Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Safeguarding climate-resilient mangroves requires only a moderate increase in the global protected area
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 27 January 2026

Safeguarding climate-resilient mangroves requires only a moderate increase in the global protected area

  • Alvise Dabalà  ORCID: orcid.org/0000-0001-7567-11811,2,
  • Christopher J. Brown3,
  • Tom Van der Stocken  ORCID: orcid.org/0000-0002-1820-91234,
  • Christina A. Buelow  ORCID: orcid.org/0000-0002-3084-25545,
  • David S. Schoeman  ORCID: orcid.org/0000-0003-1258-08856,7,
  • Daniel C. Dunn  ORCID: orcid.org/0000-0001-8932-06811,2,
  • Catherine E. Lovelock  ORCID: orcid.org/0000-0002-2219-68551,
  • Farid Dahdouh-Guebas  ORCID: orcid.org/0000-0002-5906-89964,8,9,10,
  • Jason Flower  ORCID: orcid.org/0000-0002-6731-818211,12,13,
  • Sandra Neubert  ORCID: orcid.org/0000-0002-3112-41161,2,14,
  • Kristine Camille V. Buenafe  ORCID: orcid.org/0000-0002-1643-55571,2,
  • Jason D. Everett  ORCID: orcid.org/0000-0002-6681-80541,2,15,16,
  • Kris Jypson T. Esturas  ORCID: orcid.org/0009-0004-7222-84901,2,4,10 &
  • …
  • Anthony J. Richardson  ORCID: orcid.org/0000-0002-9289-73661,2,15 

Nature Communications , Article number:  (2026) Cite this article

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate change
  • Conservation biology
  • Wetlands ecology

Abstract

Climate change and anthropogenic activities threaten biodiversity and ecosystem services. Climate-smart conservation plans address these challenges by ensuring protection of some climate-resilient areas. However, integrating climate change in the design of conservation plans is often deemed too expensive, as it may require larger networks or protecting more costly sites from a conservation perspective. Using mangroves as a case study, we evaluate the efficiency of protecting mangroves in climate-smart versus climate-naïve reserve networks. We find that climate-smart conservation plans could provide sizable benefits (13.3%) for relatively moderate increases in protected area (+7.3%). Moreover, transboundary plans, involving cooperation among countries, require less area and protect more climate-resilient mangroves than nation-by-nation plans. Implementing these strategies would improve the current protected area network for mangroves, which currently has poor climate resilience. Our methodology could potentially be tested on other ecosystems, assuming sufficient information exists regarding their distribution, biodiversity, and resilience to climate change.

Similar content being viewed by others

Mangroves and their services are at risk from tropical cyclones and sea level rise under climate change

Article Open access 05 April 2025

Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change

Article Open access 10 February 2023

Adaptive response of Dongzhaigang mangrove in China to future sea level rise

Article Open access 07 July 2022

Data availability

The datasets used in our study are publicly available online. These include: (1) the global map of mangroves is available for download from the Global Mangrove Watch53 website (https://www.globalmangrovewatch.org/); (2) IUCN distribution of mangrove species51 is available at: https://www.iucnredlist.org/resources/spatial-data-download; (3) the global biophysical mangrove typology62 is available for download from a Zenodo repository: [https://doi.org/10.5281/zenodo.8340259]68; and (4) the data on the probability of future mangrove loss (i.e., mangrove climate resilience) is available from a Zenodo repository: [https://doi.org/10.5281/zenodo.13668500] The datasets generated during the current study are available at ref. 69: [https://doi.org/10.5281/zenodo.17728764].

Code availability

Code to run the analysis in this study is currently available at: https://github.com/AlviDab/Mangroves_ClimateChange. The code is archived in a Zenodo digital repository69: [https://doi.org/10.5281/zenodo.17728764].

References

  1. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Google Scholar 

  2. Keck, F. et al. The global human impact on biodiversity. Nature 641, 395–400 (2025).

    Google Scholar 

  3. Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    Google Scholar 

  4. Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, eaay9969 (2019).

    Google Scholar 

  5. Frazão Santos, C. et al. Integrating climate change in ocean planning. Nat. Sustain. 3, 505–516 (2020).

    Google Scholar 

  6. Convention on Biological Diversity. Kunming-Montreal Global Biodiversity Framework. (2022).

  7. O’Regan, S. M., Archer, S. K., Friesen, S. K. & Hunter, K. L. A Global assessment of climate change adaptation in marine protected area management plans. Front. Mar. Sci. 8, 711085 (2021).

    Google Scholar 

  8. Adams, V. M. Costs in conservation: Common costly mistakes and how to avoid them. PLOS Biol. 22, e3002676 (2024).

    Google Scholar 

  9. Huxham, M. et al. Mangroves and people: local ecosystem services in a changing climate. in Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services (eds Rivera-Monroy, V. H., Lee, S. Y., Kristensen, E. & Twilley, R. R.) 245–274 (Springer International Publishing, Cham, 2017).

  10. Friess, D. A., Adame, M. F., Adams, J. B. & Lovelock, C. E. Mangrove forests under climate change in a 2 °C world. WIREs Clim. Change 13, e792 (2022).

    Google Scholar 

  11. Adame, M. F. et al. Future carbon emissions from global mangrove forest loss. Glob. Change Biol. 27, 2856–2866 (2021).

    Google Scholar 

  12. Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Change Biol. 26, 5844–5855 (2020).

    Google Scholar 

  13. Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).

    Google Scholar 

  14. Krauss, K. W. & Osland, M. J. Tropical cyclones and the organization of mangrove forests: a review. Ann. Bot. 125, 213–234 (2019).

  15. Duke, N. C., Hutley, L. B., Mackenzie, J. R. & Burrows, D. Processes and Factors Driving Change in Mangrove Forests: An Evaluation Based on the Mass Dieback Event in Australia’s Gulf of Carpentaria. in Ecosystem Collapse and Climate Change (eds Canadell, J. G. & Jackson, R. B.) 221–264 (Springer International Publishing, Cham, 2021).

  16. Machava-António, V. C. E. et al. Massive mangrove dieback due to extreme weather impact - case of Maputo River Estuary, Mozambique. Reg. Stud. Mar. Sci. 78, 103770 (2024).

    Google Scholar 

  17. IPCC. The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2022).

  18. Record, S., Charney, N. D., Zakaria, R. M. & Ellison, A. M. Projecting global mangrove species and community distributions under climate change. Ecosphere 4, art34 (2013).

    Google Scholar 

  19. Dahdouh-Guebas, F. et al. Cross-cutting research themes for future mangrove forest research. Nat. Plants 8, 1131–1135 (2022).

    Google Scholar 

  20. Nguyen, N. T. H. et al. Maximising resilience to sea-level rise in urban coastal ecosystems through systematic conservation planning. Landsc. Urban Plan. 221, 104374 (2022).

    Google Scholar 

  21. Buenafe, K. C. V. et al. A metric-based framework for climate-smart conservation planning. Ecol. Appl. 33, e2852 (2023).

    Google Scholar 

  22. Buelow, C. A. et al. Projecting uncertainty in ecosystem persistence under climate change. Glob. Change Biol. 31, e70468 (2025).

    Google Scholar 

  23. Simard, M. et al. A New Global Mangrove Height Map with a 12 meter spatial resolution. Sci. Data 12, 15 (2025).

    Google Scholar 

  24. Sunkur, R., Kantamaneni, K., Bokhoree, C., Rathnayake, U. & Fernando, M. Mangrove mapping and monitoring using remote sensing techniques towards climate change resilience. Sci. Rep. 14, 6949 (2024).

    Google Scholar 

  25. Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: one of the World’s threatened major tropical environments. BioScience 51, 807–815 (2001).

    Google Scholar 

  26. Rog, S. M. & Cook, C. N. Strengthening governance for intertidal ecosystems requires a consistent definition of boundaries between land and sea. J. Environ. Manage. 197, 694–705 (2017).

    Google Scholar 

  27. Heck, N. et al. Global drivers of mangrove loss in protected areas. Conserv. Biol. 38, e14293 (2024).

    Google Scholar 

  28. Leal, M. & Spalding, M. D.The State of the World’s Mangroves 2024. (2024).

  29. Mazor, T., Possingham, H. P. & Kark, S. Collaboration among countries in marine conservation can achieve substantial efficiencies. Divers. Distrib. 19, 1380–1393 (2013).

    Google Scholar 

  30. Beger, M. et al. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 6, 8208 (2015).

    Google Scholar 

  31. Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

    Google Scholar 

  32. Eckert, I., Brown, A., Caron, D., Riva, F. & Pollock, L. J. 30×30 biodiversity gains rely on national coordination. Nat. Commun. 14, 7113 (2023).

    Google Scholar 

  33. Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).

    Google Scholar 

  34. Armstrong, C. Sharing conservation burdens fairly. Conserv. Biol. 33, 554–560 (2019).

    Google Scholar 

  35. Mason, N., Ward, M., Watson, J. E. M., Venter, O. & Runting, R. K. Global opportunities and challenges for transboundary conservation. Nat. Ecol. Evol. 4, 694–701 (2020).

    Google Scholar 

  36. Schoeman, D. S. et al. Demystifying global climate models for use in the life sciences. Trends Ecol. Evol. 38, 843–858 (2023).

    Google Scholar 

  37. Pressey, R. L., Mills, M., Weeks, R. & Day, J. C. The plan of the day: Managing the dynamic transition from regional conservation designs to local conservation actions. Biol. Conserv. 166, 155–169 (2013).

    Google Scholar 

  38. Goué, A. M. & Kana, R. The Sangha Trinational: An example of cross-border biodiversity management in Central Africa. in Managing Transnational UNESCO World Heritage sites in Africa (eds Houehounha, D. & Moukala, E.) 69–81 (Springer International Publishing, Cham, 2023).

  39. Stoldt, M., Göttert, T., Mann, C. & Zeller, U. Transfrontier conservation areas and human-wildlife conflict: the case of the Namibian component of the Kavango-Zambezi (KAZA) TFCA. Sci. Rep. 10, 7964 (2020).

    Google Scholar 

  40. Enright, S. R., Meneses-Orellana, R. & Keith, I. The Eastern Tropical Pacific Marine Corridor (CMAR): The emergence of a voluntary regional cooperation mechanism for the conservation and sustainable use of marine biodiversity within a fragmented regional Ocean governance landscape. Front. Mar. Sci. 8, https://doi.org/10.3389/fmars.2021.674825 (2021).

  41. Gnansounou, S. C. et al. The co-management approach has positive impacts on mangrove conservation: evidence from the mono transboundary biosphere reserve (Togo-Benin), West Africa. Wetl. Ecol. Manag. 30, 1245–1259 (2022).

    Google Scholar 

  42. Mungai, F. et al. Mangrove cover and cover change analysis in the transboundary area of Kenya and Tanzania during 1986–2016. J. Indian Ocean Reg. 15, 157–176 (2019).

    Google Scholar 

  43. Tuda, A. O., Kark, S. & Newton, A. Exploring the prospects for adaptive governance in marine transboundary conservation in East Africa. Mar. Policy 104, 75–84 (2019).

    Google Scholar 

  44. Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).

    Google Scholar 

  45. Kelleway, J. J. et al. Review of the ecosystem service implications of mangrove encroachment into salt marshes. Glob. Change Biol. 23, 3967–3983 (2017).

    Google Scholar 

  46. Rowland, P. I., Hagger, V. & Lovelock, C. E. Opportunities for blue carbon restoration projects in degraded agricultural land of the coastal zone in Queensland, Australia. Reg. Environ. Change 23, 42 (2023).

    Google Scholar 

  47. Bell-James, J., Fitzsimons, J. A., Gillies, C. L., Shumway, N. & Lovelock, C. E. Rolling covenants to protect coastal ecosystems in the face of sea-level rise. Conserv. Sci. Pract. 4, e593 (2022).

    Google Scholar 

  48. Twomey, A. J., Staples, T. L., Remmerswaal, A., Wuppukondur, A. & Lovelock, C. E. Mangrove ghost forests provide opportunities for seagrass. Front. Clim. 5, https://doi.org/10.3389/fclim.2023.1284829 (2023).

  49. Wilmot, E. et al. Characterizing mauka-to-makai connections for aquatic ecosystem conservation on Maui, Hawaiʻi. Ecol. Inform. 70, 101704 (2022).

    Google Scholar 

  50. Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Responses of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002).

    Google Scholar 

  51. IUCN. The IUCN Red List of Threatened Species. Version 2022-12. https://www.iucnredlist.org/resources/spatial-data-download (2022).

  52. Dabalà, A. et al. Priority areas to protect mangroves and maximise ecosystem services. Nat. Commun. 14, 5863 (2023).

    Google Scholar 

  53. Bunting, P. et al. Global mangrove extent change 1996–2020: Global Mangrove Watch version 3.0. Remote Sens 14, 3657 (2022).

    Google Scholar 

  54. Plumptre, A. et al. Strengths and complementarity of systematic conservation planning and Key Biodiversity Area approaches for spatial planning. Conserv. Biol. 39, e14400 (2025).

    Google Scholar 

  55. Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).

    Google Scholar 

  56. Claes, J. et al. Valuing Nature Conservation. (McKinsey & Company, 2022).

  57. Beger, M. et al. Demystifying ecological connectivity for actionable spatial conservation planning. Trends Ecol. Evol. 37, 1079–1091 (2022).

    Google Scholar 

  58. Balbar, A. C. & Metaxas, A. The current application of ecological connectivity in the design of marine protected areas. Glob. Ecol. Conserv. 17, e00569 (2019).

    Google Scholar 

  59. Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis. (Island Press, Washington, DC, 2005).

  60. Massicotte, P. & South, A. Rnaturalearth: World Map Data from Natural Earth. (2023).

  61. R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2024).

  62. Worthington, T. A. et al. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Sci. Rep. 10, 14652 (2020).

    Google Scholar 

  63. Rodrigues, A. S. L. et al. Global Gap Analysis: Priority Regions for Expanding the Global Protected-Area Network. BioScience 54, 1092 (2004).

    Google Scholar 

  64. UNEP-WCMC & IUCN. Protected Planet: The World Database on Protected Areas (WDPA). (UNEP-WCMC and IUCN, Cambridge, UK, 2023).

  65. Hanson, J. O. Wdpar: Interface to the World Database on Protected Areas. (2021).

  66. Hanson, J. O. et al. Systematic conservation prioritization with the prioritizr R package. Conserv. Biol. 39, e14376 (2025).

    Google Scholar 

  67. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. (2024).

  68. Worthington, T. A. et al. A global biophysical typology of mangroves version 3. Zenodo https://doi.org/10.5281/ZENODO.8340259 (2023).

  69. Dabalà, A. et al. Safeguarding climate-resilient mangroves requires only a moderate increase in the global protected area - code release v1.0.0. Zenodo https://doi.org/10.5281/zenodo.17728764 (2025).

Download references

Acknowledgements

F.D.G. and K.J.T.E. were supported by the Erasmus Mundus Joint Master Degree in Tropical Biodiversity and Ecosystems – TROPIMUNDO, which is funded by the European Commission (EC contract N° 2019-1451). C.J.B. was supported by a Future Fellowship (FT210100792) from the Australian Research Council. J.F. received funding from the Waitt Institute.

Author information

Authors and Affiliations

  1. School of the Environment, The University of Queensland, Brisbane, Australia

    Alvise Dabalà, Daniel C. Dunn, Catherine E. Lovelock, Sandra Neubert, Kristine Camille V. Buenafe, Jason D. Everett, Kris Jypson T. Esturas & Anthony J. Richardson

  2. Centre for Biodiversity and Conservation Science (CBCS), The University of Queensland, St Lucia, QLD, Australia

    Alvise Dabalà, Daniel C. Dunn, Sandra Neubert, Kristine Camille V. Buenafe, Jason D. Everett, Kris Jypson T. Esturas & Anthony J. Richardson

  3. Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania, Australia

    Christopher J. Brown

  4. Ecology, Evolution & Genetics (bDIV) research group, Biology Department, Vrije Universiteit Brussel, VUB, Pleinlaan, Brussel, Belgium

    Tom Van der Stocken, Farid Dahdouh-Guebas & Kris Jypson T. Esturas

  5. Thriving Oceans Research Hub, School of Geosciences, The University of Sydney, Sydney, Australia

    Christina A. Buelow

  6. Ocean Futures Research Cluster, School of Science and Engineering, University of the Sunshine Coast, Maroochydore, Qld, Australia

    David S. Schoeman

  7. Department of Zoology, Centre for African Conservation Ecology, Nelson Mandela University, Gqeberha, South Africa

    David S. Schoeman

  8. Systems Ecology and Resource Management Unit, Department of Biology of Organisms, Université Libre de Bruxelles - ULB, Av. F.D. Roosevelt 50, CPi 264/1, Brussels, Belgium

    Farid Dahdouh-Guebas

  9. Mangrove Specialist Group (MSG), Species Survival Commission (SSC), International Union for the Conservation of Nature (IUCN), Zoological Society of London, London, UK

    Farid Dahdouh-Guebas

  10. Interfaculty Institute of Social-Ecological Transitions, Université Libre de Bruxelles - ULB, Av. F.D. Roosevelt 50, Brussels, Belgium

    Farid Dahdouh-Guebas & Kris Jypson T. Esturas

  11. Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA

    Jason Flower

  12. Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara, CA, USA

    Jason Flower

  13. Environmental Market Solutions Lab, University of California Santa Barbara, Santa Barbara, CA, USA

    Jason Flower

  14. Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, UK

    Sandra Neubert

  15. CSIRO Environment, Queensland BioSciences Precinct (QBP), St Lucia, Australia

    Jason D. Everett & Anthony J. Richardson

  16. Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Science, The University of New South Wales, Sydney, Australia

    Jason D. Everett

Authors
  1. Alvise Dabalà
    View author publications

    Search author on:PubMed Google Scholar

  2. Christopher J. Brown
    View author publications

    Search author on:PubMed Google Scholar

  3. Tom Van der Stocken
    View author publications

    Search author on:PubMed Google Scholar

  4. Christina A. Buelow
    View author publications

    Search author on:PubMed Google Scholar

  5. David S. Schoeman
    View author publications

    Search author on:PubMed Google Scholar

  6. Daniel C. Dunn
    View author publications

    Search author on:PubMed Google Scholar

  7. Catherine E. Lovelock
    View author publications

    Search author on:PubMed Google Scholar

  8. Farid Dahdouh-Guebas
    View author publications

    Search author on:PubMed Google Scholar

  9. Jason Flower
    View author publications

    Search author on:PubMed Google Scholar

  10. Sandra Neubert
    View author publications

    Search author on:PubMed Google Scholar

  11. Kristine Camille V. Buenafe
    View author publications

    Search author on:PubMed Google Scholar

  12. Jason D. Everett
    View author publications

    Search author on:PubMed Google Scholar

  13. Kris Jypson T. Esturas
    View author publications

    Search author on:PubMed Google Scholar

  14. Anthony J. Richardson
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualisation, A.D., C.J.B, T.V.d.S, C.A.B., D.S.S., D.C.D., C.E.L., F.D.G., J.F. and A.J.R.; Methodology, A.D., C.J.B, T.V.d.S., C.A.B., D.S.S., D.C.D. and A.R.; Formal analysis, A.D. and J.E.; Writing – original draft, A.D.; Writing – review & editing, A.D., C.J.B., T.V.d.S., C.A.B., D.S.S., D.C.D., C.E.L., F.D.G., J.F., S.N., K.C.V.B., K.J.T.E. and A.J.R.

Corresponding author

Correspondence to Alvise Dabalà.

Ethics declarations

Competing interests

Christopher J. Brown co-leads the Global Mangrove Alliance’s Science Working Group, an organisation dedicated to advancing mangrove conservation. No other authors have any competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Peer Review File

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabalà, A., Brown, C.J., Van der Stocken, T. et al. Safeguarding climate-resilient mangroves requires only a moderate increase in the global protected area. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68877-4

Download citation

  • Received: 13 January 2025

  • Accepted: 16 January 2026

  • Published: 27 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68877-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing