Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Genomic consequences of residual recombination in a hybrid apomictic hickory complex
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

Genomic consequences of residual recombination in a hybrid apomictic hickory complex

  • Wei-Ping Zhang1,2,3,
  • Sylvain Glémin3,4,
  • Xiao-Xu Pang2,
  • Ming Kang  ORCID: orcid.org/0000-0002-4326-72101,
  • Da-Yong Zhang  ORCID: orcid.org/0000-0003-1056-87352,
  • Martin Lascoux  ORCID: orcid.org/0000-0003-1699-90423 &
  • …
  • Wei-Ning Bai  ORCID: orcid.org/0000-0002-6289-94592 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Conservation genomics
  • Genetic variation
  • Plant evolution
  • Plant hybridization

Abstract

Apomixis, a form of clonal asexual reproduction in plants, is often accompanied by residual sex, yet its genomic consequences remain poorly understood. Here, we assembled a haplotype-resolved genome of Carya hunanensis and analyzed whole-genome resequencing data from 195 adults and 180 mature embryos across four hickory species, representing a hybrid apomictic complex with both sexual and asexual lineages. We find apomictic species exhibited genomic signatures of clonality, notably loss of heterozygosity (LOH), suggesting recombination induced by rare sexual events. Despite harboring more heterozygous deleterious variants, apomictic adults showed lower realized mutation loads, particularly in hybrid C. hunanensis, whose apomictic haplotype disproportionately carried deleterious alleles. Remarkably, rare embryos from apomicts underwent recombination-mediated LOH, exposing deleterious mutations to selection. These findings reveal the genetic cost of residual sex, while also indicating its role in generating novel genotypes, supported by close relatedness among adult apomicts. Our study provides a unique genomic snapshot of how residual sex and recombination mitigate mutation accumulation and potentially facilitate clonal maintenance in natural asexual systems.

Similar content being viewed by others

Chromosome-level genome assembly of the threatened ornamental plant Hibiscus yunnanensis

Article Open access 25 March 2025

Two long read-based genome assembly and annotation of polyploidy woody plants, Hibiscus syriacus L. using PacBio and Nanopore platforms

Article Open access 18 October 2023

Chromosomal-level genome assembly of two dominant desert shrub species in Haloxylon (Amaranthaceae)

Article Open access 30 December 2025

Data availability

The raw sequence data reported in this paper have been deposited in the National Genomics Data Center (NGDC; https://ngdc.cncb.ac.cn) under the accession number PRJCA033579 and in GenBank under accession number PRJNA356989. The final genome assembly and genome annotation files are available at http://cmb.bnu.edu.cn/juglans. All other data supporting the findings of this study are present in the paper and/or its Supplementary Materials. Source data are provided with this paper.

Code availability

The custom scripts used for the primary loss of heterozygosity (LOH) analyses are available at https://github.com/Hickory01/Apomixis-in-Hickory-Species.git.

References

  1. Maynard Smith J. The evolution of sex. (Cambridge University Press, 1978).

  2. Bell G. The masterpiece of nature: The evolution and genetics of sexuality. University of California Press (1982).

  3. Otto, S. P. & Lenormand, T. Resolving the paradox of sex and recombination. Nat. Rev. Genet. 3, 252–261 (2002).

    Google Scholar 

  4. Lenormand, T., Engelstadter, J., Johnston, S. E., Wijnker, E. & Haag, C. R. Evolutionary mysteries in meiosis. Phil. Trans. R. Soc. B 371, 20160001 (2016).

    Google Scholar 

  5. Mirzaghaderi, G. & Horandl, E. The evolution of meiotic sex and its alternatives. Phil. Trans. R. Soc. B 283, 20161221 (2016).

    Google Scholar 

  6. Otto, S. P. The evolutionary enigma of sex. Am. Nat. 174, S1–S14 (2009).

    Google Scholar 

  7. Horandl, E. A combinational theory for maintenance of sex. Heredity 103, 445–457 (2009).

    Google Scholar 

  8. Engelstadter, J. Asexual but not clonal: evolutionary processes in automictic populations. Genetics 206, 993–1009 (2017).

    Google Scholar 

  9. Blanc, C. et al. Cosegregation of recombinant chromatids maintains genome-wide heterozygosity in an asexual nematode. Sci. Adv. 9, eadi2804 (2023).

    Google Scholar 

  10. Lacy, K. D., Hart, T. & Kronauer, D. J. C. Co-inheritance of recombined chromatids maintains heterozygosity in a parthenogenetic ant. Nat. Ecol. Evol. 8, 1522–1533 (2024).

    Google Scholar 

  11. Koltunow, A. M. & Grossniklaus, U. Apomixis: a developmental perspective. Annu. Rev. Plant Biol. 54, 547–574 (2003).

    Google Scholar 

  12. Ozias-Akins, P. & van Dijk, P. J. Mendelian genetics of apomixis in plants. Annu. Rev. Genet. 41, 509–537 (2007).

    Google Scholar 

  13. Ozias-Akins, P. & Conner, J. A. Clonal reproduction through seeds in sight for crops. Trends Genet. 36, 215–226 (2020).

    Google Scholar 

  14. Hörandl E. et al. Apomixis in systematics, evolution and phylogenetics of angiosperms: current developments and prospects. Crit. Rev. Plant Sci., 1–43 (2024).

  15. Bicknell, R. A. Koltunow AM. Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16, S228–S245 (2004).

    Google Scholar 

  16. Albertini, E., Barcaccia, G., Carman, J. G. & Pupilli, F. Did apomixis evolve from sex or was it the other way around? J. Exp. Bot. 70, 2951–2964 (2019).

    Google Scholar 

  17. Grimanelli, D., Leblanc, O., Perotti, E. & Grossniklaus, U. Developmental genetics of gametophytic apomixis. Trends Genet. 17, 597–604 (2001).

    Google Scholar 

  18. Whitton, J., Sears, C. J., Baack, E. J. & Otto, S. P. The dynamic nature of apomixis in the angiosperms. Int. J. Plant Sci. 169, 169–182 (2008).

    Google Scholar 

  19. Carman, J. G. Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol. J. Linn. Soc. 61, 51–94 (1997).

    Google Scholar 

  20. Delgado, L. et al. Analysis of variation for apomictic reproduction in diploid Paspalum rufum. Ann. Bot. 113, 1211–1218 (2014).

    Google Scholar 

  21. Schranz, M. E., Kantama, L., de Jong, H. & Mitchell-Olds, T. Asexual reproduction in a close relative of Arabidopsis: a genetic investigation of apomixis in Boechera (Brassicaceae). New Phytol. 171, 425–438 (2006).

    Google Scholar 

  22. Lovell, J. T., Williamson, R. J., Wright, S. I., McKay, J. K. & Sharbel, T. F. Mutation accumulation in an asexual relative of Arabidopsis. PLos Genet. 13, e1006550 (2017).

    Google Scholar 

  23. Wang, X. et al. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat. Genet. 49, 765–772 (2017).

    Google Scholar 

  24. Wang, N. et al. Structural variation and parallel evolution of apomixis in citrus during domestication and diversification. Natl. Sci. Rev. 9, nwac114 (2022).

    Google Scholar 

  25. Hojsgaard, D., Klatt, S., Baier, R., Carman, J. G. & Horandl, E. Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. Crit. Rev. Plant Sci. 33, 414–427 (2014).

    Google Scholar 

  26. Xu, Y. et al. Apomixis: genetic basis and controlling genes. Hortic. Res. 9, uhac150 (2022).

    Google Scholar 

  27. Hörandl E. et al. Genome evolution of asexual organisms and the paradox of sex in eukaryotes. In: Evolutionary Biology—A Transdisciplinary Approach. (Springer, 2020).

  28. Hojsgaard, D. H., Martinez, E. J. & Quarin, C. L. Competition between meiotic and apomictic pathways during ovule and seed development results in clonality. New Phytol. 197, 336–347 (2013).

    Google Scholar 

  29. Hojsgaard, D. et al. Emergence of apospory and bypass of meiosis via apomixis after sexual hybridisation and polyploidisation. New Phytol. 204, 1000–1012 (2014).

    Google Scholar 

  30. Hollister, J. D. et al. Recurrent loss of sex is associated with accumulation of deleterious mutations in Oenothera. Mol. Biol. Evol. 32, 896–905 (2015).

    Google Scholar 

  31. Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 106, 2–9 (1964).

    Google Scholar 

  32. Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. 8, 269–294 (2009).

    Google Scholar 

  33. Lynch, M., Burger, R., Butcher, D. & Gabriel, W. The mutational meltdown in asexual populations. J. Hered. 84, 339–344 (1993).

    Google Scholar 

  34. Dukic, M., Berner, D., Haag, C. R. & Ebert, D. How clonal are clones? A quest for loss of heterozygosity during asexual reproduction in Daphnia magna. J. Evol. Biol. 32, 619–628 (2019).

    Google Scholar 

  35. Pellino, M. et al. Asexual genome evolution in the apomictic Ranunculus auricomus complex: examining the effects of hybridization and mutation accumulation. Mol. Ecol. 22, 5908–5921 (2013).

    Google Scholar 

  36. Green, R. F. & Noakes, D. L. G. Is a little bit of sex as good as a lot? J. Theor. Biol. 174, 87–96 (1995).

    Google Scholar 

  37. Hodac, L., Klatt, S., Hojsgaard, D., Sharbel, T. F. & Horandl, E. A little bit of sex prevents mutation accumulation even in apomictic polyploid plants. BMC Evol. Biol. 19, 170 (2019).

    Google Scholar 

  38. Wang, N. et al. Genomic conservation of crop wild relatives: a case study of citrus. PLoS Genet 19, e1010811 (2023).

    Google Scholar 

  39. Chang, R. H. & Lu, A. M. A study of the genus Carya Nutt. in China (in Chinese). J. Syst. Evol. 17, 40–44 (1979).

    Google Scholar 

  40. Lu A. M., Stone D. E., Grauke L. J. Juglandaceae. In: Flora of China, Volume 4, Cycadaceae through Fagaceae (eds Wu Z. Y., Raven P. H.). Science Press (Beijing) and Missouri Botanical Garden Press (St. Louis) (1999).

  41. Grauke, L. J., Wood, B. W. & Harris, M. K. Crop vulnerability: Carya. Hortscience 51, 653–663 (2016).

    Google Scholar 

  42. Zhang, B. et al. A pattern of unique embryogenesis occurring via apomixis in Carya cathayensis. Biol. Plant. 56, 620–627 (2012).

    Google Scholar 

  43. Wang, Z. et al. Analysis of the progeny of Carya cathayensis × C. illinoinensis and the xenia effect (in Chinese). J. Fruit Sci. 27, 908–913 (2010).

    Google Scholar 

  44. Hanna, W. W., Powell, J. B., Millot, J. C. & Burton, G. W. Cytology of obligate sexual plants in Panicum maximum Jacq. and their use in controlled hybrids. Crop Sci 13, 695–697 (1973).

    Google Scholar 

  45. Hojsgaard D., Pullaiah T. Apomixis in angiosperms: Mechanisms, occurrences, and biotechnology, 1st Edition edn. (CRC Press, 2022).

  46. Lv, F. D., He, H. X., Tong, Q. F. & Kuang, Q. Preliminary study of multi-seedling phenomenon in Carya Nutt. species (in Chinese). Non-Wood For. Res. 31, 172–175 (2013).

    Google Scholar 

  47. Zhang, W. P. et al. Uncovering ghost introgression through genomic analysis of a distinct eastern Asian hickory species. Plant J. 119, 1386–1399 (2024).

    Google Scholar 

  48. Zhang, D. et al. Whole genome resequencing reveals the evolutionary history and geographic isolation of the eastern Asian hickory (Carya). Plants People Planet 6, 1425–1436 (2024).

    Google Scholar 

  49. Jia, K. H. et al. SubPhaser: a robust allopolyploid subgenome phasing method based on subgenome-specific k-mers. New Phytol. 235, 801–809 (2022).

    Google Scholar 

  50. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Google Scholar 

  51. Blischak, P. D., Chifman, J., Wolfe, A. D. & Kubatko, L. S. HyDe: a Python package for genome-scale hybridization detection. Syst. Biol. 67, 821–829 (2018).

    Google Scholar 

  52. Symington, L. S., Rothstein, R. & Lisby, M. Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae. Genetics 198, 795–835 (2014).

    Google Scholar 

  53. Sarhanova, P., Majesky, L. & Sochor, M. A novel strategy to study apomixis, automixis, and autogamy in plants. Plant Reprod. 37, 379–392 (2024).

    Google Scholar 

  54. Grantham, R. Amino acid difference formula to help explain protein evolution. Science 185, 862–864 (1974).

    Google Scholar 

  55. Engelstadter, J. Constraints on the evolution of asexual reproduction. Bioessays 30, 1138–1150 (2008).

    Google Scholar 

  56. Haag, C. R., Theodosiou, L., Zahab, R. & Lenormand, T. Low recombination rates in sexual species and sex-asex transitions. Phil. Trans. R. Soc. B 372, 20160461 (2017).

    Google Scholar 

  57. Matzk, F., Meister, A. & Schubert, I. An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J. 21, 97–108 (2000).

    Google Scholar 

  58. Zhang, W. P. et al. Dead-end hybridization in walnut trees revealed by large-scale genomic sequence data. Mol. Biol. Evol. 39, msab308 (2022).

    Google Scholar 

  59. Wang, Z. et al. Hybrid speciation via inheritance of alternate alleles of parental isolating genes. Mol. Plant 14, 208–222 (2021).

    Google Scholar 

  60. Stone, D. E. Affinities of a Mexican endemic, Carya palmeri, with American and Asian hickories. Am. J. Bot. 49, 199–212 (1962).

    Google Scholar 

  61. Mambo, W. W. et al. Shrinking horizons: Climate-induced range shifts and conservation status of hickory trees (Carya Nutt.). Ecol. Inf. 84, 102910 (2024).

    Google Scholar 

  62. Zhang W. P., Bai W. N., Zhang D. Y. The rediscovery of Carya poilanei (Juglandaceae) after 63 years reveals a new record from China. Phytokeys, 73–82 (2022).

  63. Charlesworth, B. & Charlesworth, D. Rapid fixation of deleterious alleles can be caused by Muller’s ratchet. Genet. Res. 70, 63–73 (1997).

    Google Scholar 

  64. Soltis, P. S. & Soltis, D. E. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60, 561–588 (2009).

    Google Scholar 

  65. Richards, A. J. Apomixis in flowering plants: an overview. Phil. Trans. R. Soc. B 358, 1085–1093 (2003).

    Google Scholar 

  66. Archetti, M. Recombination and loss of complementation: a more than two-fold cost for parthenogenesis. J. Evol. Biol. 17, 1084–1097 (2004).

    Google Scholar 

  67. Xu, C. et al. Meiosis of pollen mother cell and karyotype of Carya cathayensis (in Chinese). Sci. Silvae Sin. 53, 77–84 (2017).

    Google Scholar 

  68. Dutta, A. & Schacherer, J. The dynamics of loss of heterozygosity events in genomes. EMBO Rep 26, 602–612 (2025).

    Google Scholar 

  69. Lynch, M., Conery, J. & Burger, R. Mutation accumulation and the extinction of small populations. Am. Nat. 146, 489–518 (1995).

    Google Scholar 

  70. Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    Google Scholar 

  71. Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).

    Google Scholar 

  72. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Google Scholar 

  73. Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).

    Google Scholar 

  74. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Google Scholar 

  75. Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Google Scholar 

  76. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Google Scholar 

  77. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    Google Scholar 

  78. Weber, J. A., Aldana, R., Gallagher, B. D. & EJ, S. Sentieon DNA pipeline for variant detection - Software-only solution, over 20× faster than GATK 3.3 with identical results. PeerJ PrePrints 4, e1672v1672 (2016).

    Google Scholar 

  79. Nielsen, R., Paul, J. S., Albrechtsen, A. & Song, Y. S. Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet. 12, 443–451 (2011).

    Google Scholar 

  80. Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).

    Google Scholar 

  81. Korunes, K. L. & Samuk, K. Pixy: Unbiased estimation of nucleotide diversity and divergence in the presence of missing data. Mol. Ecol. Resour. 21, 1359–1368 (2021).

    Google Scholar 

  82. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Google Scholar 

  83. Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, 1–4 (2021).

    Google Scholar 

  84. Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Google Scholar 

  85. Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).

    Google Scholar 

  86. Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Google Scholar 

  87. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Google Scholar 

  88. Weir, W. et al. Population genomics reveals the origin and asexual evolution of human infective trypanosomes. Elife 5, e11473 (2016).

    Google Scholar 

  89. Simion, P. et al. Chromosome-level genome assembly reveals homologous chromosomes and recombination in asexual rotifer Adineta vaga. Sci. Adv. 7, eabg4216 (2021).

    Google Scholar 

  90. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).

    Google Scholar 

  91. Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).

    Google Scholar 

  92. Keightley, P. D. & Jackson, B. C. Inferring the probability of the derived vs. the ancestral allelic state at a polymorphic site. Genetics 209, 897–906 (2018).

    Google Scholar 

  93. Li, W. H., Wu, C. I. & Luo, C. C. Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J. Mol. Evol. 21, 58–71 (1984).

    Google Scholar 

  94. Feng, S. et al. The genomic footprints of the fall and recovery of the crested ibis. Curr. Biol. 29, 340–349 (2019).

    Google Scholar 

  95. Chen, C. et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202 (2020).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32400311 to W.P.Z.), the “111” Program of Introducing Talents of Discipline to Universities (B13008 to D.Y.Z.), the Fundamental Research Funds for the Central Universities (to D.Y.Z.), China Postdoctoral Science Foundation (2023M733549 to W.P.Z.) and the Chinese Academy of Sciences (CAS) Scholarship Program (to W.P.Z.). We thank Dr. Shou-Jie Li (South China Botanical Garden, Chinese Academy of Sciences), Dr. Yu Cao, Dr. Yang Yang and Dr. Rui-Min Yu (Beijing Normal University), Shi-Bin Jiao, You-Liang Xiang (Guizhou Normal University), Zhi-Quan Liu (Hangzhou Normal University), Kai-Bing Liu, and Zhi-Xiang Chen for their invaluable assistance with sample collection. We also thank Dr. Nan Wang (Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences) and Dr. Huiqin Yi (Stockholm University) for their insightful comments on the analysis.

Funding

Open access funding provided by Uppsala University.

Author information

Authors and Affiliations

  1. State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China

    Wei-Ping Zhang & Ming Kang

  2. Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China

    Wei-Ping Zhang, Xiao-Xu Pang, Da-Yong Zhang & Wei-Ning Bai

  3. Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden

    Wei-Ping Zhang, Sylvain Glémin & Martin Lascoux

  4. Université de Rennes, CNRS, ECOBIO (Ecosystémes, Biodiversité Evolution), Rennes, France

    Sylvain Glémin

Authors
  1. Wei-Ping Zhang
    View author publications

    Search author on:PubMed Google Scholar

  2. Sylvain Glémin
    View author publications

    Search author on:PubMed Google Scholar

  3. Xiao-Xu Pang
    View author publications

    Search author on:PubMed Google Scholar

  4. Ming Kang
    View author publications

    Search author on:PubMed Google Scholar

  5. Da-Yong Zhang
    View author publications

    Search author on:PubMed Google Scholar

  6. Martin Lascoux
    View author publications

    Search author on:PubMed Google Scholar

  7. Wei-Ning Bai
    View author publications

    Search author on:PubMed Google Scholar

Contributions

W.N.B., D.Y.Z., M.L., and M.K. conceived and supervised the project. W.P.Z. collected the materials and performed the main analyses. S.G. provided constructive suggestions regarding the loss of heterozygosity (LOH) analysis. X.X.P. conducted the LOH detection analysis. M.K. provided guidance on the analytical workflow for genetic load analysis. W.P.Z. and W.N.B. drafted the manuscript. W.N.B., M.L., S.G., and D.Y.Z. revised and proofread the manuscript. All authors approved the final version.

Corresponding authors

Correspondence to Ming Kang, Da-Yong Zhang, Martin Lascoux or Wei-Ning Bai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Reporting Summary

Descriptions of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WP., Glémin, S., Pang, XX. et al. Genomic consequences of residual recombination in a hybrid apomictic hickory complex. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68867-6

Download citation

  • Received: 01 June 2025

  • Accepted: 14 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68867-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing