3D printable tissue adhesive. Nat. Commun. 15, 1215 (2024).

    Google Scholar 

  167. Choi, S. et al. Fibre-infused gel scaffolds guide cardiomyocyte alignment in 3D-printed ventricles. Nat. Mater. 22, 1039–1046 (2023).

    Google Scholar 

  168. Choo, S. et al. Geometric design of Cu2Se-based thermoelectric materials for enhancing power generation. Nat. Energy https://www.nature.com/articles/s41560-024-01589-5 (2024).

  169. Chen, X. et al. 3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis. Nat. Mater. 21, 811–818 (2022).

    Google Scholar 

  170. Egorov, V., Gulzar, U., Zhang, Y., Breen, S. & O’Dwyer, C. Evolution of 3D printing methods and materials for electrochemical energy storage. Adv. Mater. 32, 2000556 (2020).

    Google Scholar 

  171. Qu, H. et al. Gradient matters via filament diameter-adjustable 3D printing. Nat. Commun. 15, 2930 (2024).

    Google Scholar 

  172. Zhang, P. et al. Integrated 3D printing of flexible electroluminescent devices and soft robots. Nat. Commun. 13, 4775 (2022).

    Google Scholar 

  173. Wang, Z. et al. Tough, transparent, 3D-printable, and self-healing poly(ethylene glycol)-gel (PEGgel). Adv. Mater. 34, 2107791 (2022).

    Google Scholar 

  174. Vidler, C. et al. Dynamic interface printing. Nature 634, 1096–1102 (2024).

    Google Scholar 

  175. Martinez, D. W., Espino, M. T., Cascolan, H. M., Crisostomo, J. L. & Dizon, J. R. C. A comprehensive review on the application of 3D printing in the aerospace industry. Key Eng. Mater. 913, 27–34 (2022).

    Google Scholar 

  176. Rodrigo-Navarro, A., Sankaran, S., Dalby, M. J., Del Campo, A. & Salmeron-Sanchez, M. Engineered living biomaterials. Nat. Rev. Mater. 6, 1175–1190 (2021).

    Google Scholar 

  177. Mirabella, T. et al. 3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nat. Biomed. Eng. 1, 0083 (2017).

    Google Scholar 

  178. Ling, S. et al. Tension-driven three-dimensional printing of free-standing field’s metal structures. Nat. Electron. 7, 671–683 (2024).

    Google Scholar 

  179. Zhuang, Q. et al. Permeable, three-dimensional integrated electronic skins with stretchable hybrid liquid metal solders. Nat. Electron. 7, 598–609 (2024).

    Google Scholar 

  180. Parrilla, M. et al. Wearable platform based on 3D-printed solid microneedle potentiometric pH sensor for plant monitoring. Chem. Eng. J. 500, 157254 (2024).

    Google Scholar 

  181. Ospino-Villalba, K., Gaviria, D., Pineda, D. & Pérez, J. A 3D-printable smartphone accessory for plant leaf chlorophyll measurement. HardwareX 20, e00597 (2024).

    Google Scholar 

  182. Chen, J. et al. 3D-printed anisotropic polymer materials for functional applications. Adv. Mater. 34, 2102877 (2022).

    Google Scholar 

  183. Yazdani Sarvestani, H. et al. High-performance polymer-derived ceramics in LCD 3D printing. Adv. Sci. 12, 2416176 (2025).

  184. Li, J., Cao, J., Lu, B. & Gu, G. 3D-printed PEDOT:PSS for soft robotics. Nat. Rev. Mater. 8, 604–622 (2023).

    Google Scholar 

  185. Yuk, H. et al. 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020).

    Google Scholar 

  186. Zhang, C., Li, Y., Kang, W., Liu, X. & Wang, Q. Current advances and future perspectives of additive manufacturing for functional polymeric materials and devices. SusMat 1, 127–147 (2021).

    Google Scholar 

  187. Xu, S., Ahmed, S., Momin, M., Hossain, A. & Zhou, T. Unleashing the potential of 3D printing soft materials. Device 1, 100067 (2023).

    Google Scholar 

  188. Nekin Joshua, R. & Sakthivel, A. R. Reinforced polymer composite filaments in fused deposition modeling of 3D printing technology: a review. Adv. Eng. Mater. 27, 2402509 (2025).

  189. Zhu, C., Gemeda, H. B., Duoss, E. B. & Spadaccini, C. M. Toward multiscale, multimaterial 3D printing. Adv. Mater. 36, 2314204 (2024).

    Google Scholar 

  190. Chansoria, P. et al. Light from afield: fast, high-resolution, and layer-free deep vat 3D printing: focus review. Chem. Rev. 124, 8787–8822 (2024).

    Google Scholar 

  191. Park, Y. et al. High-resolution 3D printing for electronics. Adv. Sci. 9, 2104623 (2022).

    Google Scholar 

  192. Zhang, X. et al. Large-scale 3D printing by a team of mobile robots. Autom. Constr. 95, 98–106 (2018).

    Google Scholar 

  193. Ye, H., He, Y., You, T. & Xu, F. Advanced MXene/graphene oxide/lignosulfonate inks for 3D printing thick electrodes with vertically aligned pores to dually boost mass loading and areal capacitance. Adv. Funct. Mater. 35, 2413343 (2025).

    Google Scholar 

  194. Zhang, L. et al. Electrochemically exfoliated graphene additive-free inks for 3D printing customizable monolithic integrated micro-supercapacitors on a large scale. Adv. Mater. 36, 2313930 (2024).

    Google Scholar 

  195. Zhu, J. et al. Digital assembly of spherical viscoelastic bio-ink particles. Adv. Funct. Mater. 32, 2109004 (2022).

    Google Scholar 

  196. Zhuang, P., Greenberg, Z. & He, M. Biologically enhanced starch bio-ink for promoting 3D cell growth. Adv. Mater. Technol. 6, 2100551 (2021).

    Google Scholar 

  197. Jeong, W. et al. Clinically relevant and precisely printable live adipose tissue–based bio-ink for volumetric soft tissue reconstruction. Adv. Healthc. Mater. 14, 2402680 (2025).

    Google Scholar 

  198. Marques, D. M. C. et al. Microalgae-enriched (bio)inks for 3D bioprinting of cultured seafood. Npj Sci. Food 9, 23 (2025).

    Google Scholar 

  199. Wang, R. et al. Direct 4D printing of ceramics driven by hydrogel dehydration. Nat. Commun. 15, 758 (2024).

    Google Scholar 

  200. Jiang, H., Chung, C., Dunn, M. L. & Yu, K. 4D printing of liquid crystal elastomer composites with continuous fiber reinforcement. Nat. Commun. 15, 8491 (2024).

    Google Scholar 

  201. Cheng, T. et al. Weather-responsive adaptive shading through biobased and bioinspired hygromorphic 4D-printing. Nat. Commun. 15, 10366 (2024).

    Google Scholar 

  202. Koch, T. et al. Approaching standardization: mechanical material testing of macroscopic two-photon polymerized specimens. Adv. Mater. 36, 2308497 (2024).

    Google Scholar 

  203. Colombo, F. et al. Two-photon laser printing to mechanically stimulate multicellular systems in 3D. Adv. Funct. Mater. 34, 2303601 (2024).

    Google Scholar 

  204. Mori, T. et al. Pick and place process for uniform shrinking of 3D printed micro- and nano-architected materials. Nat. Commun. 14, 5876 (2023).

    Google Scholar 

  205. Weeks, R. D., Truby, R. L., Uzel, S. G. M. & Lewis, J. A. Embedded 3D printing of multimaterial polymer lattices via graph-based print path planning. Adv. Mater. 35, 2206958 (2023).

    Google Scholar 

  206. Stüwe, L. et al. Continuous volumetric 3D printing: xolography in flow. Adv. Mater. 36, 2306716 (2024).

    Google Scholar 

  207. Sanchez Noriega, J. L. et al. Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics. Nat. Commun. 12, 5509 (2021).

    Google Scholar 

  208. Heiden, A. et al. Organic ink multi-material 3D printing of sustainable soft systems. Adv. Mater. 37, 2409403 (2025).

    Google Scholar 

  209. Li, S. et al. Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis. Nat. Commun. 15, 3131 (2024).

    Google Scholar 

  210. Yuts, Y. et al. Photopolymerization inks for 3D printing of elastic, strong, and biodegradable oral delivery devices. Adv. Funct. Mater. 34, 2310111 (2024).

    Google Scholar 

  211. Koh, J. J. et al. Reprogrammable, sustainable, and 3D-printable cellulose hydroplastic. Adv. Sci. 11, 2402390 (2024).

  212. Lau, K. Y. & Qiu, J. Broad applications of sensors based on laser-scribed graphene. Light Sci. Appl. 12, 168 (2023).

  213. Lin, J. et al. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014).

  214. Lee, Y. et al. Ultra-thin light-weight laser-induced-graphene (LIG) diffractive optics. Light Sci. Appl. 12, 146 (2023).

  215. Yin, Z., Chen, S., Hu, C., Li, J. & Yang, X. The fabrication of wearable sensors based on laser-induced graphene. Opt. Laser Technol. 176, 110998 (2024).

    Google Scholar 

  216. Fantinelli Franco, F. et al. Optimizing carbon structures in laser-induced graphene electrodes using design of experiments for enhanced electrochemical sensing characteristics. ACS Appl. Mater. Interfaces 16, 65489–65502 (2024).

    Google Scholar 

  217. Zhang, C. et al. Origami-inspired highly stretchable and breathable 3D wearable sensors for in-situ and online monitoring of plant growth and microclimate. Biosens. Bioelectron. 259, 116379 (2024).

    Google Scholar 

  218. Francis, C. et al. Laser-induced graphene gas sensors for environmental monitoring. Front. Chem. 12, 1448205 (2024).

  219. Zhu, L. et al. All-cellulose-derived humidity sensor prepared via direct laser writing of conductive and moisture-stable electrodes on TEMPO-oxidized cellulose paper. J. Mater. Chem. C 10, 3712–3719 (2022).

    Google Scholar 

  220. Huang, F. et al. Flexible leaf wetness sensor based on laser-induced graphene for precision agriculture. Sens. Actuators Phys. 388, 116493 (2025).

    Google Scholar 

  221. Zhang, C., Zhang, C., Wu, X., Ping, J. & Ying, Y. An integrated and robust plant pulse monitoring system based on biomimetic wearable sensor. Npj Flex. Electron. 6, 43 (2022).

    Google Scholar 

  222. Liu, K. et al. Flexible and wearable sensor for in situ monitoring of gallic acid in plant leaves. Food Chem. 460, 140740 (2024).

    Google Scholar 

  223. Vandervelde, J., Yoon, Y., Shahriar, R., Cronin, S. B. & Chen, Y. Additive and laser manufacturing for multifunctional electronics on high-performance polymers. Small Sci. 5, 2500022 (2025).

  224. Liu, F. et al. Laser-induced graphene enabled additive manufacturing of multifunctional 3D architectures with freeform structures. Adv. Sci. 10, 2204990 (2023).

  225. Dreimol, C. H. et al. Sustainable wood electronics by iron-catalyzed laser-induced graphitization for large-scale applications. Nat. Commun. 13, 3680 (2022).

  226. Imbrogno, A. et al. Laser-induced graphene supercapacitors by direct laser writing of cork natural substrates. ACS Appl. Electron. Mater. 4, 1541–1551 (2022).

    Google Scholar 

  227. Fisher, C., Skolrood, L. N., Li, K., Joshi, P. C. & Aytug, T. Aerosol-jet printed sensors for environmental, safety, and health monitoring: a review. Adv. Mater. Technol. 8, 2300030 (2023).

    Google Scholar 

  228. Shi, X., Pu, H., Shi, L. L., He, T.-C. & Chen, J. Advancing transistor-based point-of-care (POC) biosensors: additive manufacturing technologies and device integration strategies for real-life sensing. Nanoscale 17, 9804–9833 (2025).

    Google Scholar 

  229. Pereira, N. M. et al. Aerosol-printed MoS2 ink as a high sensitivity humidity sensor. ACS Omega 7, 9388–9396 (2022).

    Google Scholar 

  230. Ma, T. et al. Enhanced aerosol-jet printing using annular acoustic field for high resolution and minimal overspray. Nat. Commun. 15, 6317 (2024).

    Google Scholar 

  231. Niu, Z. et al. Wide-flow aerosol jet printing enables high-throughput, ultra-low aspect ratio patterning. Adv. Sci. 13, e12557 (2026).

  232. Secor, E. B., Yeboah, D. & Gamba, L. Additive electronics manufacturing via droplet jetting technologies: materials, methods, applications, and opportunities. Nanoscale 17, 18997–19020 (2025).

    Google Scholar 

  233. Moni, H.-E. -J. et al. Printing rare-earth-free (REF) magnetic inks: synthesis, formulation, and device applications. Nanoscale 17, 4830–4853 (2025).

    Google Scholar 

  234. Farr, N. T. H. et al. Revealing the morphology of ink and aerosol jet printed palladium-silver alloys fabricated from metal organic decomposition inks. Adv. Sci. 11, 2306561 (2024).

    Google Scholar 

  235. Xu, B. et al. Precision aerosol-jet micropatterning of liquid metal for high-performance flexible strain sensors. Nat. Commun. 16, 7920 (2025).

    Google Scholar 

  236. Smith, B. N. et al. Aerosol jet printing conductive 3D microstructures from graphene without post-processing. Small 20, 2305170 (2024).

    Google Scholar 

  237. Hassan, K. et al. Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications. Nanoscale 12, 19007–19042 (2020).

    Google Scholar 

  238. Yang, P. & Fan, H. J. Inkjet and extrusion printing for electrochemical energy storage: a minireview. Adv. Mater. Technol. 5, 2000217 (2020).

    Google Scholar 

  239. Khan, S., Lorenzelli, L. & Dahiya, R. S. Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15, 3164–3185 (2015).

    Google Scholar 

  240. Hu, G. et al. Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47, 3265–3300 (2018).

    Google Scholar 

  241. Campos-Arias, L. et al. Improving definition of screen-printed functional materials for sensing application. ACS Appl. Electron. Mater. 6, 2152–2160 (2024).

    Google Scholar 

  242. Du, X. et al. A review of inkjet printing technology for personalized-healthcare wearable devices. J. Mater. Chem. C 10, 14091–14115 (2022).

    Google Scholar 

  243. Van Impelen, D., Perius, D., González-García, L. & Kraus, T. The importance of shape: flakes and spheres in recyclable conductive pastes for printed electronics. RSC Sustain. 3, 1800–1806 (2025).

    Google Scholar 

  244. Zhan, H. et al. Silver frameworks based on self-sintering silver micro-flakes and its application in low temperature curing conductive pastes. J. Mater. Sci. Mater. Electron. 30, 21343–21354 (2019).

    Google Scholar 

  245. Van Impelen, D., González-García, L. & Kraus, T. Recyclability-by-design of printed electronics by low-temperature sintering of silver microparticles. Adv. Electron. Mater. 11, 2400533 (2025).

    Google Scholar 

  246. Zhang, Y. et al. Ink formulation, scalable applications and challenging perspectives of screen printing for emerging printed microelectronics. J. Energy Chem. 63, 498–513 (2021).

    Google Scholar 

  247. Aleeva, Y. & Pignataro, B. Recent advances in upscalable wet methods and ink formulations for printed electronics. J. Mater. Chem. C 2, 6436–6453 (2014).

    Google Scholar 

  248. Martinez-Szewczyk, M. W., DiGregorio, S. J., Hildreth, O. & Bertoni, M. I. Reactive silver inks: a path to solar cells with 82% less silver. Energy Environ. Sci. 17, 3218–3227 (2024).

    Google Scholar 

  249. Valayil Varghese, T. et al. Multijet gold nanoparticle inks for additive manufacturing of printed and wearable electronics. ACS Mater. Au 4, 65–73 (2024).

    Google Scholar 

  250. He, H. et al. Understanding of adsorption of gold nanowire-based conductive ink on cellulosic substrate. Mater. Lett. 389, 138370 (2025).

    Google Scholar 

  251. Uzunçar, S., Maroli, G., Urban, M. & Merkoçi, A. Prussian-blue catalysis and NFC synergy: a battery-free laser-induced graphene-based platform for urine glucose monitoring at point-of-care. Adv. Sci. 12, 2500365 (2025).

    Google Scholar 

  252. Cinti, S. et al. Cholesterol biosensor based on inkjet-printed Prussian blue nanoparticle-modified screen-printed electrodes. Sens. Actuators B Chem. 221, 187–190 (2015).

    Google Scholar 

  253. Kamarudin, S. F., Abdul Aziz, N. H., Lee, H. W., Jaafar, M. & Sulaiman, S. Inkjet printing optimization: toward realization of high-resolution printed electronics. Adv. Mater. Technol. 9, 2301875 (2024).

    Google Scholar 

  254. Urban, M. et al. Nanostructure tuning of gold nanoparticles films via click sintering. Small 20, 2306167 (2024).

    Google Scholar 

  255. Gabbett, C. et al. Quantitative analysis of printed nanostructured networks using high-resolution 3D FIB-SEM nanotomography. Nat. Commun. 15, 278 (2024).

    Google Scholar 

  256. Liu, X. et al. Multilevel heterogeneous interfaces enhanced polarization loss of 3D-printed graphene/NiCoO2 /selenides aerogels for boosting electromagnetic energy dissipation. ACS Nano 18, 10184–10195 (2024).

    Google Scholar 

  257. Guo, J. et al. Type-printable photodetector arrays for multichannel meta-infrared imaging. Nat. Commun. 15, 5193 (2024).

    Google Scholar 

  258. Li, S. et al. 1D crystallographic etching of few-layer WS2. Adv. Funct. Mater. 34, 2405665 (2024).

    Google Scholar 

  259. Ippolito, S. et al. Unveiling charge-transport mechanisms in electronic devices based on defect-engineered MoS2 covalent networks. Adv. Mater. 35, 2211157 (2023).

  260. Baek, S. et al. Generalised optical printing of photocurable metal chalcogenides. Nat. Commun. 13, 5262 (2022).

    Google Scholar 

  261. Babar, Z. U. D. et al. MXenes in healthcare: synthesis, fundamentals and applications. Chem. Soc. Rev. 54, 3387–3440 (2025).

    Google Scholar 

  262. Shi, X. et al. Scalable, high-yield monolayer MXene preparation from multilayer MXene for many applications. Angew. Chem. Int. Ed. 64, e202418420 (2025).

    Google Scholar 

  263. Jiang, H. et al. Malleable, printable, bondable, and highly conductive MXene/liquid metal plasticine with improved wettability. Nat. Commun. 15, 6138 (2024).

    Google Scholar 

  264. Bakandritsos, A. et al. Cyanographene and graphene acid: emerging derivatives enabling high-yield and selective functionalization of graphene. ACS Nano 11, 2982–2991 (2017).

    Google Scholar 

  265. Guo, J. et al. Control of water for high-yield and low-cost sustainable electrochemical synthesis of uniform monolayer graphene oxide. Nat. Commun. 16, 727 (2025).

    Google Scholar 

  266. Manikandan, M. et al. Hydrothermal synthesis of rGO and MnCoS composite for enhanced supercapacitor application. Sci. Rep. 14, 25596 (2024).

    Google Scholar 

  267. Rossi, A. et al. Development of a one-pot synthesis of rGO in water by optimizing Tour’s method parameters. Sci. Rep. 14, 22381 (2024).

    Google Scholar 

  268. Liu, X. et al. Spatially confined radical addition reaction for electrochemical synthesis of carboxylated graphene and its applications in water desalination and splitting. Small 20, 2401972 (2024).

  269. Piñeiro-García, A. et al. New insights in the chemical functionalization of graphene oxide by thiol-ene Michael addition reaction. FlatChem. 26, 100230 (2021).

    Google Scholar 

  270. Panáček, D. et al. Silver covalently bound to cyanographene overcomes bacterial resistance to silver nanoparticles and antibiotics. Adv. Sci. 8, 2003090 (2021).

    Google Scholar 

  271. Panáček, D. et al. Single atom engineered antibiotics overcome bacterial resistance. Adv. Mater. 36, 2410652 (2024).

  272. Šedajová, V. et al. Nitrogen doped graphene with diamond-like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor. Energy Environ. Sci. 15, 740–748 (2022).

    Google Scholar 

  273. Stavrou, M., Panáček, D., Bakandritsos, A. & Couris, S. N-doped graphene and N-doped graphene acid: heteroatom doping for very efficient broad-band optical limiting performance from UV to NIR. J. Phys. Chem. C 126, 14339–14345 (2022).

    Google Scholar 

  274. Jakubec, P. et al. Graphene derivatives as efficient transducing materials for covalent immobilization of biocomponents in electrochemical biosensors. ChemElectroChem 12, 2400660 (2025).

  275. Yang, Q. et al. Metal-free cysteamine-functionalized graphene alleviates mutual interferences in heavy metal electrochemical detection. Green Chem. 25, 1647–1657 (2023).

    Google Scholar 

  276. Flauzino, J. M. R. et al. Click and detect: versatile ampicillin aptasensor enabled by click chemistry on a graphene–alkyne derivative. Small 19, 2370428 (2023).

    Google Scholar 

  277. Silvestri, A. et al. Bioresponsive, electroactive, and inkjet-printable graphene-based inks. Adv. Funct. Mater. 32, 2105028 (2022).

    Google Scholar 

  278. Silverstein, K. W. et al. Voltage-reduced low-defect graphene oxide: a high conductivity, near-zero temperature coefficient of resistance material. Nanoscale 11, 3112–3116 (2019).

    Google Scholar 

  279. Liu, W. & Speranza, G. Tuning the oxygen content of reduced graphene oxide and effects on its properties. ACS Omega 6, 6195–6205 (2021).

    Google Scholar 

  280. Panáček, D. et al. Graphene nanobeacons with high-affinity pockets for combined, selective, and effective decontamination and reagentless detection of heavy metals. Small 31, 2201003 (2022).

    Google Scholar 

  281. Panáček, D. et al. Single-atom-enhanced membrane for simultaneous bacteria and heavy metal on-site water treatment. Chem. 102785 (2025).

  282. Flauzino, J. M. R. et al. Label-free and reagentless electrochemical genosensor based on graphene acid for meat adulteration detection. Biosens. Bioelectron. 195, 113628 (2022).

    Google Scholar 

  283. Janek, J. et al. A label-free impedimetric immunosensor based on nitrogen-doped graphene acid for sensitive detection of vitamin D3. Microchim. Acta 192, 823 (2025).

    Google Scholar 

  284. Scroccarello, A. et al. One-step laser nanostructuration of reduced graphene oxide films embedding metal nanoparticles for sensing applications. ACS Sens. 8, 598–609 (2023).

    Google Scholar 

  285. Della Pelle, F. et al. Freestanding laser-induced two dimensional heterostructures for self-contained paper-based sensors. Nanoscale 15, 7164–7175 (2023).

    Google Scholar 

  286. Qin, T. et al. Recent progress in emerging two-dimensional transition metal carbides. Nano-Micro Lett. 13, 183 (2021).

    Google Scholar 

  287. Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).

    Google Scholar 

  288. Hrubý, V. et al. Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts. Nanoscale 14, 13490–13499 (2022).

    Google Scholar 

  289. Hrubý, V. et al. Unleashing the power: superior properties of fluorographene-derived materials for energy storage applications. Power Electron. Devices Compon. 7, 100058 (2024).

    Google Scholar 

  290. Kumar, S., Mehdi, S. M. Z. & Seo, Y. 1D MXenes: synthesis, properties, and applications. Small 20, 2405576 (2024).

    Google Scholar 

  291. Dai, Y., He, Q., Huang, Y., Duan, X. & Lin, Z. Solution-processable and printable two-dimensional transition metal dichalcogenide inks. Chem. Rev. 124, 5795–5845 (2024).

    Google Scholar 

  292. Waghmare, A. et al. Probing the effect of selenization on RF sputtered WSe2 thin films toward enhanced photoelectrochemical and photodetection performance. Electrochim. Acta 507, 145103 (2024).

    Google Scholar 

  293. Paghi, A., Mariani, S. & Barillaro, G. 1D and 2D field effect transistors in gas sensing: a comprehensive review. Small 19, 2206100 (2023).

    Google Scholar 

  294. Zhang, Y. et al. High-speed transition-metal dichalcogenides based Schottky photodiodes for visible and infrared light communication. ACS Nano 16, 19187–19198 (2022).

    Google Scholar 

  295. Sovizi, S. et al. Plasma processing and treatment of 2D transition metal dichalcogenides: tuning properties and defect engineering. Chem. Rev. 123, 13869–13951 (2023).

    Google Scholar 

  296. Li, R. et al. MXene−graphene oxide heterostructured films for enhanced metasurface plasmonic biosensing in continuous glucose monitoring. Adv. Sci. 12, 2410376 (2025).

    Google Scholar 

  297. Gupta, S. et al. Flexible MXene/laser-induced porous graphene asymmetric supercapacitors: enhanced energy density of lateral and sandwich architectures under different electrolytes. Small 21, 2502297 (2025).

  298. Li, K. et al. Correlation-induced symmetry-broken states in large-angle twisted bilayer graphene on MoS2. ACS Nano 18, 7937–7944 (2024).

    Google Scholar 

  299. Daw, D. et al. Ultrafast negative capacitance transition for 2D ferroelectric MoS2 /graphene transistor. Adv. Mater. 36, 2304338 (2024).

    Google Scholar 

  300. Shao, Y. et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 13, 3223 (2022).

    Google Scholar 

  301. Chen, W. Y. et al. Selective detection of ethylene by MoS2–carbon nanotube networks coated with Cu(I)–pincer complexes. ACS Sens. 5, 1699–1706 (2020).

    Google Scholar 

  302. Singh, N., Zhang, Q., Xu, W., Whitham, S. A. & Dong, L. A biohydrogel-enabled microneedle sensor for in situ monitoring of reactive oxygen species in plants. ACS Sens 10, 1797–1810 (2025).

    Google Scholar 

  303. Ibrahim, H. et al. In Planta nitrate sensor using a photosensitive epoxy bioresin. ACS Appl. Mater. Interfaces 14, 25949–25961 (2022).

    Google Scholar 

  304. Hong, S. et al. Fabrication of screen-printed electrodes with long-term stability for voltammetric and potentiometric applications. Sens. Actuators Rep. 8, 100234 (2024).

    Google Scholar 

  305. Obeid, P. J. et al. Designs and materials of electrodes for electrochemical sensors. ChemElectroChem. 12, e202500230 (2025).

    Google Scholar 

  306. Hou, B. et al. Research on parylene-C application to wearable organic electronics: in the respect of substrate type. Macromol. Res. 33, 185–194 (2025).

    Google Scholar 

  307. Ghalamboran, M. et al. Enhanced sensitivity and stability of wearable temperature sensors: a novel approach using inkjet printing. RSC Appl. Polym. 3, 1474–1481 (2025).

    Google Scholar 

  308. Kim, J. J., Allison, L. K. & Andrew, T. L. Vapor-printed polymer electrodes for long-term, on-demand health monitoring. Sci. Adv. 5, eaaw0463 (2019).

  309. Awan, M., Khan, A., Abdelnabi, J. & Andreescu, S. Electrochemical biosensors for smart agri-food monitoring and decision support. Curr. Opin. Electrochem. 54, 101770 (2025).

    Google Scholar 

  310. Kumar, H. et al. Immunosensors in food, health, environment, and agriculture: a review. Environ. Chem. Lett. 22, 2573–2605 (2024).

    Google Scholar 

  311. Tungsirisurp, S., O’Reilly, R. & Napier, R. Nucleic acid aptamers as aptasensors for plant biology. Trends Plant Sci. 28, 359–371 (2023).

    Google Scholar 

  312. Chen, Y. et al. A biochemical sensor with continuous extended stability in vivo. Nat. Biomed. Eng. 9, 1517–1530 (2025).

    Google Scholar 

  313. Zamanian, J. et al. Current progress in aptamer-based sensing tools for ultra-low level monitoring of Alzheimer’s disease biomarkers. Biosens. Bioelectron. 197, 113789 (2022).

    Google Scholar 

  314. Zheng, L. et al. Artificial enzyme innovations in electrochemical devices: advancing wearable and portable sensing technologies. Nanoscale 16, 44–60 (2024).

    Google Scholar 

  315. Bukhamsin, A. et al. Minimally-invasive, real-time, non-destructive, species-independent phytohormone biosensor for precision farming. Biosens. Bioelectron. 214, 114515 (2022).

    Google Scholar 

  316. Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

    Google Scholar 

  317. Catacutan, D. B., Alexander, J., Arnold, A. & Stokes, J. M. Machine learning in preclinical drug discovery. Nat. Chem. Biol. 20, 960–973 (2024).

    Google Scholar 

  318. Eyring, V. et al. Pushing the frontiers in climate modelling and analysis with machine learning. Nat. Clim. Change 14, 916–928 (2024).

    Google Scholar 

  319. Otyepka, M., Pykal, M. & Otyepka, M. Advancing materials discovery through artificial intelligence. Appl. Mater. Today 47, 102981 (2025).

    Google Scholar 

  320. Zhou, J., Fan, P., Zhou, S., Pan, Y. & Ping, J. Machine learning-assisted implantable plant electrophysiology microneedle sensor for plant stress monitoring. Biosens. Bioelectron. 271, 117062 (2025).

    Google Scholar 

  321. Jiang, Q. et al. A machine-learning–powered spectral-dominant multimodal soft wearable system for long-term and early-stage diagnosis of plant stresses. Sci. Adv. 11, eadw7279 (2025).

  322. Reynolds, C. et al. Machine learning models highlight environmental and genetic factors associated with the Arabidopsis circadian clock. Nat. Commun. 16, 7223 (2025).

    Google Scholar 

  323. Nobori, T. et al. A rare PRIMER cell state in plant immunity. Nature 638, 197–205 (2025).

    Google Scholar 

  324. Zhu, M. et al. Single-cell transcriptomics reveal how root tissues adapt to soil stress. Nature 642, 721–729 (2025).

    Google Scholar 

  325. Peleke, F. F., Zumkeller, S. M., Gültas, M., Schmitt, A. & Szymański, J. Deep learning the cis-regulatory code for gene expression in selected model plants. Nat. Commun. 15, 3488 (2024).

    Google Scholar 

  326. Wang, P. et al. Prediction of plant complex traits via integration of multi-omics data. Nat. Commun. 15, 6856 (2024).

    Google Scholar 

  327. MacNish, T. R., Danilevicz, M. F., Bayer, P. E., Bestry, M. S. & Edwards, D. Application of machine learning and genomics for orphan crop improvement. Nat. Commun. 16, 982 (2025).

    Google Scholar 

  328. Bocan, A. et al. Machine-learning-aided advanced electrochemical biosensors. Adv. Mater. 37, 2417520 (2025).

    Google Scholar 

  329. Harfouche, A. L. et al. A primer on artificial intelligence in plant digital phenomics: embarking on the data to insights journey. Trends Plant Sci. 28, 154–184 (2023).

    Google Scholar 

  330. Vavricka, C. J. et al. Machine learning discovery of missing links that mediate alternative branches to plant alkaloids. Nat. Commun. 13, 1405 (2022).

    Google Scholar 

  331. Meilă, M. & Zhang, H. Manifold learning: what, how, and why. Annu. Rev. Stat. Appl. 11, 393–417 (2024).

    Google Scholar 

  332. Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature 602, 123–128 (2022).

    Google Scholar 

  333. Liu, Z., Ma, R. & Zhong, Y. Assessing and improving reliability of neighbor embedding methods: a map-continuity perspective. Nat. Commun. 16, 5037 (2025).

    Google Scholar 

  334. Chen, V. et al. Applying interpretable machine learning in computational biology—pitfalls, recommendations and opportunities for new developments. Nat. Methods 21, 1454–1461 (2024).

    Google Scholar 

  335. Marx, V. Seeing data as t-SNE and UMAP do. Nat. Methods 21, 930–933 (2024).

    Google Scholar 

Download references

Acknowledgements

The work was supported from the ERDF/ESF project TECHSCALE (no. CZ.02.01.01/00/22_008/0004587) and the ERDF/ESF project “Interdisciplinary Approaches to the Prevention and Diagnosis of Viral Diseases” (CZ.02.01.01/00/23_021/0008856). M.O. and R.Z. also acknowledge financial support of the European Union under the REFRESH-Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition. This work was supported by the project Interdisciplinary approaches for the development and application of new materials in industrial, agricultural and medical practice, reg. no. CZ.02.01.01/00/23_021/0008909 of the ERDF Programme Johannes Amos Comenius. This work has received funding from the European Union’s Horizon Europe research and innovation program (SUSNANO) under grant agreement no. 101059266. The views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them. The ICN2 is funded by the CERCA programme/Generalitat de Catalunya. The ICN2 is supported by the Severo Ochoa Centres of Excellence programme, Grant CEX2021-001214-S, funded by MCIU/AEI/10.13039.501100011033. F.G. and J.F. thank the Bill and Melinda Gates Foundation (Grand Challenges Explorations scheme under grant numbers OPP1212574 and INV-038695) for supporting this work. F.G. and S.O. acknowledge the support of the Bezos Earth Fund through the Bezos Centre for Sustainable Protein (BCSP/IC/001).

Author information

Authors and Affiliations

  1. Department of Bioengineering, Royal School of Mines, Imperial College London, London, UK

    David Panáček, Selin Olenik, Jose Flauzino & Firat Güder

  2. Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czechia

    Vojtěch Kupka, Martin-Alex Nalepa, Ivan Dědek, Jan Zdražil, Petr Jakubec, Lukáš Zdražil, Lukáš Spíchal, Radek Zbořil, Nuria De Diego & Michal Otyepka

  3. Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia

    Martin-Alex Nalepa

  4. Catalan Institute of Nanoscience and Nanotechnology, ICN2, BIST, and CSIC, Campus UAB, Bellaterra, Barcelona, Spain

    Ruslan Álvarez-Diduk & Arben Merkoçi

  5. Bezos Centre for Sustainable Protein, Imperial College London, London, UK

    Selin Olenik & Firat Güder

  6. Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czechia

    Jan Zdražil & Martin Pumera

  7. Center for Advanced Technologies and Engineering (CATEN), Ostrava-Pustkovec, Czechia

    Jan Zdražil

  8. Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB–Technical University of Ostrava, Ostrava-Poruba, Czechia

    Lukáš Zdražil & Radek Zbořil

  9. Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Brno, Czechia

    Keval K. Sonigara & Martin Pumera

  10. Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain

    Arben Merkoçi

  11. Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA

    Joseph Wang

  12. Centre for Processable Electronics, Imperial College London, London, UK

    Firat Güder

  13. IT4Innovations, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czechia

    Michal Otyepka

Authors
  1. David Panáček
    View author publications

    Search author on:PubMed Google Scholar

  2. Vojtěch Kupka
    View author publications

    Search author on:PubMed Google Scholar

  3. Martin-Alex Nalepa
    View author publications

    Search author on:PubMed Google Scholar

  4. Ivan Dědek
    View author publications

    Search author on:PubMed Google Scholar

  5. Ruslan Álvarez-Diduk
    View author publications

    Search author on:PubMed Google Scholar

  6. Selin Olenik
    View author publications

    Search author on:PubMed Google Scholar

  7. Jose Flauzino
    View author publications

    Search author on:PubMed Google Scholar

  8. Jan Zdražil
    View author publications

    Search author on:PubMed Google Scholar

  9. Petr Jakubec
    View author publications

    Search author on:PubMed Google Scholar

  10. Lukáš Zdražil
    View author publications

    Search author on:PubMed Google Scholar

  11. Lukáš Spíchal
    View author publications

    Search author on:PubMed Google Scholar

  12. Keval K. Sonigara
    View author publications

    Search author on:PubMed Google Scholar

  13. Radek Zbořil
    View author publications

    Search author on:PubMed Google Scholar

  14. Martin Pumera
    View author publications

    Search author on:PubMed Google Scholar

  15. Arben Merkoçi
    View author publications

    Search author on:PubMed Google Scholar

  16. Joseph Wang
    View author publications

    Search author on:PubMed Google Scholar

  17. Nuria De Diego
    View author publications

    Search author on:PubMed Google Scholar

  18. Firat Güder
    View author publications

    Search author on:PubMed Google Scholar

  19. Michal Otyepka
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization was performed by D.P., F.G., N.D., and M.O. Writing of the original draft was carried out by D.P., V.K., M.-A.N., S.O., N.D., J.F., J.Z., I.D., P.J., L.S., L.Z., R.Z., K.K.S., M.P., J.W., R.Á.D., and A.M. Review and editing of the manuscript were contributed by all authors. Visualization was prepared by D.P. Funding acquisition and supervision were provided by F.G. and M.O.

Corresponding authors

Correspondence to Nuria De Diego, Firat Güder or Michal Otyepka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Marc Parrilla, Luisa Petti, Qingshan Wei and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panáček, D., Kupka, V., Nalepa, MA. et al. Printing technologies for monitoring crop health. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68778-6

Download citation

  • Received: 19 September 2025

  • Accepted: 15 January 2026

  • Published: 24 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68778-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing