Abstract
Apomixis, a form of clonal asexual reproduction in plants, is often accompanied by residual sex, yet its genomic consequences remain poorly understood. Here, we assembled a haplotype-resolved genome of Carya hunanensis and analyzed whole-genome resequencing data from 195 adults and 180 mature embryos across four hickory species, representing a hybrid apomictic complex with both sexual and asexual lineages. We find apomictic species exhibited genomic signatures of clonality, notably loss of heterozygosity (LOH), suggesting recombination induced by rare sexual events. Despite harboring more heterozygous deleterious variants, apomictic adults showed lower realized mutation loads, particularly in hybrid C. hunanensis, whose apomictic haplotype disproportionately carried deleterious alleles. Remarkably, rare embryos from apomicts underwent recombination-mediated LOH, exposing deleterious mutations to selection. These findings reveal the genetic cost of residual sex, while also indicating its role in generating novel genotypes, supported by close relatedness among adult apomicts. Our study provides a unique genomic snapshot of how residual sex and recombination mitigate mutation accumulation and potentially facilitate clonal maintenance in natural asexual systems.
Similar content being viewed by others
Data availability
The raw sequence data reported in this paper have been deposited in the National Genomics Data Center (NGDC; https://ngdc.cncb.ac.cn) under the accession number PRJCA033579 and in GenBank under accession number PRJNA356989. The final genome assembly and genome annotation files are available at http://cmb.bnu.edu.cn/juglans. All other data supporting the findings of this study are present in the paper and/or its Supplementary Materials. Source data are provided with this paper.
Code availability
The custom scripts used for the primary loss of heterozygosity (LOH) analyses are available at https://github.com/Hickory01/Apomixis-in-Hickory-Species.git.
References
Maynard Smith J. The evolution of sex. (Cambridge University Press, 1978).
Bell G. The masterpiece of nature: The evolution and genetics of sexuality. University of California Press (1982).
Otto, S. P. & Lenormand, T. Resolving the paradox of sex and recombination. Nat. Rev. Genet. 3, 252–261 (2002).
Lenormand, T., Engelstadter, J., Johnston, S. E., Wijnker, E. & Haag, C. R. Evolutionary mysteries in meiosis. Phil. Trans. R. Soc. B 371, 20160001 (2016).
Mirzaghaderi, G. & Horandl, E. The evolution of meiotic sex and its alternatives. Phil. Trans. R. Soc. B 283, 20161221 (2016).
Otto, S. P. The evolutionary enigma of sex. Am. Nat. 174, S1–S14 (2009).
Horandl, E. A combinational theory for maintenance of sex. Heredity 103, 445–457 (2009).
Engelstadter, J. Asexual but not clonal: evolutionary processes in automictic populations. Genetics 206, 993–1009 (2017).
Blanc, C. et al. Cosegregation of recombinant chromatids maintains genome-wide heterozygosity in an asexual nematode. Sci. Adv. 9, eadi2804 (2023).
Lacy, K. D., Hart, T. & Kronauer, D. J. C. Co-inheritance of recombined chromatids maintains heterozygosity in a parthenogenetic ant. Nat. Ecol. Evol. 8, 1522–1533 (2024).
Koltunow, A. M. & Grossniklaus, U. Apomixis: a developmental perspective. Annu. Rev. Plant Biol. 54, 547–574 (2003).
Ozias-Akins, P. & van Dijk, P. J. Mendelian genetics of apomixis in plants. Annu. Rev. Genet. 41, 509–537 (2007).
Ozias-Akins, P. & Conner, J. A. Clonal reproduction through seeds in sight for crops. Trends Genet. 36, 215–226 (2020).
Hörandl E. et al. Apomixis in systematics, evolution and phylogenetics of angiosperms: current developments and prospects. Crit. Rev. Plant Sci., 1–43 (2024).
Bicknell, R. A. Koltunow AM. Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16, S228–S245 (2004).
Albertini, E., Barcaccia, G., Carman, J. G. & Pupilli, F. Did apomixis evolve from sex or was it the other way around? J. Exp. Bot. 70, 2951–2964 (2019).
Grimanelli, D., Leblanc, O., Perotti, E. & Grossniklaus, U. Developmental genetics of gametophytic apomixis. Trends Genet. 17, 597–604 (2001).
Whitton, J., Sears, C. J., Baack, E. J. & Otto, S. P. The dynamic nature of apomixis in the angiosperms. Int. J. Plant Sci. 169, 169–182 (2008).
Carman, J. G. Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol. J. Linn. Soc. 61, 51–94 (1997).
Delgado, L. et al. Analysis of variation for apomictic reproduction in diploid Paspalum rufum. Ann. Bot. 113, 1211–1218 (2014).
Schranz, M. E., Kantama, L., de Jong, H. & Mitchell-Olds, T. Asexual reproduction in a close relative of Arabidopsis: a genetic investigation of apomixis in Boechera (Brassicaceae). New Phytol. 171, 425–438 (2006).
Lovell, J. T., Williamson, R. J., Wright, S. I., McKay, J. K. & Sharbel, T. F. Mutation accumulation in an asexual relative of Arabidopsis. PLos Genet. 13, e1006550 (2017).
Wang, X. et al. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat. Genet. 49, 765–772 (2017).
Wang, N. et al. Structural variation and parallel evolution of apomixis in citrus during domestication and diversification. Natl. Sci. Rev. 9, nwac114 (2022).
Hojsgaard, D., Klatt, S., Baier, R., Carman, J. G. & Horandl, E. Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. Crit. Rev. Plant Sci. 33, 414–427 (2014).
Xu, Y. et al. Apomixis: genetic basis and controlling genes. Hortic. Res. 9, uhac150 (2022).
Hörandl E. et al. Genome evolution of asexual organisms and the paradox of sex in eukaryotes. In: Evolutionary Biology—A Transdisciplinary Approach. (Springer, 2020).
Hojsgaard, D. H., Martinez, E. J. & Quarin, C. L. Competition between meiotic and apomictic pathways during ovule and seed development results in clonality. New Phytol. 197, 336–347 (2013).
Hojsgaard, D. et al. Emergence of apospory and bypass of meiosis via apomixis after sexual hybridisation and polyploidisation. New Phytol. 204, 1000–1012 (2014).
Hollister, J. D. et al. Recurrent loss of sex is associated with accumulation of deleterious mutations in Oenothera. Mol. Biol. Evol. 32, 896–905 (2015).
Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 106, 2–9 (1964).
Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. 8, 269–294 (2009).
Lynch, M., Burger, R., Butcher, D. & Gabriel, W. The mutational meltdown in asexual populations. J. Hered. 84, 339–344 (1993).
Dukic, M., Berner, D., Haag, C. R. & Ebert, D. How clonal are clones? A quest for loss of heterozygosity during asexual reproduction in Daphnia magna. J. Evol. Biol. 32, 619–628 (2019).
Pellino, M. et al. Asexual genome evolution in the apomictic Ranunculus auricomus complex: examining the effects of hybridization and mutation accumulation. Mol. Ecol. 22, 5908–5921 (2013).
Green, R. F. & Noakes, D. L. G. Is a little bit of sex as good as a lot? J. Theor. Biol. 174, 87–96 (1995).
Hodac, L., Klatt, S., Hojsgaard, D., Sharbel, T. F. & Horandl, E. A little bit of sex prevents mutation accumulation even in apomictic polyploid plants. BMC Evol. Biol. 19, 170 (2019).
Wang, N. et al. Genomic conservation of crop wild relatives: a case study of citrus. PLoS Genet 19, e1010811 (2023).
Chang, R. H. & Lu, A. M. A study of the genus Carya Nutt. in China (in Chinese). J. Syst. Evol. 17, 40–44 (1979).
Lu A. M., Stone D. E., Grauke L. J. Juglandaceae. In: Flora of China, Volume 4, Cycadaceae through Fagaceae (eds Wu Z. Y., Raven P. H.). Science Press (Beijing) and Missouri Botanical Garden Press (St. Louis) (1999).
Grauke, L. J., Wood, B. W. & Harris, M. K. Crop vulnerability: Carya. Hortscience 51, 653–663 (2016).
Zhang, B. et al. A pattern of unique embryogenesis occurring via apomixis in Carya cathayensis. Biol. Plant. 56, 620–627 (2012).
Wang, Z. et al. Analysis of the progeny of Carya cathayensis × C. illinoinensis and the xenia effect (in Chinese). J. Fruit Sci. 27, 908–913 (2010).
Hanna, W. W., Powell, J. B., Millot, J. C. & Burton, G. W. Cytology of obligate sexual plants in Panicum maximum Jacq. and their use in controlled hybrids. Crop Sci 13, 695–697 (1973).
Hojsgaard D., Pullaiah T. Apomixis in angiosperms: Mechanisms, occurrences, and biotechnology, 1st Edition edn. (CRC Press, 2022).
Lv, F. D., He, H. X., Tong, Q. F. & Kuang, Q. Preliminary study of multi-seedling phenomenon in Carya Nutt. species (in Chinese). Non-Wood For. Res. 31, 172–175 (2013).
Zhang, W. P. et al. Uncovering ghost introgression through genomic analysis of a distinct eastern Asian hickory species. Plant J. 119, 1386–1399 (2024).
Zhang, D. et al. Whole genome resequencing reveals the evolutionary history and geographic isolation of the eastern Asian hickory (Carya). Plants People Planet 6, 1425–1436 (2024).
Jia, K. H. et al. SubPhaser: a robust allopolyploid subgenome phasing method based on subgenome-specific k-mers. New Phytol. 235, 801–809 (2022).
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
Blischak, P. D., Chifman, J., Wolfe, A. D. & Kubatko, L. S. HyDe: a Python package for genome-scale hybridization detection. Syst. Biol. 67, 821–829 (2018).
Symington, L. S., Rothstein, R. & Lisby, M. Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae. Genetics 198, 795–835 (2014).
Sarhanova, P., Majesky, L. & Sochor, M. A novel strategy to study apomixis, automixis, and autogamy in plants. Plant Reprod. 37, 379–392 (2024).
Grantham, R. Amino acid difference formula to help explain protein evolution. Science 185, 862–864 (1974).
Engelstadter, J. Constraints on the evolution of asexual reproduction. Bioessays 30, 1138–1150 (2008).
Haag, C. R., Theodosiou, L., Zahab, R. & Lenormand, T. Low recombination rates in sexual species and sex-asex transitions. Phil. Trans. R. Soc. B 372, 20160461 (2017).
Matzk, F., Meister, A. & Schubert, I. An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J. 21, 97–108 (2000).
Zhang, W. P. et al. Dead-end hybridization in walnut trees revealed by large-scale genomic sequence data. Mol. Biol. Evol. 39, msab308 (2022).
Wang, Z. et al. Hybrid speciation via inheritance of alternate alleles of parental isolating genes. Mol. Plant 14, 208–222 (2021).
Stone, D. E. Affinities of a Mexican endemic, Carya palmeri, with American and Asian hickories. Am. J. Bot. 49, 199–212 (1962).
Mambo, W. W. et al. Shrinking horizons: Climate-induced range shifts and conservation status of hickory trees (Carya Nutt.). Ecol. Inf. 84, 102910 (2024).
Zhang W. P., Bai W. N., Zhang D. Y. The rediscovery of Carya poilanei (Juglandaceae) after 63 years reveals a new record from China. Phytokeys, 73–82 (2022).
Charlesworth, B. & Charlesworth, D. Rapid fixation of deleterious alleles can be caused by Muller’s ratchet. Genet. Res. 70, 63–73 (1997).
Soltis, P. S. & Soltis, D. E. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60, 561–588 (2009).
Richards, A. J. Apomixis in flowering plants: an overview. Phil. Trans. R. Soc. B 358, 1085–1093 (2003).
Archetti, M. Recombination and loss of complementation: a more than two-fold cost for parthenogenesis. J. Evol. Biol. 17, 1084–1097 (2004).
Xu, C. et al. Meiosis of pollen mother cell and karyotype of Carya cathayensis (in Chinese). Sci. Silvae Sin. 53, 77–84 (2017).
Dutta, A. & Schacherer, J. The dynamics of loss of heterozygosity events in genomes. EMBO Rep 26, 602–612 (2025).
Lynch, M., Conery, J. & Burger, R. Mutation accumulation and the extinction of small populations. Am. Nat. 146, 489–518 (1995).
Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).
Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).
Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).
Weber, J. A., Aldana, R., Gallagher, B. D. & EJ, S. Sentieon DNA pipeline for variant detection - Software-only solution, over 20× faster than GATK 3.3 with identical results. PeerJ PrePrints 4, e1672v1672 (2016).
Nielsen, R., Paul, J. S., Albrechtsen, A. & Song, Y. S. Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet. 12, 443–451 (2011).
Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).
Korunes, K. L. & Samuk, K. Pixy: Unbiased estimation of nucleotide diversity and divergence in the presence of missing data. Mol. Ecol. Resour. 21, 1359–1368 (2021).
DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, 1–4 (2021).
Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
Weir, W. et al. Population genomics reveals the origin and asexual evolution of human infective trypanosomes. Elife 5, e11473 (2016).
Simion, P. et al. Chromosome-level genome assembly reveals homologous chromosomes and recombination in asexual rotifer Adineta vaga. Sci. Adv. 7, eabg4216 (2021).
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).
Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).
Keightley, P. D. & Jackson, B. C. Inferring the probability of the derived vs. the ancestral allelic state at a polymorphic site. Genetics 209, 897–906 (2018).
Li, W. H., Wu, C. I. & Luo, C. C. Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J. Mol. Evol. 21, 58–71 (1984).
Feng, S. et al. The genomic footprints of the fall and recovery of the crested ibis. Curr. Biol. 29, 340–349 (2019).
Chen, C. et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202 (2020).
Acknowledgements
This work was supported by the National Natural Science Foundation of China (32400311 to W.P.Z.), the “111” Program of Introducing Talents of Discipline to Universities (B13008 to D.Y.Z.), the Fundamental Research Funds for the Central Universities (to D.Y.Z.), China Postdoctoral Science Foundation (2023M733549 to W.P.Z.) and the Chinese Academy of Sciences (CAS) Scholarship Program (to W.P.Z.). We thank Dr. Shou-Jie Li (South China Botanical Garden, Chinese Academy of Sciences), Dr. Yu Cao, Dr. Yang Yang and Dr. Rui-Min Yu (Beijing Normal University), Shi-Bin Jiao, You-Liang Xiang (Guizhou Normal University), Zhi-Quan Liu (Hangzhou Normal University), Kai-Bing Liu, and Zhi-Xiang Chen for their invaluable assistance with sample collection. We also thank Dr. Nan Wang (Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences) and Dr. Huiqin Yi (Stockholm University) for their insightful comments on the analysis.
Funding
Open access funding provided by Uppsala University.
Author information
Authors and Affiliations
Contributions
W.N.B., D.Y.Z., M.L., and M.K. conceived and supervised the project. W.P.Z. collected the materials and performed the main analyses. S.G. provided constructive suggestions regarding the loss of heterozygosity (LOH) analysis. X.X.P. conducted the LOH detection analysis. M.K. provided guidance on the analytical workflow for genetic load analysis. W.P.Z. and W.N.B. drafted the manuscript. W.N.B., M.L., S.G., and D.Y.Z. revised and proofread the manuscript. All authors approved the final version.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Zhang, WP., Glémin, S., Pang, XX. et al. Genomic consequences of residual recombination in a hybrid apomictic hickory complex. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68867-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-68867-6


