Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Branched-chain amino acid specialization drove diversification within Calditenuaceae (Caldarchaeia) and enables their cultivation
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 04 February 2026

Branched-chain amino acid specialization drove diversification within Calditenuaceae (Caldarchaeia) and enables their cultivation

  • Dengxun Lai  ORCID: orcid.org/0000-0001-8761-78441,2,
  • Damon Mosier  ORCID: orcid.org/0000-0003-1818-60103,4,
  • Marike Palmer  ORCID: orcid.org/0000-0001-8395-84651,5,
  • Xavier Mayali  ORCID: orcid.org/0000-0002-2170-07736,
  • Juliet Johnston6,
  • Walter Saldivar3,
  • Jonathan K. Covington1,
  • Jian-Yu Jiao7,
  • Ranjani Murali1,
  • Cale O. Seymour1,
  • Lan Liu  ORCID: orcid.org/0000-0001-8139-72467,
  • Zheng-Shuang Hua  ORCID: orcid.org/0000-0002-2405-42288,
  • Wen-Jun Li  ORCID: orcid.org/0000-0002-1233-736X7,9,10,
  • Peter K. Weber  ORCID: orcid.org/0000-0001-6022-60506,
  • Jennifer Pett-Ridge  ORCID: orcid.org/0000-0002-4439-23986,
  • Daniel R. Colman  ORCID: orcid.org/0000-0002-3253-683311,
  • Eric S. Boyd11,
  • Takuro Nunoura  ORCID: orcid.org/0000-0003-2323-088012,
  • Jeremy A. Dodsworth  ORCID: orcid.org/0000-0003-2014-54883 &
  • …
  • Brian P. Hedlund  ORCID: orcid.org/0000-0001-8530-04481,13 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Archaeal biology
  • Archaeal evolution
  • Archaeal physiology

Abstract

Many thermophiles that are abundant in high-temperature geothermal systems have never been cultivated and are poorly understood, including deeply branching members of the archaeal phylum Thermoproteota. Here, we describe the genome-guided cultivation of one such organism, Calditenuis ramacidaminiphagus, and show that it has evolved a heterotrophic metabolism focused on branched-chain amino acids (BCAAs). Initially, fluorescence in situ hybridization and nanoscale secondary ion mass spectrometry (FISH-nanoSIMS) showed that Cal. ramacidaminiphagus assimilated amino acids rapidly in casamino acid-amended enrichment cultures. Metagenome and metaproteome analyses showed a high abundance and expression of BCAA transporter genes, suggesting a BCAA-focused metabolism. This inference was supported by the subsequent enrichment of Cal. ramacidaminiphagus in BCAA-fed cultures, reaching 2.66×106 cells/mL and 48.7% of the community, whereas it was outcompeted when polar amino acids were included. Metabolic reconstruction and metaproteomics suggest that BCAAs are channeled into the mevalonate pathway for lipid biosynthesis and fuel ATP production through the TCA cycle coupled with aerobic respiration and through production of branched-chain organic acids by overflow metabolism. Ancestral state reconstructions and phylogenetic analyses of 62 Caldarchaeales genomes revealed multiple horizontal transfers of BCAA transporters to the ancestor of the genus Calditenuis. Our study highlights the crucial role of BCAAs in the early evolution and niche of this genus, and suggests a high degree of resource partitioning even within low-diversity thermophilic communities.

Data availability

Genomes were submitted to eLMSG and/or IMG, with nomenclatural type genomes submitted to GenBank, under accession numbers listed in Supplementary Data 20. Raw sequence data for metagenomes from which type genomes were derived are available in the SRA under the run accessions SRX27892530, SRX27857028, SRX25997117, SRX29285230, SRX29285228, and SRX25997118. Raw files for 16S rRNA gene sequencing are available in the SRA under BioProject accession number PRJNA1219692. Metaproteomics (MSV000093641 [https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=c4115bc81d584c77a217ef174c8fa6ce]) data are available from the Center for Computational Mass Spectrometry’s MassIVE repository via the ProteomeXchange Consortium. Source data are provided with this paper.

Code availability

Custom code is available on GitHub (https://github.com/alexximalayaunlv/Calditenuis_paper.git) and Zenodo with the access code https://doi.org/10.5281/zenodo.18097983. The Python scripts in this repository were used to: (1) process ALE results and (2) select genomes with specific marker proteins for genealogical concordance analysis using Densitree.

References

  1. Amend, J. P. & Shock, E. L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev. 25, 175–243 (2001).

    Google Scholar 

  2. Qi, Y.-L. et al. Analysis of nearly 3000 archaeal genomes from terrestrial geothermal springs sheds light on interconnected biogeochemical processes. Nat. Commun. 15, 4066 (2024).

    Google Scholar 

  3. Guo, L. et al. Hydrogeochemical constraints shape hot spring microbial community compositions: evidence from acidic, moderate-temperature springs and alkaline, high-temperature springs, southwestern Yunnan geothermal areas, China. J. Geophys Res Biogeosci 126, e2020JG005868 (2021).

    Google Scholar 

  4. Chiriac, C. M. et al. Differences in temperature and water chemistry shape distinct diversity patterns in thermophilic microbial communities. Appl. Environ. Microbiol. 83, e01363-17 (2017).

    Google Scholar 

  5. Costa, K. C. et al. Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles 13, 447–459 (2009).

    Google Scholar 

  6. Lai, D. et al. Resource partitioning and amino acid assimilation in a terrestrial geothermal spring. ISME J. 17, 2112–2122 (2023).

    Google Scholar 

  7. Steen, A. D. et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 13, 3126–3130 (2019).

    Google Scholar 

  8. Hedlund, B. P. et al. Uncultivated thermophiles: current status and spotlight on ‘Aigarchaeota. Curr. Opin. Microbiol. 25, 136–145 (2015).

    Google Scholar 

  9. Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).

    Google Scholar 

  10. Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 39, 3204–3223 (2011).

    Google Scholar 

  11. Yang, Y. et al. The evolution pathway of ammonia-oxidizing archaea shaped by major geological events. Mol. Biol. Evol. 38, 3637–3648 (2021).

    Google Scholar 

  12. Hua, Z.-S. et al. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat. Commun. 9, 2832 (2018).

    Google Scholar 

  13. Abby, S. S., Kerou, M. & Schleper, C. Ancestral reconstructions decipher major adaptations of ammonia-oxidizing archaea upon radiation into moderate terrestrial and marine environments. mBio 11, e02371–20 (2020).

    Google Scholar 

  14. Luo, Z.-H. et al. Temperature, pH, and oxygen availability contributed to the functional differentiation of ancient Nitrososphaeria. ISME J. 18, wrad031 (2024).

    Google Scholar 

  15. Sheridan, P. O. et al. Gene duplication drives genome expansion in a major lineage of Thaumarchaeota. Nat. Commun. 11, 5494 (2020).

    Google Scholar 

  16. Balbay, M. G. et al. Metabolic versatility of Caldarchaeales from geothermal features of Hawai’i and Chile as revealed by five metagenome-assembled genomes. Front. Microbiol. 14, 1216591 (2023).

    Google Scholar 

  17. Colman, D. R. et al. Covariation of hot spring geochemistry with microbial genomic diversity, function, and evolution. Nat. Commun. 15, 7506 (2024).

    Google Scholar 

  18. Nunoura, T. et al. Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments. Environ. Microbiol. 7, 1967–1984 (2005).

    Google Scholar 

  19. Buessecker, S. et al. An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea. Nat. Commun. 13, 3773 (2022).

    Google Scholar 

  20. Oren A., et al. Lists of names of prokaryotic Candidatus taxa.). Microbiol. Soc. 70, 3956–4042 (2020).

  21. Beam, J. P. et al. Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’community. ISME J. 10, 210–224 (2016).

    Google Scholar 

  22. Mall, A. et al. Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium. Science 359, 563–567 (2018).

    Google Scholar 

  23. Faulds, J. E. et al. Characterizing structural controls of geothermal fields in the northwestern Great Basin: a progress report. Geotherm. Resour. Counc. Trans. 30, 69–76 (2006).

    Google Scholar 

  24. Thomas, S. C. et al. Position-specific metabolic probing and metagenomics of microbial communities reveal conserved central carbon metabolic network activities at high temperatures. Front. Microbiol. 10, 1427 (2019).

    Google Scholar 

  25. Cole, J. K. et al. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. ISME J. 7, 718–729 (2013).

    Google Scholar 

  26. Nou, N. O. et al. Genome-guided isolation of the hyperthermophilic aerobe Fervidibacter sacchari reveals conserved polysaccharide metabolism in the Armatimonadota. Nat. Commun. 15, 9534 (2024).

    Google Scholar 

  27. Colman, D. R. et al. Geobiological feedbacks and the evolution of thermoacidophiles. ISME J. 12, 225–236 (2018).

    Google Scholar 

  28. Sun, Y. et al. Perspectives on cultivation strategies of archaea. Micro. Ecol. 79, 770–784 (2020).

    Google Scholar 

  29. Behrens, S. et al. Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl Environ. Microbiol. 74, 3143–3150 (2008).

    Google Scholar 

  30. Seth, E. C. & Taga, M. E. Nutrient cross-feeding in the microbial world. Front Microbiol 5, 350 (2014).

    Google Scholar 

  31. Dodsworth, J. A. et al. Thermoflexus hugenholtzii gen. nov., sp. nov., a thermophilic, microaerophilic, filamentous bacterium representing a novel class in the Chloroflexi, Thermoflexia classis nov., and description of Thermoflexaceae fam. nov. and Thermoflexales ord. nov. Int J. Syst. Evol. Microbiol. 64, 2119–2127 (2014).

    Google Scholar 

  32. Chaumeil, P.-A. et al. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38, 5315–5316 (2022).

    Google Scholar 

  33. Love, M., Anders, S. & Huber, W. Differential analysis of count data–the DESeq2 package. Genome Biol. 15, 550 (2014).

    Google Scholar 

  34. Lombard, J. & Moreira, D. Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol. Biol. Evol. 28, 87–99 (2011).

    Google Scholar 

  35. Nishimura, H. et al. Biochemical evidence supporting the presence of the classical mevalonate pathway in the thermoacidophilic archaeon Sulfolobus solfataricus. J. Biochem 153, 415–420 (2013).

    Google Scholar 

  36. Paraiso, J. J. et al. The distribution and abundance of archaeal tetraether lipids in US Great Basin hot springs. Front Microbiol 4, 247 (2013).

    Google Scholar 

  37. Zeng, Z. et al. Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids. Nat. Commun. 13, 1545 (2022).

    Google Scholar 

  38. Zeng, Z. et al. GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean. Proc. Natl. Acad. Sci. USA 116, 22505–22511 (2019).

    Google Scholar 

  39. Stark, H. et al. Oxidative Stickland reactions in an obligate aerobic organism–amino acid catabolism in the Crenarchaeon Sulfolobus solfataricus. FEBS J. 284, 2078–2095 (2017).

    Google Scholar 

  40. Lewis, A. M. et al. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol. Rev. 45, fuaa063 (2021).

    Google Scholar 

  41. Bräsen, C. & Schönheit, P. Regulation of acetate and acetyl-CoA converting enzymes during growth on acetate and/or glucose in the halophilic archaeon Haloarcula marismortui. FEMS Microbiol. Lett. 241, 21–26 (2004).

    Google Scholar 

  42. Yokooji, Y. et al. Genetic examination of initial amino acid oxidation and glutamate catabolism in the hyperthermophilic archaeon Thermococcus kodakarensis. J. Bacteriol. 195, 1940–1948 (2013).

    Google Scholar 

  43. Yan, Z. et al. Crystal structures of archaeal 2-oxoacid: ferredoxin oxidoreductases from Sulfolobus tokodaii. Sci. Rep. 6, 33061 (2016).

    Google Scholar 

  44. Eram, M. S. et al. Molecular and biochemical characterization of bifunctional pyruvate decarboxylases and pyruvate ferredoxin oxidoreductases from Thermotoga maritima and Thermotoga hypogea. J. Biochem 158, 459–466 (2015).

    Google Scholar 

  45. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Google Scholar 

  46. Mai, X. & Adams, M. Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 178, 5897–5903 (1996).

    Google Scholar 

  47. Awano, T. et al. Characterization of two members among the five ADP-forming acyl coenzyme A (acyl-CoA) synthetases reveals the presence of a 2-(imidazol-4-yl) acetyl-CoA synthetase in Thermococcus kodakarensis. J. Bacteriol. 196, 140–147 (2014).

    Google Scholar 

  48. Baker-Austin, C. & Dopson, M. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 15, 165–171 (2007).

    Google Scholar 

  49. Rodrigues, T. A. et al. Copper II-polar amino acid complexes: toxicity to bacteria and larvae of Aedes aegypti. Acad. Bras. Cienc. 89, 2273–2280 (2017).

    Google Scholar 

  50. Eloe-Fadrosh, E. A. et al. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat. Commun. 7, 10476 (2016).

    Google Scholar 

  51. Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol 1, 1–6 (2016).

    Google Scholar 

  52. Na, S.-I. et al. UACG: up-to-date archaeal core genes and software for phylogenomic tree reconstruction. J. Microbiol. 61, 683–692 (2023).

    Google Scholar 

  53. Konstantinidis, K. T. & Tiedje, J. M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–6264 (2005).

    Google Scholar 

  54. Jain, C. et al. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).

    Google Scholar 

  55. Hedlund, B. P. et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat. Microbiol. 7, 1702–1708 (2022).

    Google Scholar 

  56. Whitman, W. B. et al. Development of the SeqCode: a proposed nomenclatural code for uncultivated prokaryotes with DNA sequences as type. Syst. Appl. Microbiol. 45, 126305 (2022).

    Google Scholar 

  57. Consortium, U. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).

    Google Scholar 

  58. Szöllősi, G. J. et al. Efficient exploration of the space of reconciled gene trees. Syst. Biol. 62, 901–912 (2013).

    Google Scholar 

  59. Rodríguez del Río, Á et al. Functional and evolutionary significance of unknown genes from uncultivated taxa. Nature 626, 377–384 (2024).

    Google Scholar 

  60. Baker, B. J. & Dick, G. J. Omic approaches in microbial ecology: charting the unknown. Microbe 8, 353–359 (2013).

    Google Scholar 

  61. Murphy, C. N. et al. Community microrespirometry and molecular analyses reveal a diverse energy economy in great boiling spring and sandy’s spring west in the US great basin. Appl. Environ. Microbiol. 79, 3306–3310 (2013).

    Google Scholar 

  62. Palmer, M. et al. Diversity and distribution of a novel genus of hyperthermophilic aquificae viruses encoding a proof-reading family-A DNA polymerase. Front. Microbiol. 11, 583361 (2020).

    Google Scholar 

  63. Fernandes-Martins, M. C. et al. Ecological dichotomies arise in microbial communities due to mixing of deep hydrothermal waters and atmospheric gas in a circumneutral hot spring. Appl. Environ. Microbiol. 87, e01598-21 (2021).

    Google Scholar 

  64. Lu, J. et al. Metagenome analysis using the Kraken software suite. Nat. Protoc. 17, 2815–2839 (2022).

    Google Scholar 

  65. Wootton, J. C. & Federhen, S. Statistics of local complexity in amino acid sequences and sequence databases. Comput Chem. 17, 149–163 (1993).

    Google Scholar 

  66. Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020).

    Google Scholar 

  67. Nurk, S. et al. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    Google Scholar 

  68. Chen, I.-M. A. et al. IMG/M v. 5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).

    Google Scholar 

  69. Parks, D. H. et al. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055 (2015).

    Google Scholar 

  70. Chklovski, A. et al. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 20, 1203–1212 (2023).

    Google Scholar 

  71. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11, 1–11 (2010).

    Google Scholar 

  72. Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    Google Scholar 

  73. Boratyn, G. M. et al. BLAST: a more efficient report with usability improvements. Nucleic Acids Res. 41, W29–W33 (2013).

    Google Scholar 

  74. Saier, J.rM. H. et al. The transporter classification database (TCDB): 2021 update. Nucleic Acids Res. 49, D461–D467 (2021).

    Google Scholar 

  75. Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10, 33 (2022).

    Google Scholar 

  76. Rawlings, N. D. et al. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42, D503–D509 (2014).

    Google Scholar 

  77. Seemann T. barrnap 0.9: rapid ribosomal RNA prediction. Available online at https://github.com/tseemann/barrnap (2013).

  78. Chan, P. P. et al. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 49, 9077–9096 (2021).

    Google Scholar 

  79. Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025 (2022).

    Google Scholar 

  80. Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

    Google Scholar 

  81. Hallgren, J. et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. BioRxiv 2022, 487609 (2022).

    Google Scholar 

  82. Fu, L. et al. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Google Scholar 

  83. Katoh, K. et al. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005).

    Google Scholar 

  84. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Google Scholar 

  85. Nguyen, L.-T. et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014).

    Google Scholar 

  86. Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Google Scholar 

  87. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Google Scholar 

  88. Minh, B. Q., Nguyen, M. A. T. & Von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).

    Google Scholar 

  89. Darriba, D. et al. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165 (2011).

    Google Scholar 

  90. Kück, P. & Longo, G. C. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 11, 1–8 (2014).

    Google Scholar 

  91. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Google Scholar 

  92. Csűös, M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26, 1910–1912 (2010).

    Google Scholar 

  93. Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    Google Scholar 

  94. Apprill, A. et al. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Micro. Ecol. 75, 129–137 (2015).

    Google Scholar 

  95. Hall M., Beiko R. G. 16S rRNA gene analysis with QIIME2. Microbiome Anal. Methods Protoc. 1849, 113–129 (2018).

  96. Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Google Scholar 

  97. Rozewicki, J. et al. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res. 47, W5–W10 (2019).

    Google Scholar 

  98. Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform 20, 1160–1166 (2019).

    Google Scholar 

  99. Hall, T., Biosciences, I. & Carlsbad, C. BioEdit: an important software for molecular biology. GERF Bull. Biosci. 2, 60–61 (2011).

    Google Scholar 

Download references

Acknowledgements

We thank Dave and Sandy Jamieson for access to GBS and acknowledge that GBS is on the historical lands of the Cui Ui Ticutta (Cui-ui eaters) band of Northern Paiutes. We also thank the operators of Gongxiaoshe resort and hotel and the operators of Yunnan Tengchong Volcano and Spa Tourist Attraction Development Corporation. Part of this work was carried out at Lawrence Livermore National Lab (LLNL) under Contract DE-AC52-07NA2734 (X.M., J.J., P.W., J.P.-R). Funding was also provided by the U.S. National Science Foundation (DEB 1557042 and 2038420, D.L., D.M., M.P., X.M., J.J., J.K.C, C.O.S., J.A.D., W.S., B.P.H.), NASA (80NNSC17KO548 and 80NSSC25M0046, D.L., D.M., M.P., X.M., J.J., J.K.C, C.O.S., J.A.D., W.S., B.P.H.), the National Natural Science Foundation of China (Nos. 92251302, 32200007, and 32370011), and the Novo Nordisk Foundation (NNF24OC0089849). Data from Yellowstone National Park were generated with funding from a NASA grant to D.R.C. and E.S.B. (80NSSC19M0150), and with sample collection under the National Park Service permit YELL-SCI-5544.

Author information

Authors and Affiliations

  1. School of Life Sciences, University of Nevada, Las Vegas, NV, USA

    Dengxun Lai, Marike Palmer, Jonathan K. Covington, Ranjani Murali, Cale O. Seymour & Brian P. Hedlund

  2. Department of Agroecology, Aarhus University, Slagelse, Denmark

    Dengxun Lai

  3. Department of Biology, California State University, San Bernardino, CA, USA

    Damon Mosier, Walter Saldivar & Jeremy A. Dodsworth

  4. Department of Microbiology, University of Calgary, Calgary, AB, Canada

    Damon Mosier

  5. Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada

    Marike Palmer

  6. Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, USA

    Xavier Mayali, Juliet Johnston, Peter K. Weber & Jennifer Pett-Ridge

  7. State Key Lab of Biocontrol, Guangdong Provincial Key Lab of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China

    Jian-Yu Jiao, Lan Liu & Wen-Jun Li

  8. Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, PR China

    Zheng-Shuang Hua

  9. Southern Marine Science and Engineering Guangdong Lab (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China

    Wen-Jun Li

  10. State Key Lab of Desert and Oasis Ecology, Key Lab of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China

    Wen-Jun Li

  11. Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA

    Daniel R. Colman & Eric S. Boyd

  12. Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan

    Takuro Nunoura

  13. Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA

    Brian P. Hedlund

Authors
  1. Dengxun Lai
    View author publications

    Search author on:PubMed Google Scholar

  2. Damon Mosier
    View author publications

    Search author on:PubMed Google Scholar

  3. Marike Palmer
    View author publications

    Search author on:PubMed Google Scholar

  4. Xavier Mayali
    View author publications

    Search author on:PubMed Google Scholar

  5. Juliet Johnston
    View author publications

    Search author on:PubMed Google Scholar

  6. Walter Saldivar
    View author publications

    Search author on:PubMed Google Scholar

  7. Jonathan K. Covington
    View author publications

    Search author on:PubMed Google Scholar

  8. Jian-Yu Jiao
    View author publications

    Search author on:PubMed Google Scholar

  9. Ranjani Murali
    View author publications

    Search author on:PubMed Google Scholar

  10. Cale O. Seymour
    View author publications

    Search author on:PubMed Google Scholar

  11. Lan Liu
    View author publications

    Search author on:PubMed Google Scholar

  12. Zheng-Shuang Hua
    View author publications

    Search author on:PubMed Google Scholar

  13. Wen-Jun Li
    View author publications

    Search author on:PubMed Google Scholar

  14. Peter K. Weber
    View author publications

    Search author on:PubMed Google Scholar

  15. Jennifer Pett-Ridge
    View author publications

    Search author on:PubMed Google Scholar

  16. Daniel R. Colman
    View author publications

    Search author on:PubMed Google Scholar

  17. Eric S. Boyd
    View author publications

    Search author on:PubMed Google Scholar

  18. Takuro Nunoura
    View author publications

    Search author on:PubMed Google Scholar

  19. Jeremy A. Dodsworth
    View author publications

    Search author on:PubMed Google Scholar

  20. Brian P. Hedlund
    View author publications

    Search author on:PubMed Google Scholar

Contributions

B.P.H., J.A.D., and D.L. conceived the study. D.M., J.A.D., W.S., and B.P.H. conducted field sampling. D.M., J.A.D., D.L., and B.P.H. conducted lab experiments. D.M., J.A.D., X.M., J.J., J. P.-R., P.K.W., and D.L. analyzed samples with nanoSIMS and performed nanoSIMS data analysis and interpretation. M.P., D.L., T.N., and B.P.H. conducted nomenclature and taxonomic work. J.-Y.J., L.L., D.R.C., M.P., D.L., E.S.B., Z.-S.H., and W.-J.L. were involved in metagenomic sampling, sequencing, assembly, and binning. J.K.C. conducted computed structure modeling. R.M. conducted nitric oxide reductase screening. D.L. and C.O.S. conducted bioinformatics analyses. D.L. wrote the first drafts of the manuscript. B.P.H. contributed to the writing and revision of manuscript. All authors contributed to the final version of the paper.

Corresponding authors

Correspondence to Dengxun Lai, Jeremy A. Dodsworth or Brian P. Hedlund.

Ethics declarations

Competing interests

The authors have no competing interests to declare.

Peer review

Peer review information

Nature Communications thanks Melina Kerou and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1-35

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, D., Mosier, D., Palmer, M. et al. Branched-chain amino acid specialization drove diversification within Calditenuaceae (Caldarchaeia) and enables their cultivation. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68859-6

Download citation

  • Received: 15 February 2025

  • Accepted: 16 January 2026

  • Published: 04 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68859-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing