Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Saturation of space weathering in shaping lunar regolith particle morphology
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 31 January 2026

Saturation of space weathering in shaping lunar regolith particle morphology

  • Ao Luo  ORCID: orcid.org/0009-0003-0777-57221 na1,
  • Yifei Cui  ORCID: orcid.org/0000-0002-9559-59881 na1,
  • Guodong Wang  ORCID: orcid.org/0000-0001-9513-18441,
  • Jiayan Nie  ORCID: orcid.org/0009-0004-9990-329X2,
  • Chuansheng Xu1,
  • Zihan Zhang1,
  • Jun Zhang  ORCID: orcid.org/0009-0004-4224-33151,
  • Yang Li  ORCID: orcid.org/0000-0002-5456-66033,
  • Qi Zhao4 &
  • …
  • Huaiyu He  ORCID: orcid.org/0000-0002-4887-52745 

Nature Communications , Article number:  (2026) Cite this article

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Exoplanets
  • Mineralogy
  • Space physics
  • Volcanology

Abstract

The lunar mare regolith preserves tripartite records of volcanism, impacting, and space weathering. However, previous studies based on limited soil particle numbers were hindered by issues of sample representativeness. Here we conduct micro-CT scans of bulk soil samples from Chang’e-5 (nearside) and Chang’e-6 (farside), and develop machine learning-based image segmentation and classification methods to identify a vast number of basalt, agglutinate, breccia, and monomineralic particles. The Chang’e-5 basalt exhibits higher plagioclase content than Chang’e-6, while agglutinates from Chang’e-6 have lower void ratios, respectively indicating different lava origins and more intense micrometeorite bombardment for farside Chang’e-6. Despite their contrasting volcanic and impacting histories, the soil particles for these youngest nearside/farside samples exhibit similar morphometric distributions, suggesting that space weathering reached saturation in shaping surficial soil particle morphology in ~ 2.2 million years or less. These findings may extend to other mare regions and help establish space weathering models for other airless bodies.

Data availability

All data supporting this study are presented in the paper and its Supplementary Information. Source data are also provided with this paper. Source data are provided with this paper.

Code availability

All code used in this study is cited and no proprietary code was developed for this work.

References

  1. Slyuta, E. N. Physical and mechanical properties of the lunar soil (a review). Sol. Syst. Res. 48, 330–353 (2014).

    Google Scholar 

  2. O’Brien, P. & Byrne, S. Physical and Chemical Evolution of Lunar Mare Regolith. JGR Planets 126, e2020JE006634 (2021).

    Google Scholar 

  3. Qian, Y. et al. Mineralogy and chronology of the young mare volcanism in the Procellarum-KREEP-Terrane. Nat. Astron. 7, 287–297 (2023).

    Google Scholar 

  4. Zhang, H. et al. Size, morphology, and composition of lunar samples returned by Chang’E-5 mission. Sci. China Phys. Mech. Astron. 65, 229511 (2022).

    Google Scholar 

  5. Apollo 16 Preliminary Examination Team. The Apollo 16 Lunar Samples: Petrographic and Chemical Description. Science 179, 23–34 (1973).

  6. Li, Q.-L. et al. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature 600, 54–58 (2021).

    Google Scholar 

  7. Qian, Y., Xiao, L., Head, J. W. & Wilson, L. The Long Sinuous Rille System in Northern Oceanus Procellarum and Its Relation to the Chang’e-5 Returned Samples. Geophys Res. Lett. 48, e2021GL092663 (2021).

    Google Scholar 

  8. He, Q. et al. Detailed petrogenesis of the unsampled Oceanus Procellarum: The case of the Chang’e-5 mare basalts. Icarus 383, 115082 (2022).

    Google Scholar 

  9. Zhang, D. et al. Titanium in olivine reveals low-Ti origin of the Chang’E-5 lunar basalts. Lithos 414–415, 106639 (2022).

    Google Scholar 

  10. Luo, B. et al. The magmatic architecture and evolution of the Chang’e-5 lunar basalts. Nat. Geosci. 16, 301–308 (2023).

    Google Scholar 

  11. Head, J. W. & Wilson, L. Rethinking Lunar Mare Basalt Regolith Formation: New Concepts of Lava Flow Protolith and Evolution of Regolith Thickness and Internal Structure. Geophys Res. Lett. 47, e2020GL088334 (2020).

    Google Scholar 

  12. Taylor, L. A., Pieters, C. M., Keller, L. P., Morris, R. V. & McKay, D. S. Lunar Mare Soils: Space weathering and the major effects of surface-correlated nanophase Fe. J. Geophys. Res. 106, 27985–27999 (2001).

    Google Scholar 

  13. Sasaki, S., Nakamura, K., Hamabe, Y., Kurahashi, E. & Hiroi, T. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature 410, 555–557 (2001).

    Google Scholar 

  14. Noguchi, T. et al. Incipient Space Weathering Observed on the Surface of Itokawa Dust Particles. Science 333, 1121–1125 (2011).

    Google Scholar 

  15. Hörz, F., Cintala, M. J., See, T. H., Cardenas, F. & Thompson, T. D. Grain size evolution and fractionation trends in an experimental regolith. J. Geophys. Res. Solid Earth 89, C183–C196 (1984).

    Google Scholar 

  16. Devine, J. M., McKay, D. S. & Papike, J. J. Lunar Regolith: Petrology of the <10 μm fraction. J. Geophys. Res. 87, (1982).

  17. Li, L. et al. Transport of Volatiles in Agglutinates from Lunar Regolith of Chang’e-5 Mission. Research 8, 0638 (2025).

    Google Scholar 

  18. Kling, A. M. et al. Nanoscale reservoirs store solar wind-derived water on the lunar surface. Earth Planet. Sci. Lett. 651, 119178 (2025).

    Google Scholar 

  19. Wentworth, S. J., Keller, L. P., McKAY, D. S. & Morris, R. V. Space weathering on the Moon: Patina on Apollo 17 samples 75075 and 76015. Meteorit. Planet. Sci. 34, 593–603 (1999).

    Google Scholar 

  20. Hörz, F., Basilevsky, A. T., Head, J. W. & Cintala, M. J. Erosion of lunar surface rocks by impact processes: a synthesis. Planet. Space Sci. 194, 105105 (2020).

    Google Scholar 

  21. Weber, I. et al. Space weathering by simulated micrometeorite bombardment on natural olivine and pyroxene: A coordinated IR and TEM study. Earth Planet. Sci. Lett. 530, 115884 (2020).

    Google Scholar 

  22. McKay D. S., Fruland R. M. & Heiken G. H. Grain size and the evolution of lunar soils. Proc. 5th Lunar Sci. Conf., 887–906 (1974).

  23. Wu, H. et al. Micro-CT Characterization of the Chang’e-5 Lunar Regolith Samples. JGR Planets 130, e2024JE008787 (2025).

    Google Scholar 

  24. Li, C. et al. Nature of the lunar far-side samples returned by the Chang’E-6 mission. Natl. Sci. Rev. 11, nwae328 (2024).

    Google Scholar 

  25. Li, C. et al. Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl. Sci. Rev. 9, nwab188 (2022).

    Google Scholar 

  26. Luo, A., Cui, Y., Nie, J. & Wang, G. Effects of adhesion and particle shape on mechanical behaviors of lunar regolith under low stress condition-3D DEM study. Comput. Geotech. 175, 106661 (2024).

    Google Scholar 

  27. Ding, L. et al. Lunar rock investigation and tri-aspect characterization of lunar farside regolith by a digital twin. Nat. Commun. 15, 2098 (2024).

    Google Scholar 

  28. Wu, F. Y. et al. Lunar evolution in light of the Chang’e-5 returned samples. Annu. Rev. Earth Planet. Sci. 52, (2024).

  29. Zhang, Q. W. L. et al. Lunar farside volcanism 2.8 billion years ago from Chang’e-6 basalts. Nature https://doi.org/10.1038/s41586-024-08382-0.(2024)

  30. Tian, H.-C. et al. Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane. Nature 600, 59–63 (2021).

    Google Scholar 

  31. Yin, C. et al. Petrogenesis of Chang’e-6 Basalts and Implication for the Young Volcanism on the Lunar Faside. ApJL 981, L2 (2025).

    Google Scholar 

  32. Zhang, H. Y. et al. Space weathering on the lunar nearside and farside constrained from Si isotopes. Nat. Commun. 16, 1–7 (2025).

    Google Scholar 

  33. Nie, J. et al. Predicting residual friction angle of lunar regolith based on Chang’e-5 lunar samples. Sci. Bull. 68, 730–739 (2023).

    Google Scholar 

  34. Matsushima, T. et al. 3D particle characteristics of highland lunar soil (No. 60501) obtained by micro X-ray CT. In Earth & Space 2008: Engineering, Science, Construction, and Operations in Challenging Environments, 1–8 (2008).

  35. Katagiri, J. et al. Investigation of 3D Grain Shape Characteristics of Lunar Soil Retrieved in Apollo 16 Using Image-Based Discrete-Element Modeling. J. Aerosp. Eng. 28, 04014092 (2015).

    Google Scholar 

  36. Chiaramonti, A. N., Goguen, J. D. & Garboczi, E. J. Quantifying the 3-Dimensional Shape of Lunar Regolith Particles Using X-Ray Computed Tomography and Scanning Electron Microscopy at Sub-γ Resolution. Microsc Microanal. 23, 2194–2195 (2017).

    Google Scholar 

  37. Wilkerson, R. P., Rickman, D. L., McElderry, J. R., Walker, S. R. & Cannon, K. M. On the measurement of shape: With applications to lunar regolith. Icarus 412, 115963 (2024).

    Google Scholar 

  38. Nie, J. Y., Cao, Z. J., Li, D. Q. & Cui, Y. F. 3D DEM insights into the effect of particle overall regularity on macro and micro mechanical behaviours of dense sands. Comput. Geotech. 132, 103965 (2021).

    Google Scholar 

  39. Zhou, S. et al. Three-dimensional morphological analysis of Chang’e-5 lunar soil using deep learning-automated segmentation on computed tomography scans. Computer-aided Civil Eng mice.13487 https://doi.org/10.1111/mice.13487.(2025)

  40. Li, L. & Li, J. Multimodal Particle Size Estimation of Lunar Soil Simulants Towards a Non-destructive Analytical Strategy for Extraterrestrial Samples. Spectrosc. 45, 246–258 (2024).

    Google Scholar 

  41. Sakatani, N. et al. Anomalously porous boulders on (162173) Ryugu as primordial materials from its parent body. Nat. Astron. 5, 766–774 (2021).

    Google Scholar 

  42. Cheng, B. et al. Reconstructing the formation history of top-shaped asteroids from the surface boulder distribution. Nat. Astron. 5, 134–138 (2020).

    Google Scholar 

  43. Tatsumi, E. et al. Collisional history of Ryugu’s parent body from bright surface boulders. Nat. Astron. 5, 39–45 (2020).

    Google Scholar 

  44. Taylor, L. A. et al. The effects of space weathering on Apollo 17 mare soils: Petrographic and chemical characterization. Meteorit. Planet. Sci. 36, 285–299 (2001).

    Google Scholar 

  45. Denevi, B. W. et al. Space weathering at the Moon. Rev. Mineral. Geochem. 89, 1–56 (2023).

    Google Scholar 

  46. Cao, Z. et al. Nature of space-weathered rims on Chang’e-5 lunar soil grains. Earth Planet. Sci. Lett. 658, 119327 (2025).

    Google Scholar 

  47. Keller, L. P. & McKay, D. S. The nature and origin of rims on lunar soil grains. Geochim. Cosmochim. Acta 61, 2331–2341 (1997).

    Google Scholar 

  48. Noble S. K., Keller L. P., Christoffersen R. & Rahman Z. The microstructure of lunar micrometeorite impact craters. NASA Technical Report JSC-CN-35097 (2016).

  49. Papike, J. J., Simon, S. B. & Laul, J. C. The lunar regolith: Chemistry, mineralogy, and petrology. Rev. Geophys. 20, 761–826 (1982).

    Google Scholar 

  50. Adams, J. B., Charette, M. P. & Rhodes, J. M. Chemical fractionation of the lunar regolith by impact melting. Science 190, 380–381 (1975).

    Google Scholar 

  51. Rhodes, J. M. et al. Chemistry of agglutinate fractions in lunar soils. Proc. Lunar Sci. Conf. 6, 2291–2307 (1975).

    Google Scholar 

  52. Varatharajan, I., Srivastava, N. & Murty, S. V. Mineralogy of young lunar mare basalts: Assessment of temporal and spatial heterogeneity using M3 data from Chandrayaan-1. Icarus 236, 56–71 (2014).

    Google Scholar 

  53. Boschi, S. et al. Compositional Variability of 2.0-Ga Lunar Basalts at the Chang’e-5 Landing Site. JGR Planets 128, e2022JE007627 (2023).

    Google Scholar 

  54. Che, X. et al. Isotopic and compositional constraints on the source of basalt collected from the lunar farside. Science 387, 1306–1310 (2025).

    Google Scholar 

  55. Neal, C. R. & Taylor, L. A. Petrogenesis of mare basalts: A record of lunar volcanism. Geochim. Cosmochim. Acta 56, 2177–2211 (1992).

    Google Scholar 

  56. Wang, C. et al. A shallow (<100 km) ilmenite-bearing pyroxenitic source for young lunar volcanism. Earth Planet. Sci. Lett. 639, 118770 (2024).

    Google Scholar 

  57. McKay, D. S. et al. The lunar regolith. Lunar Sourceb. 567, 285–356 (1991).

    Google Scholar 

  58. Wang, K., Moynier, F., Podosek, F. A. & Foriel, J. An iron isotope perspective on the origin of the nanophase metallic iron in lunar regolith. Earth Planet. Sci. Lett. 337, 17–24 (2012).

    Google Scholar 

  59. Xiong, M. et al. The formation mechanisms of np-Fe in lunar regolith: a review. Materials 17, 5866 (2024).

    Google Scholar 

  60. Li, C. et al. Impact-driven disproportionation origin of nanophase iron particles in Chang’e-5 lunar soil sample. Nat. Astron. 6, 1156–1162 (2022).

    Google Scholar 

  61. Shen, L. et al. Separate effects of irradiation and impacts on lunar metallic iron formation observed in Chang’e-5 samples. Nat. Astron. 8, 1110–1118 (2024).

    Google Scholar 

  62. Huang, T. J., Ganju, E., Torbatisarraf, H., Thompson, M. S. & Chawla, N. Advanced microstructural and compositional analysis of a lunar agglutinate from the Apollo 11 mission. Meteorit. Planet. Sci. 59, 1455–1472 (2024).

    Google Scholar 

  63. McKay D. S. & Ming DW. Properties of lunar regolith. In Developments in Soil Science 19, 449–462 (Elsevier, 1990).

  64. Via, W. N. & Taylor, L. A. Chemical aspects of agglutinate formation—relationships between agglutinate composition and the composition of the bulk soil. In Proc. 7th Lunar Sci. Conf. 7, 393–403 (Pergamon Press, (1976).

  65. Robie, R. A., Hemingway, B. S. & Fisher, J. R. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (10⁵ pascals) Pressure and at Higher Temperatures. U.S. Geol. Surv. Bull. 1452 (1978).

  66. Ruan, R. et al. A moderate-Ti lunar mare soil simulant: IGG-01. Acta Astronaut. 224, 148–160 (2024).

    Google Scholar 

  67. Tsuchiyama, A. et al. Three-dimensional shape distribution of lunar regolith particles collected by the Apollo and Luna programs. Earth Planets Space 74, 172 (2022).

    Google Scholar 

  68. Tachibana, S. et al. Pebbles and sand on asteroid (162173) Ryugu: In situ observation and particles returned to Earth. Science 375, 1011–1016 (2022).

    Google Scholar 

  69. McKay, D. S. & Basu, A. The production curve for agglutinates in planetary regoliths. J. Geophys. Res. Solid Earth 88, B193–B199 (1983).

    Google Scholar 

  70. Morris, R. V. Surface exposure indices of lunar soils: A comparative FMR study. Proc. 7th Lunar Sci. Conf. 315, 335 (1976).

    Google Scholar 

  71. Qian, Y. et al. First magnetic and spectroscopic constraints on attenuated space weathering at the Chang’e-5 landing site. Icarus 410, 115892 (2024).

    Google Scholar 

  72. Li, J. et al. Magnetic signatures and origins of ferromagnetic minerals in Chang’e-6 lunar farside soils. Nat. Commun. 16, 6218 (2025).

    Google Scholar 

  73. McFadden, J. A. et al. Analyzing the mineralogy and space weathering characteristics of the finest fraction in Apollo core sample 73002. J. Geophys. Res. Planets 129, e2024JE008528 (2024).

    Google Scholar 

  74. Zhang, M., Fa, W. & Jia, B. Provenance and evolution of lunar regolith at the Chang’e-6 sampling site. Nat. Astron. 1, 11 (2025).

    Google Scholar 

  75. Qian, Y. et al. China’s Chang’e-5 landing site: Geology, stratigraphy, and provenance of materials. Earth Planet. Sci. Lett. 561, 116855 (2021).

    Google Scholar 

  76. Xu, L. et al. Chronology, Local Stratigraphy, and Foreign Ejecta Materials at the Chang’e-6 Landing Site: Constraints on the Provenance of Samples Returned From the Moon’s Farside. Geophys Res. Lett. 51, e2024GL111311 (2024.

    Google Scholar 

  77. Nottingham, M. C. et al. Complex burial histories of Apollo 12 basaltic soil grains derived from cosmogenic noble gases: Implications for local regolith evolution and future in situ investigations. Meteorit. Planet. Sci. 57, 603–634 (2022).

    Google Scholar 

  78. Guo, Z. et al. Nanophase Iron Particles Derived From Fayalitic Olivine Decomposition in Chang’E-5 Lunar Soil: Implications for Thermal Effects During Impacts. Geophys Res. Lett. 49, e2021GL097323 (2022).

    Google Scholar 

  79. Wang, Z. et al. Chemical compositions of Chang’e-6 lunar soil and substantial addition of noritic crust ejecta from Apollo basin. Geology https://doi.org/10.1130/G53086.1 (2025).

    Google Scholar 

  80. Laul, J. C., Smith, M. R., Papike, J. J. & Simon, S. B. Agglutinates as recorders of regolith evolution: Application to the Apollo 17 drill core. J. Geophys. Res. 89, (1984).

  81. Cremonese, G., Borin, P., Lucchetti, A., Marzari, F. & Bruno, M. Micrometeoroids flux on the Moon. Astron. Astrophys. 551, A27 (2013).

    Google Scholar 

  82. Jeong, M. et al. Multi-band polarimetry of the lunar surface. I. Global properties. Astrophys. J. Suppl. Ser. 221, 16 (2015).

    Google Scholar 

  83. Harris, A. J. & Allen, J. S. I. I. I. One-, two-, and three-phase viscosity treatments for basaltic lava flows. J. Geophys. Res. Solid Earth 113, B9 (2008).

    Google Scholar 

  84. Gonnermann H. M., Manga M. & Fagents S. A. Dynamics of magma ascent in the volcanic conduit. In Modeling Volcanic Processes: The Physics and Mathematics of Volcanism 55–84 (Cambridge Univ. Press, (2013).

  85. Rust, A. C. & Cashman, K. V. Permeability of vesicular silicic magma: Inertial and hysteresis effects. Earth Planet. Sci. Lett. 228, 93–107 (2004).

    Google Scholar 

  86. Nie, N. X., Dauphas, N., Zhang, Z. J., Hopp, T. & Sarantos, M. Lunar soil record of atmosphere loss over eons. Sci. Adv. 10, eadm7074 (2024).

    Google Scholar 

  87. Li, C. et al. Impact-induced ultra-high melting point oldhamite discovered in Chang’E-6 lunar soil. Nat. Commun. 16, 2155 (2025).

    Google Scholar 

  88. Eckley, S. A. et al. Utilization of X-ray computed tomography during the preliminary examination of unopened Apollo drive tube samples 73001 and 73002. J. Geophys. Res. Planets 130, e2024JE008583 (2025).

    Google Scholar 

  89. Lin, H. et al. Higher water content observed in smaller size fraction of Chang’e-5 lunar regolith samples. Sci. Bull. 69, 3723–3729 (2024).

    Google Scholar 

  90. Ruesch, O. et al. In situ fragmentation of lunar blocks and implications for impacts and solar-induced thermal stresses. Icarus 336, 113431 (2020).

    Google Scholar 

  91. Harries, D. & Langenhorst, F. The mineralogy and space weathering of a regolith grain from 25143 Itokawa and the possibility of annealed solar wind damage. Earth Planets Space 66, 163 (2014).

    Google Scholar 

  92. Yan, P. et al. Intricate regolith reworking processes revealed by microstructures on lunar impact glasses. J. Geophys. Res. Planets 127, e2022JE007260 (2022).

    Google Scholar 

  93. Pieters, C. M. & Noble, S. K. Space weathering on airless bodies. JGR Planets 121, 1865–1884 (2016).

    Google Scholar 

  94. Maurette, M. & Price, P. B. Electron microscopy of irradiation effects in space: Radiation-damaged lunar and meteoritic grains tell us about solar system history and synthesis of molecules in space. Science 187, 121–129 (1975).

    Google Scholar 

  95. McDowell, G. R. & Amon, A. The application of Weibull statistics to the fracture of soil particles. Soils Found. 40, 133–141 (2000).

    Google Scholar 

  96. Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293–297 (1951).

    Google Scholar 

  97. Lin, J. et al. Differences in space weathering between the near and far side of the Moon: evidence from Chang’e-6 samples. Natl. Sci. Rev. 12, nwaf087 (2025).

    Google Scholar 

  98. Neuman, M. et al. Revealing the Moon’s Taurus–Littrow landslide via integrated analysis of pristine Apollo 17 soil core 73001/2. J. Geophys. Res. Planets 130, e2024JE008556 (2025).

    Google Scholar 

  99. Morris, R. V. et al. Stratigraphy of the Apollo 17 landslide core 73002 from FMR maturity and VNIR and Mössbauer spectroscopy. Lunar Planet. Sci. Conf. (2022).

  100. Deitrick, S. R. & Cannon, K. M. Characterizing detailed grain shape and size distribution properties of lunar regolith. In 53rd Lunar Planet. Sci. Conf. abstr. #1183 (2022).

  101. Sudhyadhom, A. On the molecular relationship between Hounsfield Unit (HU), mass density, and electron density in computed tomography (CT). PLoS ONE 15, e0244861 (2020).

    Google Scholar 

  102. Zhao, B., Wang, J., Coop, M. R., Viggiani, G. & Jiang, M. An investigation of single sand particle fracture using X-ray micro-tomography. Géotech. 65, 625–641 (2015).

    Google Scholar 

  103. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    Google Scholar 

  104. Luo, X. et al. Pore structure characterization and seepage analysis of ionic rare earth orebodies based on computed tomography images. Int. J. Min. Sci. Technol. 32, 411–421 (2022).

    Google Scholar 

  105. Li, L., Sun, Q. & Iskander, M. Efficacy of 3D dynamic image analysis for characterising the morphology of natural sands. Géotech. 73, 586–599 (2023).

    Google Scholar 

  106. Robin, C. Q. et al. Mechanical properties of rubble pile asteroids (Dimorphos, Itokawa, Ryugu, and Bennu) through surface boulder morphological analysis. Nat. Commun. 15, 6203 (2024).

    Google Scholar 

  107. Wadell, H. Volume, shape, and roundness of rock particles. J. Geol. 40, 443–451 (1932).

    Google Scholar 

  108. Wadell, H. Sphericity and roundness of rock particles. J. Geol. 41, 310–331 (1933).

    Google Scholar 

  109. Chen, J. et al. Digital and global lithologic mapping of the Moon at a 1:2,500,000 scale. Sci. Bull. 67, 2050–2054 (2022).

    Google Scholar 

  110. Cone, K. A. ApolloBasalt DB_V2, version 1.0. Interdisciplinary Earth Data Alliance (IEDA) https://doi.org/10.26022/IEDA/111982 (2021).

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China 42241109 (Y.F.C.) and 42577187 (J.Y.N.) and Tsinghua University Initiative Scientific Research Program 20253080040 (Y.F.C.). The financial support from the Young Elite Scientists Sponsorship Program by CAST 2023QNRC001 (J.Y.N.) is gratefully acknowledged. We would also like to appreciate the China National Space Administration for providing the invaluable lunar samples from both the Chang’e-5 and Chang’e-6 missions.

Author information

Author notes
  1. These authors contributed equally: Ao Luo, Yifei Cui.

Authors and Affiliations

  1. Department of Hydraulic Engineering, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China

    Ao Luo, Yifei Cui, Guodong Wang, Chuansheng Xu, Zihan Zhang & Jun Zhang

  2. School of Civil Engineering, Wuhan University, Wuhan, China

    Jiayan Nie

  3. Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China

    Yang Li

  4. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China

    Qi Zhao

  5. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

    Huaiyu He

Authors
  1. Ao Luo
    View author publications

    Search author on:PubMed Google Scholar

  2. Yifei Cui
    View author publications

    Search author on:PubMed Google Scholar

  3. Guodong Wang
    View author publications

    Search author on:PubMed Google Scholar

  4. Jiayan Nie
    View author publications

    Search author on:PubMed Google Scholar

  5. Chuansheng Xu
    View author publications

    Search author on:PubMed Google Scholar

  6. Zihan Zhang
    View author publications

    Search author on:PubMed Google Scholar

  7. Jun Zhang
    View author publications

    Search author on:PubMed Google Scholar

  8. Yang Li
    View author publications

    Search author on:PubMed Google Scholar

  9. Qi Zhao
    View author publications

    Search author on:PubMed Google Scholar

  10. Huaiyu He
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.L., Y.F.C., G.D.W., J.Y.N., and Y.L. conceived and designed the experiments. A.L., G.D.W., J.Y.N., and C.S.X. performed the experiments. A.L., Y.F.C., G.D.W., J.Y.N., Z.H.Z., Q.Z., and H.Y.H analyzed the data. A.L., Y.F.C., G.D.W., and J.Z. contributed materials tools. A.L. and Y.F.C. wrote the paper.

Corresponding authors

Correspondence to Yifei Cui, Guodong Wang or Jiayan Nie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Takashi Matsushima and the other anonymous reviewer for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Video 1

Supplementary Video 2

Supplementary Video 3

Supplementary Video 4

Transparent Peer Review file

Source data

Source Data Fig. 2

Source Data Fig. 3

Source Data Fig. 4

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, A., Cui, Y., Wang, G. et al. Saturation of space weathering in shaping lunar regolith particle morphology. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68824-3

Download citation

  • Received: 24 June 2025

  • Accepted: 19 January 2026

  • Published: 31 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68824-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing