Abstract
The lunar mare regolith preserves tripartite records of volcanism, impacting, and space weathering. However, previous studies based on limited soil particle numbers were hindered by issues of sample representativeness. Here we conduct micro-CT scans of bulk soil samples from Chang’e-5 (nearside) and Chang’e-6 (farside), and develop machine learning-based image segmentation and classification methods to identify a vast number of basalt, agglutinate, breccia, and monomineralic particles. The Chang’e-5 basalt exhibits higher plagioclase content than Chang’e-6, while agglutinates from Chang’e-6 have lower void ratios, respectively indicating different lava origins and more intense micrometeorite bombardment for farside Chang’e-6. Despite their contrasting volcanic and impacting histories, the soil particles for these youngest nearside/farside samples exhibit similar morphometric distributions, suggesting that space weathering reached saturation in shaping surficial soil particle morphology in ~ 2.2 million years or less. These findings may extend to other mare regions and help establish space weathering models for other airless bodies.
Data availability
All data supporting this study are presented in the paper and its Supplementary Information. Source data are also provided with this paper. Source data are provided with this paper.
Code availability
All code used in this study is cited and no proprietary code was developed for this work.
References
Slyuta, E. N. Physical and mechanical properties of the lunar soil (a review). Sol. Syst. Res. 48, 330–353 (2014).
O’Brien, P. & Byrne, S. Physical and Chemical Evolution of Lunar Mare Regolith. JGR Planets 126, e2020JE006634 (2021).
Qian, Y. et al. Mineralogy and chronology of the young mare volcanism in the Procellarum-KREEP-Terrane. Nat. Astron. 7, 287–297 (2023).
Zhang, H. et al. Size, morphology, and composition of lunar samples returned by Chang’E-5 mission. Sci. China Phys. Mech. Astron. 65, 229511 (2022).
Apollo 16 Preliminary Examination Team. The Apollo 16 Lunar Samples: Petrographic and Chemical Description. Science 179, 23–34 (1973).
Li, Q.-L. et al. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature 600, 54–58 (2021).
Qian, Y., Xiao, L., Head, J. W. & Wilson, L. The Long Sinuous Rille System in Northern Oceanus Procellarum and Its Relation to the Chang’e-5 Returned Samples. Geophys Res. Lett. 48, e2021GL092663 (2021).
He, Q. et al. Detailed petrogenesis of the unsampled Oceanus Procellarum: The case of the Chang’e-5 mare basalts. Icarus 383, 115082 (2022).
Zhang, D. et al. Titanium in olivine reveals low-Ti origin of the Chang’E-5 lunar basalts. Lithos 414–415, 106639 (2022).
Luo, B. et al. The magmatic architecture and evolution of the Chang’e-5 lunar basalts. Nat. Geosci. 16, 301–308 (2023).
Head, J. W. & Wilson, L. Rethinking Lunar Mare Basalt Regolith Formation: New Concepts of Lava Flow Protolith and Evolution of Regolith Thickness and Internal Structure. Geophys Res. Lett. 47, e2020GL088334 (2020).
Taylor, L. A., Pieters, C. M., Keller, L. P., Morris, R. V. & McKay, D. S. Lunar Mare Soils: Space weathering and the major effects of surface-correlated nanophase Fe. J. Geophys. Res. 106, 27985–27999 (2001).
Sasaki, S., Nakamura, K., Hamabe, Y., Kurahashi, E. & Hiroi, T. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature 410, 555–557 (2001).
Noguchi, T. et al. Incipient Space Weathering Observed on the Surface of Itokawa Dust Particles. Science 333, 1121–1125 (2011).
Hörz, F., Cintala, M. J., See, T. H., Cardenas, F. & Thompson, T. D. Grain size evolution and fractionation trends in an experimental regolith. J. Geophys. Res. Solid Earth 89, C183–C196 (1984).
Devine, J. M., McKay, D. S. & Papike, J. J. Lunar Regolith: Petrology of the <10 μm fraction. J. Geophys. Res. 87, (1982).
Li, L. et al. Transport of Volatiles in Agglutinates from Lunar Regolith of Chang’e-5 Mission. Research 8, 0638 (2025).
Kling, A. M. et al. Nanoscale reservoirs store solar wind-derived water on the lunar surface. Earth Planet. Sci. Lett. 651, 119178 (2025).
Wentworth, S. J., Keller, L. P., McKAY, D. S. & Morris, R. V. Space weathering on the Moon: Patina on Apollo 17 samples 75075 and 76015. Meteorit. Planet. Sci. 34, 593–603 (1999).
Hörz, F., Basilevsky, A. T., Head, J. W. & Cintala, M. J. Erosion of lunar surface rocks by impact processes: a synthesis. Planet. Space Sci. 194, 105105 (2020).
Weber, I. et al. Space weathering by simulated micrometeorite bombardment on natural olivine and pyroxene: A coordinated IR and TEM study. Earth Planet. Sci. Lett. 530, 115884 (2020).
McKay D. S., Fruland R. M. & Heiken G. H. Grain size and the evolution of lunar soils. Proc. 5th Lunar Sci. Conf., 887–906 (1974).
Wu, H. et al. Micro-CT Characterization of the Chang’e-5 Lunar Regolith Samples. JGR Planets 130, e2024JE008787 (2025).
Li, C. et al. Nature of the lunar far-side samples returned by the Chang’E-6 mission. Natl. Sci. Rev. 11, nwae328 (2024).
Li, C. et al. Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl. Sci. Rev. 9, nwab188 (2022).
Luo, A., Cui, Y., Nie, J. & Wang, G. Effects of adhesion and particle shape on mechanical behaviors of lunar regolith under low stress condition-3D DEM study. Comput. Geotech. 175, 106661 (2024).
Ding, L. et al. Lunar rock investigation and tri-aspect characterization of lunar farside regolith by a digital twin. Nat. Commun. 15, 2098 (2024).
Wu, F. Y. et al. Lunar evolution in light of the Chang’e-5 returned samples. Annu. Rev. Earth Planet. Sci. 52, (2024).
Zhang, Q. W. L. et al. Lunar farside volcanism 2.8 billion years ago from Chang’e-6 basalts. Nature https://doi.org/10.1038/s41586-024-08382-0.(2024)
Tian, H.-C. et al. Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane. Nature 600, 59–63 (2021).
Yin, C. et al. Petrogenesis of Chang’e-6 Basalts and Implication for the Young Volcanism on the Lunar Faside. ApJL 981, L2 (2025).
Zhang, H. Y. et al. Space weathering on the lunar nearside and farside constrained from Si isotopes. Nat. Commun. 16, 1–7 (2025).
Nie, J. et al. Predicting residual friction angle of lunar regolith based on Chang’e-5 lunar samples. Sci. Bull. 68, 730–739 (2023).
Matsushima, T. et al. 3D particle characteristics of highland lunar soil (No. 60501) obtained by micro X-ray CT. In Earth & Space 2008: Engineering, Science, Construction, and Operations in Challenging Environments, 1–8 (2008).
Katagiri, J. et al. Investigation of 3D Grain Shape Characteristics of Lunar Soil Retrieved in Apollo 16 Using Image-Based Discrete-Element Modeling. J. Aerosp. Eng. 28, 04014092 (2015).
Chiaramonti, A. N., Goguen, J. D. & Garboczi, E. J. Quantifying the 3-Dimensional Shape of Lunar Regolith Particles Using X-Ray Computed Tomography and Scanning Electron Microscopy at Sub-γ Resolution. Microsc Microanal. 23, 2194–2195 (2017).
Wilkerson, R. P., Rickman, D. L., McElderry, J. R., Walker, S. R. & Cannon, K. M. On the measurement of shape: With applications to lunar regolith. Icarus 412, 115963 (2024).
Nie, J. Y., Cao, Z. J., Li, D. Q. & Cui, Y. F. 3D DEM insights into the effect of particle overall regularity on macro and micro mechanical behaviours of dense sands. Comput. Geotech. 132, 103965 (2021).
Zhou, S. et al. Three-dimensional morphological analysis of Chang’e-5 lunar soil using deep learning-automated segmentation on computed tomography scans. Computer-aided Civil Eng mice.13487 https://doi.org/10.1111/mice.13487.(2025)
Li, L. & Li, J. Multimodal Particle Size Estimation of Lunar Soil Simulants Towards a Non-destructive Analytical Strategy for Extraterrestrial Samples. Spectrosc. 45, 246–258 (2024).
Sakatani, N. et al. Anomalously porous boulders on (162173) Ryugu as primordial materials from its parent body. Nat. Astron. 5, 766–774 (2021).
Cheng, B. et al. Reconstructing the formation history of top-shaped asteroids from the surface boulder distribution. Nat. Astron. 5, 134–138 (2020).
Tatsumi, E. et al. Collisional history of Ryugu’s parent body from bright surface boulders. Nat. Astron. 5, 39–45 (2020).
Taylor, L. A. et al. The effects of space weathering on Apollo 17 mare soils: Petrographic and chemical characterization. Meteorit. Planet. Sci. 36, 285–299 (2001).
Denevi, B. W. et al. Space weathering at the Moon. Rev. Mineral. Geochem. 89, 1–56 (2023).
Cao, Z. et al. Nature of space-weathered rims on Chang’e-5 lunar soil grains. Earth Planet. Sci. Lett. 658, 119327 (2025).
Keller, L. P. & McKay, D. S. The nature and origin of rims on lunar soil grains. Geochim. Cosmochim. Acta 61, 2331–2341 (1997).
Noble S. K., Keller L. P., Christoffersen R. & Rahman Z. The microstructure of lunar micrometeorite impact craters. NASA Technical Report JSC-CN-35097 (2016).
Papike, J. J., Simon, S. B. & Laul, J. C. The lunar regolith: Chemistry, mineralogy, and petrology. Rev. Geophys. 20, 761–826 (1982).
Adams, J. B., Charette, M. P. & Rhodes, J. M. Chemical fractionation of the lunar regolith by impact melting. Science 190, 380–381 (1975).
Rhodes, J. M. et al. Chemistry of agglutinate fractions in lunar soils. Proc. Lunar Sci. Conf. 6, 2291–2307 (1975).
Varatharajan, I., Srivastava, N. & Murty, S. V. Mineralogy of young lunar mare basalts: Assessment of temporal and spatial heterogeneity using M3 data from Chandrayaan-1. Icarus 236, 56–71 (2014).
Boschi, S. et al. Compositional Variability of 2.0-Ga Lunar Basalts at the Chang’e-5 Landing Site. JGR Planets 128, e2022JE007627 (2023).
Che, X. et al. Isotopic and compositional constraints on the source of basalt collected from the lunar farside. Science 387, 1306–1310 (2025).
Neal, C. R. & Taylor, L. A. Petrogenesis of mare basalts: A record of lunar volcanism. Geochim. Cosmochim. Acta 56, 2177–2211 (1992).
Wang, C. et al. A shallow (<100 km) ilmenite-bearing pyroxenitic source for young lunar volcanism. Earth Planet. Sci. Lett. 639, 118770 (2024).
McKay, D. S. et al. The lunar regolith. Lunar Sourceb. 567, 285–356 (1991).
Wang, K., Moynier, F., Podosek, F. A. & Foriel, J. An iron isotope perspective on the origin of the nanophase metallic iron in lunar regolith. Earth Planet. Sci. Lett. 337, 17–24 (2012).
Xiong, M. et al. The formation mechanisms of np-Fe in lunar regolith: a review. Materials 17, 5866 (2024).
Li, C. et al. Impact-driven disproportionation origin of nanophase iron particles in Chang’e-5 lunar soil sample. Nat. Astron. 6, 1156–1162 (2022).
Shen, L. et al. Separate effects of irradiation and impacts on lunar metallic iron formation observed in Chang’e-5 samples. Nat. Astron. 8, 1110–1118 (2024).
Huang, T. J., Ganju, E., Torbatisarraf, H., Thompson, M. S. & Chawla, N. Advanced microstructural and compositional analysis of a lunar agglutinate from the Apollo 11 mission. Meteorit. Planet. Sci. 59, 1455–1472 (2024).
McKay D. S. & Ming DW. Properties of lunar regolith. In Developments in Soil Science 19, 449–462 (Elsevier, 1990).
Via, W. N. & Taylor, L. A. Chemical aspects of agglutinate formation—relationships between agglutinate composition and the composition of the bulk soil. In Proc. 7th Lunar Sci. Conf. 7, 393–403 (Pergamon Press, (1976).
Robie, R. A., Hemingway, B. S. & Fisher, J. R. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (10⁵ pascals) Pressure and at Higher Temperatures. U.S. Geol. Surv. Bull. 1452 (1978).
Ruan, R. et al. A moderate-Ti lunar mare soil simulant: IGG-01. Acta Astronaut. 224, 148–160 (2024).
Tsuchiyama, A. et al. Three-dimensional shape distribution of lunar regolith particles collected by the Apollo and Luna programs. Earth Planets Space 74, 172 (2022).
Tachibana, S. et al. Pebbles and sand on asteroid (162173) Ryugu: In situ observation and particles returned to Earth. Science 375, 1011–1016 (2022).
McKay, D. S. & Basu, A. The production curve for agglutinates in planetary regoliths. J. Geophys. Res. Solid Earth 88, B193–B199 (1983).
Morris, R. V. Surface exposure indices of lunar soils: A comparative FMR study. Proc. 7th Lunar Sci. Conf. 315, 335 (1976).
Qian, Y. et al. First magnetic and spectroscopic constraints on attenuated space weathering at the Chang’e-5 landing site. Icarus 410, 115892 (2024).
Li, J. et al. Magnetic signatures and origins of ferromagnetic minerals in Chang’e-6 lunar farside soils. Nat. Commun. 16, 6218 (2025).
McFadden, J. A. et al. Analyzing the mineralogy and space weathering characteristics of the finest fraction in Apollo core sample 73002. J. Geophys. Res. Planets 129, e2024JE008528 (2024).
Zhang, M., Fa, W. & Jia, B. Provenance and evolution of lunar regolith at the Chang’e-6 sampling site. Nat. Astron. 1, 11 (2025).
Qian, Y. et al. China’s Chang’e-5 landing site: Geology, stratigraphy, and provenance of materials. Earth Planet. Sci. Lett. 561, 116855 (2021).
Xu, L. et al. Chronology, Local Stratigraphy, and Foreign Ejecta Materials at the Chang’e-6 Landing Site: Constraints on the Provenance of Samples Returned From the Moon’s Farside. Geophys Res. Lett. 51, e2024GL111311 (2024.
Nottingham, M. C. et al. Complex burial histories of Apollo 12 basaltic soil grains derived from cosmogenic noble gases: Implications for local regolith evolution and future in situ investigations. Meteorit. Planet. Sci. 57, 603–634 (2022).
Guo, Z. et al. Nanophase Iron Particles Derived From Fayalitic Olivine Decomposition in Chang’E-5 Lunar Soil: Implications for Thermal Effects During Impacts. Geophys Res. Lett. 49, e2021GL097323 (2022).
Wang, Z. et al. Chemical compositions of Chang’e-6 lunar soil and substantial addition of noritic crust ejecta from Apollo basin. Geology https://doi.org/10.1130/G53086.1 (2025).
Laul, J. C., Smith, M. R., Papike, J. J. & Simon, S. B. Agglutinates as recorders of regolith evolution: Application to the Apollo 17 drill core. J. Geophys. Res. 89, (1984).
Cremonese, G., Borin, P., Lucchetti, A., Marzari, F. & Bruno, M. Micrometeoroids flux on the Moon. Astron. Astrophys. 551, A27 (2013).
Jeong, M. et al. Multi-band polarimetry of the lunar surface. I. Global properties. Astrophys. J. Suppl. Ser. 221, 16 (2015).
Harris, A. J. & Allen, J. S. I. I. I. One-, two-, and three-phase viscosity treatments for basaltic lava flows. J. Geophys. Res. Solid Earth 113, B9 (2008).
Gonnermann H. M., Manga M. & Fagents S. A. Dynamics of magma ascent in the volcanic conduit. In Modeling Volcanic Processes: The Physics and Mathematics of Volcanism 55–84 (Cambridge Univ. Press, (2013).
Rust, A. C. & Cashman, K. V. Permeability of vesicular silicic magma: Inertial and hysteresis effects. Earth Planet. Sci. Lett. 228, 93–107 (2004).
Nie, N. X., Dauphas, N., Zhang, Z. J., Hopp, T. & Sarantos, M. Lunar soil record of atmosphere loss over eons. Sci. Adv. 10, eadm7074 (2024).
Li, C. et al. Impact-induced ultra-high melting point oldhamite discovered in Chang’E-6 lunar soil. Nat. Commun. 16, 2155 (2025).
Eckley, S. A. et al. Utilization of X-ray computed tomography during the preliminary examination of unopened Apollo drive tube samples 73001 and 73002. J. Geophys. Res. Planets 130, e2024JE008583 (2025).
Lin, H. et al. Higher water content observed in smaller size fraction of Chang’e-5 lunar regolith samples. Sci. Bull. 69, 3723–3729 (2024).
Ruesch, O. et al. In situ fragmentation of lunar blocks and implications for impacts and solar-induced thermal stresses. Icarus 336, 113431 (2020).
Harries, D. & Langenhorst, F. The mineralogy and space weathering of a regolith grain from 25143 Itokawa and the possibility of annealed solar wind damage. Earth Planets Space 66, 163 (2014).
Yan, P. et al. Intricate regolith reworking processes revealed by microstructures on lunar impact glasses. J. Geophys. Res. Planets 127, e2022JE007260 (2022).
Pieters, C. M. & Noble, S. K. Space weathering on airless bodies. JGR Planets 121, 1865–1884 (2016).
Maurette, M. & Price, P. B. Electron microscopy of irradiation effects in space: Radiation-damaged lunar and meteoritic grains tell us about solar system history and synthesis of molecules in space. Science 187, 121–129 (1975).
McDowell, G. R. & Amon, A. The application of Weibull statistics to the fracture of soil particles. Soils Found. 40, 133–141 (2000).
Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293–297 (1951).
Lin, J. et al. Differences in space weathering between the near and far side of the Moon: evidence from Chang’e-6 samples. Natl. Sci. Rev. 12, nwaf087 (2025).
Neuman, M. et al. Revealing the Moon’s Taurus–Littrow landslide via integrated analysis of pristine Apollo 17 soil core 73001/2. J. Geophys. Res. Planets 130, e2024JE008556 (2025).
Morris, R. V. et al. Stratigraphy of the Apollo 17 landslide core 73002 from FMR maturity and VNIR and Mössbauer spectroscopy. Lunar Planet. Sci. Conf. (2022).
Deitrick, S. R. & Cannon, K. M. Characterizing detailed grain shape and size distribution properties of lunar regolith. In 53rd Lunar Planet. Sci. Conf. abstr. #1183 (2022).
Sudhyadhom, A. On the molecular relationship between Hounsfield Unit (HU), mass density, and electron density in computed tomography (CT). PLoS ONE 15, e0244861 (2020).
Zhao, B., Wang, J., Coop, M. R., Viggiani, G. & Jiang, M. An investigation of single sand particle fracture using X-ray micro-tomography. Géotech. 65, 625–641 (2015).
Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
Luo, X. et al. Pore structure characterization and seepage analysis of ionic rare earth orebodies based on computed tomography images. Int. J. Min. Sci. Technol. 32, 411–421 (2022).
Li, L., Sun, Q. & Iskander, M. Efficacy of 3D dynamic image analysis for characterising the morphology of natural sands. Géotech. 73, 586–599 (2023).
Robin, C. Q. et al. Mechanical properties of rubble pile asteroids (Dimorphos, Itokawa, Ryugu, and Bennu) through surface boulder morphological analysis. Nat. Commun. 15, 6203 (2024).
Wadell, H. Volume, shape, and roundness of rock particles. J. Geol. 40, 443–451 (1932).
Wadell, H. Sphericity and roundness of rock particles. J. Geol. 41, 310–331 (1933).
Chen, J. et al. Digital and global lithologic mapping of the Moon at a 1:2,500,000 scale. Sci. Bull. 67, 2050–2054 (2022).
Cone, K. A. ApolloBasalt DB_V2, version 1.0. Interdisciplinary Earth Data Alliance (IEDA) https://doi.org/10.26022/IEDA/111982 (2021).
Acknowledgements
This work was funded by the National Natural Science Foundation of China 42241109 (Y.F.C.) and 42577187 (J.Y.N.) and Tsinghua University Initiative Scientific Research Program 20253080040 (Y.F.C.). The financial support from the Young Elite Scientists Sponsorship Program by CAST 2023QNRC001 (J.Y.N.) is gratefully acknowledged. We would also like to appreciate the China National Space Administration for providing the invaluable lunar samples from both the Chang’e-5 and Chang’e-6 missions.
Author information
Authors and Affiliations
Contributions
A.L., Y.F.C., G.D.W., J.Y.N., and Y.L. conceived and designed the experiments. A.L., G.D.W., J.Y.N., and C.S.X. performed the experiments. A.L., Y.F.C., G.D.W., J.Y.N., Z.H.Z., Q.Z., and H.Y.H analyzed the data. A.L., Y.F.C., G.D.W., and J.Z. contributed materials tools. A.L. and Y.F.C. wrote the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Takashi Matsushima and the other anonymous reviewer for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Luo, A., Cui, Y., Wang, G. et al. Saturation of space weathering in shaping lunar regolith particle morphology. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68824-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-68824-3