Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Tomato antiviral ubiquitin-proteasome system recognizes viral 59 kDa protein to confer tomato chlorosis virus resistance
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 31 January 2026

Tomato antiviral ubiquitin-proteasome system recognizes viral 59 kDa protein to confer tomato chlorosis virus resistance

  • Dan Zhao  ORCID: orcid.org/0009-0000-7176-505X1,2 na1,
  • Xiaoqian Liu  ORCID: orcid.org/0009-0008-0208-70891 na1,
  • Hongbo Li  ORCID: orcid.org/0000-0003-1579-46001 na1,
  • Tianchen Xia  ORCID: orcid.org/0009-0005-0521-02201,
  • Qi Jia  ORCID: orcid.org/0009-0000-9477-55681,
  • Peidong Li  ORCID: orcid.org/0009-0009-1987-01301,
  • Qing Shan  ORCID: orcid.org/0009-0002-7473-24931,
  • Changqian Li  ORCID: orcid.org/0009-0005-8303-40661,
  • Hui Li  ORCID: orcid.org/0009-0006-5323-18321,2,
  • Yilei Gai  ORCID: orcid.org/0009-0009-2755-32071,
  • Tao Lin  ORCID: orcid.org/0000-0003-3647-04883,
  • Lianyi Zang  ORCID: orcid.org/0009-0007-3277-81152,3,
  • Tao Zhou  ORCID: orcid.org/0000-0001-7702-84723,
  • Jin-Wei Wei  ORCID: orcid.org/0000-0002-0159-984X4,
  • Xiaoping Zhu  ORCID: orcid.org/0000-0001-7236-731X2 &
  • …
  • Biao Gong  ORCID: orcid.org/0000-0003-3700-59671 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Effectors in plant pathology
  • Plant domestication
  • Proteasome

Abstract

Viral diseases critically impact crop yields, necessitating insights into plant-pathogen recognition and resistance. In tomato (Solanum lycopersicum), tomato chlorosis virus (ToCV) employs 59 kDa protein (p59) to facilitate movement and degrade the host Catalase1 (SlCAT1), disrupting redox homeostasis. Importantly, tomato has evolved an antiviral ubiquitin-proteasome system (UPS) featuring the Antiviral E2 ubiquitin-conjugating enzyme (SlAVE2) and Antiviral E3 ubiquitin ligase (SlAVE3) pair, which specifically recognizes p59 to trigger antiviral defenses. During infection, this system ubiquitinates SlWRKY6, alleviating its repression of SlAVE3 and creating a positive feedback loop that enhances SlAVE3 expression. SlAVE3 then targets p59 for ubiquitination and degradation, inhibiting viral spread. Notably, p59 co-opts this UPS to degrade SlCAT1, illustrating a counter-defense interplay. Domestication analysis reveals selection of AVE3 from S. pimpinellifolium to S. lycopersicum, with SpAVE3 conferring stronger ToCV resistance than SlAVE3 through improved p59 targeting and reduced SlCAT1 degradation. This study unveils a domesticated antiviral UPS, providing a foundation for breeding ToCV-resistant tomatoes.

Data availability

All data are presented in this manuscript and Supplementary Information. Raw data of RNA-seq have been deposited to Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra) under the accession number PRJNA1369304 with the referee access code or the clickable URL link (https://www.ncbi.nlm.nih.gov/sra/PRJNA1369304). Source data are provided with this paper.

References

  1. He, S. & Krainer, K. M. C. Pandemics of people and plants: which is the greater threat to food security?. Mol. Plants 13, 933–934 (2020).

    Google Scholar 

  2. Salem, N. M., Jewehan, A., Aranda, M. A. & Fox, A. Tomato brown rugose fruit virus pandemic. Annu. Rev. Phytopathol. 61, 137–164 (2023).

    Google Scholar 

  3. Uluisik, S. et al. Genetic improvement of tomato by targeted control of fruit softening. Nat. Biotechnol. 34, 950–952 (2016).

    Google Scholar 

  4. Ong, S. N., Taheri, S., Othman, R. Y. & Teo, C. H. Viral disease of tomato crops (Solanum lycopersicum L.): an overview. J. Plant Dis. Prod. 127, 725–739 (2020).

    Google Scholar 

  5. Fiallo-Olivé, E. & Navas-Castillo, J. Tomato chlorosis virus, an emergent plant virus still expanding its geographical and host ranges. Mol. Plant Pathol. 20, 1307–1320 (2019).

    Google Scholar 

  6. Wintermantel, W. M. et al. The complete nucleotide sequence and genome organization of tomato chlorosis virus. Arch. Virol. 150, 2287–2298 (2005).

    Google Scholar 

  7. Landeo-Ríos, Y., Navas-Castillo, J., Moriones, E. & Cañizares, M. C. The p22 RNA silencing suppressor of the crinivirus Tomato chlorosis virus preferentially binds long dsRNAs preventing them from cleavage. Virology 488, 129–136 (2016).

    Google Scholar 

  8. Agranovsky, A. A., Lesemann, D. E., Maiss, E., Hull, R. & Atabekov, J. G. Rattlesnake” structure of a filamentous plant RNA virus built of two capsid proteins. Proc. Natl. Acad. Sci. USA 92, 2470–2473 (1995).

    Google Scholar 

  9. Sun, X. et al. Interactions of tomato chlorosis virus p27 protein with tomato catalase are involved in viral infection. Viruses 15, 990 (2023).

    Google Scholar 

  10. Feng, L. et al. A viral protein activates the MAPK pathway to promote viral infection by downregulating callose deposition in plants. Nat. Commun. 15, 10548 (2024).

    Google Scholar 

  11. Cañizares, M. C., Navas-Castillo, J. & Moriones, E. Multiple suppressors of RNA silencing encoded by both genomic RNAs of the crinivirus, Tomato chlorosis virus. Virology 379, 168–174 (2008).

    Google Scholar 

  12. Chen, A. Y., Walker, G. P., Carter, D. & Ng, J. C. A virus capsid component mediates virion retention and transmission by its insect vector. Proc. Natl. Acad. Sci. USA 108, 16777–16782 (2011).

    Google Scholar 

  13. Yang, Z. et al. Crop antiviral defense: past and future perspective. Sci. China Life Sci. 67, 2617–2634 (2024).

    Google Scholar 

  14. Ge, L., Zhou, X. & Li, F. Plant-virus arms race beyond RNA interference. Trends Plant Sci. 29, 16–19 (2024).

    Google Scholar 

  15. Calil, I. P. & Fontes, E. P. B. Plant immunity against viruses: antiviral immune receptors in focus. Ann. Bot. 119, 711–723 (2017).

    Google Scholar 

  16. Jones, J. D. G., Staskawicz, B. J. & Dangl, J. L. The plant immune system: from discovery to deployment. Cell 187, 2095–2116 (2024).

    Google Scholar 

  17. Kørner, C. J. et al. The immunity regulator BAK1 contributes to resistance against diverse RNA viruses. Mol. Plant-Microbe Interact 26, 1271–1280 (2013).

    Google Scholar 

  18. Zorzatto, C. et al. NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism. Nature 520, 679–682 (2015).

    Google Scholar 

  19. Li, B. et al. The receptor-like kinase NIK1 targets FLS2/BAK1 immune complex and inversely modulates antiviral and antibacterial immunity. Nat. Commun. 10, 4996 (2019).

    Google Scholar 

  20. Whitham, S. et al. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78, 1101–1115 (1994).

    Google Scholar 

  21. Palukaitis, P. & Yoon, J. R gene mediated defense against viruses. Curr. Opin. Virol. 45, 1–7 (2020).

    Google Scholar 

  22. Sharma, V. et al. Molecular dynamics of plant-virus interactions: unravelling the dual role of ubiquitin proteasome system. Stress Biol. 5, 12 (2025).

    Google Scholar 

  23. Sharma, S., Prasad, A. & Prasad, M. Selective autophagy: the fulcrum of plant-virus interaction. Trends Plant Sci. 29, 4–6 (2024).

    Google Scholar 

  24. Shabek, N. & Zheng, N. Plant ubiquitin ligases as signaling hubs. Nat. Struct. Mol. Biol. 21, 293–296 (2014).

    Google Scholar 

  25. Alcaide-Loridan, C. & Jupin, I. Ubiquitin and plant viruses, let’s play together!. Plant Physiol 160, 72–82 (2012).

    Google Scholar 

  26. Luo, H. Interplay between the virus and the ubiquitin-proteasome system: molecular mechanism of viral pathogenesis. Curr. Opin. Virol. 17, 1–10 (2016).

    Google Scholar 

  27. Eini, O. et al. Interaction with a host ubiquitin-conjugating enzyme is required for the pathogenicity of a geminiviral DNA beta satellite. Mol. Plant-Microbe Interact. 22, 737–746 (2009).

    Google Scholar 

  28. Ye, C., Dickman, M. B., Whitham, S. A., Payton, M. & Verchot, J. The unfolded protein response is triggered by a plant viral movement protein. Plant Physiol. 156, 741–755 (2011).

    Google Scholar 

  29. Zhang, X. et al. Plant cell-cycle regulators control the nuclear environment for viral pathogenesis. Cell Host Microbe 33, 420–435 (2025).

    Google Scholar 

  30. Chenon, M., Camborde, L., Cheminant, S. & Jupin, I. A viral deubiquitylating enzyme targets viral RNA-dependent RNA polymerase and affects viral infectivity. EMBO J. 31, 741–753 (2012).

    Google Scholar 

  31. Castillo, A. G., Kong, L. J., Hanley-Bowdoin, L. & Bejarano, E. R. Interaction between a geminivirus replication protein and the plant sumoylation system. J. Virol. 78, 2758–2769 (2004).

    Google Scholar 

  32. Liu, Y., Schiff, M., Serino, G., Deng, X. W. & Dinesh-Kumar, S. P. Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to tobacco mosaic virus. Plant Cell 14, 1483–1496 (2002).

    Google Scholar 

  33. Huang, Y. et al. Perception of viral infections and initiation of antiviral defence in rice. Nature 641, 173–181 (2025).

    Google Scholar 

  34. Dolja, V. V., Kreuze, J. F. & Valkonen, J. P. T. Comparative and functional genomics of closteroviruses. Virus Res. 117, 38–51 (2006).

    Google Scholar 

  35. Gong, P. et al. Tomato yellow leaf curl virus V3 protein traffics along microfilaments to plasmodesmata to promote virus cell-to-cell movement. Sci. China Life Sci. 65, 1046–1049 (2022).

    Google Scholar 

  36. Ge, P. et al. Plasmodesmata-associated Flotillin positively regulates broad-spectrum virus cell-to-cell trafficking. Plant Biotechnol. J. 22, 1387–1401 (2024).

    Google Scholar 

  37. Huang, C. et al. dsRNA-induced immunity targets plasmodesmata and is suppressed by viral movement proteins. Plant Cell 35, 3845–3869 (2023).

    Google Scholar 

  38. Shen, Q. et al. Tobacco RING E3 ligase NtRFP1 mediates ubiquitination and proteasomal degradation of a geminivirus-encoded βC1. Mol. Plants 9, 911–925 (2016).

    Google Scholar 

  39. Lin, T. et al. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46, 1220–1226 (2014).

    Google Scholar 

  40. van de Wouw, M., Kik, C., van Hintum, T., van Treuren, R. & Visser, B. Genetic erosion in crops: concept, research results and challenges. Plant Genet. Resour. 8, 1–15 (2010).

    Google Scholar 

  41. Zsögön, A. et al. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36, 1211–1216 (2018).

    Google Scholar 

  42. Wang, A. Cell-to-cell movement of plant viruses via plasmodesmata: a current perspective on potyviruses. Curr. Opin. Virol. 48, 10–16 (2021).

    Google Scholar 

  43. Alzhanova, V. V., Napuli, A. J., Creamer, R. & Dolja, V. V. Cell-to-cell movement and assembly of a plant closterovirus: roles for the capsid proteins and HSP70 homolog. EMBO J. 20, 6997–7007 (2001).

    Google Scholar 

  44. Yue, N. et al. Palmitoylation of γb protein directs a dynamic switch between Barley stripe mosaic virus replication and movement. EMBO J. 41, e110060 (2022).

    Google Scholar 

  45. Zhao, S. et al. Geminivirus C5 proteins mediate formation of virus complexes at plasmodesmata for viral intercellular movement. Plant Physiol. 193, 322–338 (2023).

    Google Scholar 

  46. Farmer, E. E. Jasmonate perception machines. Nature 448, 659–660 (2007).

    Google Scholar 

  47. Hernández, J. A. et al. Oxidative stress and antioxidative responses in plant-virus interactions. Physiol. Mol. Plant Pathol. 94, 134–148 (2016).

    Google Scholar 

  48. Xu, Y. et al. The role of reactive oxygen species in plant-virus interactions. Plant Cell Rep. 43, 197 (2024).

    Google Scholar 

  49. Kayesh, M. E. H., Kohara, M. & Tsukiyama-Kohara, K. Effects of oxidative stress on viral infections: an overview. npj Viruses 3, 27 (2025).

    Google Scholar 

  50. Jiao, Z. et al. A novel pathogenicity determinant hijacks maize catalase 1 to enhance viral multiplication and infection. New Phytol. 230, 1126–1141 (2021).

    Google Scholar 

  51. Tian, S. et al. A viral movement protein targets host catalases for 26S proteasome-mediated degradation to facilitate viral infection and aphid transmission in wheat. Mol. Plant 17, 614–630 (2024).

    Google Scholar 

  52. Wisler, G. C., Li, R. H., Liu, H. Y., Lowry, D. S. & Duffus, J. E. Tomato chlorosis virus: a new whitefly-transmitted, phloem-limited, bipartite Closterovirus of tomato. Phytopathology 88, 402–409 (1998).

    Google Scholar 

  53. Wei, J. et al. Melatonin confers saline-alkali tolerance in tomato by alleviating nitrosative damage and S-nitrosylation of H+-ATPase 2. Plant Cell 37, koaf035 (2025).

    Google Scholar 

  54. Liu, S. et al. Tomato chlorosis virus-encoded p22 suppresses auxin signalling to promote infection via interference with SKP1-Cullin-F-boxTIR1 complex assembly. Plant Cell Environ. 44, 3155–3172 (2021).

    Google Scholar 

  55. Zhao, D. et al. Inoculation method and disease evaluation of tomato chlorotic virus (ToCV) in Solanum lycopersicum. Vegetable Res. 5, e006 (2025).

    Google Scholar 

  56. Yan, Z. Y. et al. The conserved aromatic residue W122 is a determinant of potyviral coat protein stability, replication, and cell-to-cell movement in plants. Mol. Plant Pathol. 22, 189–203 (2021).

    Google Scholar 

  57. Li, Z. et al. Overexpression of Arabidopsis nucleotide-binding and leucine-rich repeat genes RPS2 and RPM1 (D505V) confers broad-spectrum disease resistance in rice. Front. Plant Sci. 10, 417 (2019).

    Google Scholar 

  58. Bustin, S. A. et al. MIQE 2.0: revision of the minimum information for publication of quantitative real-time PCR experiments guidelines. Clin. Chem. 71, 634–651 (2025).

    Google Scholar 

  59. Liu, M., Wei, J., Liu, W. & Gong, B. S-nitrosylation of ACO homolog 4 improves ethylene synthesis and salt tolerance in tomato. New Phytol 239, 159–173 (2023).

    Google Scholar 

  60. Ma, L. et al. Phytochromes enhance SOS2-mediated PIF1 and PIF3 phosphorylation and degradation to promote Arabidopsis salt tolerance. Plant Cell 35, 2997–3020 (2023).

    Google Scholar 

  61. Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).

    Google Scholar 

  62. Shang, K. et al. Tomato chlorosis virus p22 interacts with NbBAG5 to inhibit autophagy and regulate virus infection. Mol. Plant Pathol. 24, 425–435 (2023).

    Google Scholar 

  63. Liu, M., Cao, B., Wei, J. & Gong, B. Redesigning a S-nitrosylated pyruvate-dependent GABA transaminase 1 to generate high-malate and saline-alkali-tolerant tomato. New Phytol 242, 2148–2162 (2024).

    Google Scholar 

  64. Liu, W. et al. High-nitrogen-induced γ-aminobutyric acid triggers host immunity and pathogen oxidative stress tolerance in tomato and Ralstonia solanacearum interaction. New Phytol 244, 1537–1551 (2024).

    Google Scholar 

  65. Du, M. et al. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29, 1883–1906 (2017).

    Google Scholar 

  66. Shan, Q. et al. Jasmonic acid and nitric oxide orchestrate a hierarchical melatonin cascade for Botrytis cinerea resistance in tomato. Plant Physiol. 197, kiaf078 (2025).

    Google Scholar 

  67. Zhang, C. et al. Ubiquitination of OsCSN5 by OsPUB45 activates immunity by modulating the OsCUL3a-OsNPR1 module. Sci. Adv. 11, eadr2441 (2025).

    Google Scholar 

  68. Zhang, C. et al. The rice E3 ubiquitin ligase-transcription factor module targets two trypsin inhibitors to enhance broad-spectrum disease resistance. Dev. Cell 59, 2017–2033 (2024).

    Google Scholar 

  69. Ding, B. et al. Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4, 915–928 (1992).

    Google Scholar 

  70. Wu, C. Y. & Nagy, P. D. Role reversal of functional identity in host factors: dissecting features affecting pro-viral versus antiviral functions of cellular DEAD-box helicases in tombusvirus replication. PLoS Pathog 16, e1008990 (2020).

    Google Scholar 

  71. Feng, Z., Kovalev, N. & Nagy, P. D. Key interplay between the co-opted sorting nexin-BAR proteins and PI3P phosphoinositide in the formation of the tombusvirus replicase. PLoS Pathog 16, e1009120 (2020).

    Google Scholar 

  72. Kang, M. Y. et al. The critical role of catalase in prooxidant and antioxidant function of p53. Cell Death Differ 20, 117–129 (2013).

    Google Scholar 

  73. Liu, W. et al. Genetic engineering of drought- and salt-tolerant tomato via Δ1-pyrroline-5-carboxylate reductase S-nitrosylation. Plant Physiol. 195, 1038–1052 (2024).

    Google Scholar 

  74. Zhu, G. et al. Rewiring of the fruit metabolome in tomato breeding. Cell 172, 249–261 (2018).

    Google Scholar 

  75. Gao, L. et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 51, 1044–1051 (2019).

    Google Scholar 

  76. Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, 884–890 (2018).

    Google Scholar 

  77. The Tomato Genome Sequencing Consortium The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641 (2012).

    Google Scholar 

  78. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Google Scholar 

  79. McKenna, A. et al. The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Google Scholar 

  80. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    Google Scholar 

  81. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Google Scholar 

  82. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Google Scholar 

  83. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, 293–296 (2021).

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (32502807 to D.Z., 32573008 to B.G., 3227269 to B.G.), Taishan Scholars Program (tsqn202306139 to B.G.), China Postdoctoral Science Foundation (2024M761852 to D.Z.), Postdoctoral Fellowship Program of CPSF (GZC20252471 to D.Z.). We are grateful to Dr. Xueping Zhou (Chinese Academy of Agricultural Sciences) for providing the Turnip mosaic virus movement deficiency mutant.

Author information

Author notes
  1. These authors contributed equally: Dan Zhao, Xiaoqian Liu, Hongbo Li.

Authors and Affiliations

  1. College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China

    Dan Zhao, Xiaoqian Liu, Hongbo Li, Tianchen Xia, Qi Jia, Peidong Li, Qing Shan, Changqian Li, Hui Li, Yilei Gai & Biao Gong

  2. College of Plant Protection, Shandong Agricultural University, Taian, China

    Dan Zhao, Hui Li, Lianyi Zang & Xiaoping Zhu

  3. China Agricultural University, Beijing, China

    Tao Lin, Lianyi Zang & Tao Zhou

  4. Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China

    Jin-Wei Wei

Authors
  1. Dan Zhao
    View author publications

    Search author on:PubMed Google Scholar

  2. Xiaoqian Liu
    View author publications

    Search author on:PubMed Google Scholar

  3. Hongbo Li
    View author publications

    Search author on:PubMed Google Scholar

  4. Tianchen Xia
    View author publications

    Search author on:PubMed Google Scholar

  5. Qi Jia
    View author publications

    Search author on:PubMed Google Scholar

  6. Peidong Li
    View author publications

    Search author on:PubMed Google Scholar

  7. Qing Shan
    View author publications

    Search author on:PubMed Google Scholar

  8. Changqian Li
    View author publications

    Search author on:PubMed Google Scholar

  9. Hui Li
    View author publications

    Search author on:PubMed Google Scholar

  10. Yilei Gai
    View author publications

    Search author on:PubMed Google Scholar

  11. Tao Lin
    View author publications

    Search author on:PubMed Google Scholar

  12. Lianyi Zang
    View author publications

    Search author on:PubMed Google Scholar

  13. Tao Zhou
    View author publications

    Search author on:PubMed Google Scholar

  14. Jin-Wei Wei
    View author publications

    Search author on:PubMed Google Scholar

  15. Xiaoping Zhu
    View author publications

    Search author on:PubMed Google Scholar

  16. Biao Gong
    View author publications

    Search author on:PubMed Google Scholar

Contributions

B.G. designed the study and wrote the manuscript. D.Z., X.L., T.X., Q.J., P.L., Q.S., C.L., H.L., L.Z., J.W., and B.G. performed the experiment and data analysis. H.L. and Y.G. carried out the tomato domestication analysis. T.L., T.Z., and X.Z. provided the materials and gave guidance.

Corresponding authors

Correspondence to Jin-Wei Wei, Xiaoping Zhu or Biao Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Infomation

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Liu, X., Li, H. et al. Tomato antiviral ubiquitin-proteasome system recognizes viral 59 kDa protein to confer tomato chlorosis virus resistance. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68832-3

Download citation

  • Received: 26 August 2025

  • Accepted: 14 January 2026

  • Published: 31 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68832-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing