Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Origin of small chromosome A08 and genome evolution of Arachis species
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 26 January 2026

Origin of small chromosome A08 and genome evolution of Arachis species

  • Pei Du  ORCID: orcid.org/0000-0001-5646-59721 na1,
  • Liuyang Fu2 na1,
  • Guoquan Chen2 na1,
  • Qian Wang2,
  • Suoyi Han  ORCID: orcid.org/0000-0002-0982-12811,
  • Xiaobo Wang1,
  • Ziqi Sun1,
  • Zhiyuan Zhou2,
  • Xuemin Xu2,
  • Hua Liu1,
  • Chenyu Li3,
  • Lijuan Miao1,
  • Li Qin1,
  • Jing Xu1,
  • Zhongxin Zhang1,
  • Zheng Zheng1,
  • Wenzhao Dong1,
  • Zengjun Qi  ORCID: orcid.org/0009-0008-0880-69963 &
  • …
  • Xinyou Zhang  ORCID: orcid.org/0000-0002-1942-997X1 

Nature Communications , Article number:  (2026) Cite this article

  • 1178 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cytogenetics
  • Genetic variation
  • Plant evolution
  • Taxonomy

Abstract

Wild Arachis species exhibit abundant genetic diversity for peanut improvement. However, the evolutionary history of their genomes is unclear. Here, through comparative oligopainting, we establish a one-to-one correspondence between microscopically observed chromosomes and sequenced pseudomolecules of Arachis duranensis, A. ipaensis, and cultivated peanut, and determine the 10 homoeologous groups (Hgs) of the A, B, F, K, and H genomes. Analysis of the telomere-to-telomere (T2T) genome assembly of A. hoehnei reveals that its genome is a diverging form of the A genome and is designated as genome A’. In addition, the unique small chromosome A08 is originated from two inversions and a substantial contraction of A'08. We propose a genome evolution model of the Arachis genus, where A’ bridges the A and B genomes. We further report an artificial hexaploid peanut derived from a hybrid of cultivated peanut and A. hoehnei, and identify differentially expressed genes against web blotch in A. hoehnei.

Similar content being viewed by others

Chloroplast and whole-genome sequencing shed light on the evolutionary history and phenotypic diversification of peanuts

Article Open access 13 August 2024

A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits

Article 20 February 2024

Genetic diversity analysis of Korean peanut germplasm using 48 K SNPs ‘Axiom_Arachis’ Array and its application for cultivar differentiation

Article Open access 17 August 2021

Data availability

The raw data of genome sequencing of Arachis hoehnei (Zw61), genome resequencing data and transcriptome sequencing data were deposited in the National Center for Biotechnology Information under accession PRJNA605106. The telomere-to-telomere (T2T) genome assembly, gene annotations, and chloroplast genomes of A. hoehnei (Zw61) were available at Zenodo [https://doi.org/10.5281/zenodo.18161068]. Additionally, data on chromosomes, agronomic traits data, and sequences of 10 chromosome-specific single copy oligonucleotide libraries (CSCOLs) can be accessed at Zenodo [https://doi.org/10.5281/zenodo.18168257].  Source data are provided with this paper.

References

  1. Stalker, H. T. Utilizing wild species for peanut improvement. Crop Sci. 57, 1102 (2017).

    Google Scholar 

  2. Prine, G. M., French, E. C., Blount, A. R., Williams, M. J. & Quesenberry, K. H. Registration of Arblick and Ecoturf rhizoma peanut germplasms for ornamental or forage use. J. Plant Regist. 4, 145–148 (2010).

    Google Scholar 

  3. Moss, J. P. et al. Registration of ICGV-SM 86715 peanut germplasm. Crop Sci. 38, 572 (1998).

    Google Scholar 

  4. Bertioli, D. J. et al. Legacy genetics of Arachis cardenasii in the peanut crop shows the profound benefits of international seed exchange. Proc. Natl. Acad. Sci. USA. 118, e2104899118 (2021).

    Google Scholar 

  5. Garg, V. et al. Chromosome-length genome assemblies of six legume species provide insights into genome organization, evolution, and agronomic traits for crop improvement. J. Adv. Res. 42, 315–329 (2022).

    Google Scholar 

  6. Valls, J. F. & Simpson, C. E. New species of Arachis (leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia 23, 35–63 (2005).

    Google Scholar 

  7. Simpson, C. E., Krapovickas, A. & Valls, J. History of Arachis including evidence of A. hypogaea L. progenitors. Peanut Sci. 28, 78–80 (2001).

    Google Scholar 

  8. Leal Bertioli, S. C. et al. Relationships of the wild peanut species, section Arachis: A resource for botanical classification, crop improvement, and germplasm management. Am. J. Bot. 111, e16357 (2024).

    Google Scholar 

  9. Santana, S. H. & Valls, J. F. Arachis veigae (Fabaceae), the most dispersed wild species of the genus, and yet taxonomically overlooked. Bonplandia 24, 139–150 (2015).

    Google Scholar 

  10. Krapovickas, A. & Gregory, W. C. Taxonomia Del Genero “Arachis (Leguminosae)”. Bonplandia 1–186 (1994).

  11. Samoluk, S. S. et al. Comparative repeatome analysis reveals new evidence on genome evolution in wild diploid Arachis (Fabaceae) species. Planta 256, 50 (2022).

    Google Scholar 

  12. Koppolu, R., Upadhyaya, H. D., Dwivedi, S. L., Hoisington, D. A. & Varshney, R. K. Genetic relationships among seven sections of genus Arachis studied by using SSR markers. BMC Plant Biol. 10, 15 (2010).

    Google Scholar 

  13. Friend, S. A., Quandt, D., Tallury, S. P., Stalker, H. T. & Hilu, K. W. Species, genomes, and section relationships in the genus Arachis (Fabaceae): a molecular phylogeny. Plant Syst. Evol. 290, 185–199 (2010).

    Google Scholar 

  14. Gregory, M. P. & Gregory, W. C. Exotic germ plasm of Arachis L. interspecific hybrids. J. Hered. 70, 185–193 (1979).

    Google Scholar 

  15. Robledo, G., Lavia, G. I. & Seijo, G. Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor. Appl. Genet. 118, 1295–1307 (2009).

    Google Scholar 

  16. Robledo, G. & Seijo, G. Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theor. Appl. Genet. 121, 1033–1046 (2010).

    Google Scholar 

  17. Silvestri, M. C., Ortiz, A. M. & Lavia, G. I. rDNA loci and heterochromatin positions support a distinct genome type for ‘x= 9 species’ of section Arachis (Arachis, Leguminosae). Plant Syst. Evol. 301, 555–562 (2015).

    Google Scholar 

  18. Chen, X. et al. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol. Plant. 12, 920–934 (2019).

    Google Scholar 

  19. Husted, L. Cytological studies on the peanut, Arachis. Cytologia. (Tokyo) 5, 109–117 (1933).

  20. Bertioli, D. J. et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 48, 438 (2016).

    Google Scholar 

  21. Bertioli, D. J. et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat. Genet. 51, 877–884 (2019).

    Google Scholar 

  22. Zhuang, W. et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat. Genet. 51, 865–876 (2019).

    Google Scholar 

  23. Wang, X. et al. A telomere-to-telomere genome assembly of the cultivated peanut. Mol. Plant. 18, 5–8 (2025).

    Google Scholar 

  24. Xue, H. et al. A near complete genome of Arachis monticola, an allotetraploid wild peanut. Plant Biotechnol. J. 22, 2110–2112 (2024).

    Google Scholar 

  25. Zhao, K. et al. Pangenome analysis reveals structural variation associated with seed size and weight traits in peanut. Nat. Genet. 57, 1250–1261 (2025).

    Google Scholar 

  26. Liu, X. et al. Dual-color oligo-FISH can reveal chromosomal variations and evolution in Oryza species. Plant. J. 101, 112–121 (2020).

    Google Scholar 

  27. Braz, G. T. et al. Comparative oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics 208, 513–523 (2018).

    Google Scholar 

  28. Zhang, Y. et al. Telomere-to-telomere Citrullus super-pangenome provides direction for watermelon breeding. Nat. Genet. 56, 1750–1761 (2024).

    Google Scholar 

  29. Du, P. et al. High-resolution chromosome painting with repetitive and single-copy oligonucleotides in Arachis species identifies structural rearrangements and genome differentiation. BMC Plant Biol. 18, 240 (2018).

    Google Scholar 

  30. Wu, X. et al. Cytological and transcriptomic analysis to unveil the mechanism of web blotch resistance in Peanut. BMC Plant Biol 23, 518 (2023).

    Google Scholar 

  31. Guo, J. et al. Revealing the contribution of GbPR10. 5D1 to resistance against Verticillium dahliae and its regulation for structural defense and immune signaling. Plant. Genome 15, e20271 (2022).

    Google Scholar 

  32. Park, C. J. et al. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant. J. 37, 186–198 (2004).

    Google Scholar 

  33. Cai, Q., Lu, S. & Chinnappa, C. C. Analysis of karyotypes and Giemsa C-banding patterns in eight species of Arachis. Genome 29, 187–194 (1987).

    Google Scholar 

  34. Seijo, J. G. et al. Physical mapping of the 5S and 18S-25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am. J. Bot. 91, 1294–1303 (2004).

    Google Scholar 

  35. Zhang, L., Yang, X., Tian, L., Chen, L. & Yu, W. Identification of peanut (Arachis hypogaea) chromosomes using a fluorescence in situ hybridization system reveals multiple hybridization events during tetraploid peanut formation. New Phytol 211, 1424–1439 (2016).

    Google Scholar 

  36. Bhullar, R. et al. Silencing of a metaphase I-specific gene results in a phenotype similar to that of the Pairing homeologous 1 (Ph1) gene mutations. Proc. Natl. Acad. Sci. USA. 111, 14187–14192 (2014).

    Google Scholar 

  37. Lou, Q. et al. Single-copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis. Plant. J. 78, 169–179 (2014).

    Google Scholar 

  38. Chen, J. et al. A complete telomere-to-telomere assembly of the maize genome. Nat. Genet. 55, 1221–1231 (2023).

    Google Scholar 

  39. Mizuno, H. et al. Sequencing and characterization of telomere and subtelomere regions on rice chromosomes 1S, 2S, 2L, 6L, 7S, 7L and 8. S. Plant. J. 46, 206–217 (2006).

    Google Scholar 

  40. Valenzuela, C. E. et al. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. J. Exp. Bot. 67, 4209–4220 (2016).

    Google Scholar 

  41. Du, P. et al. Chromosome painting of telomeric repeats reveals new evidence for genome evolution in peanut. J. Integr. Agr. 15, 2488–2496 (2016).

    Google Scholar 

  42. Du, P. et al. Development and characterization of bacterial wilt-resistant synthetic polyploid peanuts. Crop J. 13, 125–134 (2025).

    Google Scholar 

  43. Du, P. et al. Development of an oligonucleotide dye solution facilitates high throughput and cost-efficient chromosome identification in peanut. Plant. Methods 15, 69 (2019).

    Google Scholar 

  44. Krapovickas, A. G. W. C. Taxonomy of the genus Arachis (Leguminosae). Bonplandia 16, 7–205 (2007).

    Google Scholar 

  45. Inglis, P. W. et al. A slow march along the South American Dry Diagonal: a multi-gene molecular phylogeny and biogeographical history of the peanut genus, Arachis L. Ann. Bot. 136, 795–820 (2025).

    Google Scholar 

  46. Stalker, H. T. et al. The value of diploid peanut relatives for breeding and genomics. Peanut Sci. 40, 70–88 (2013).

    Google Scholar 

  47. One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685 (2019).

  48. Liu, Y. et al. Pan-genome of wild and cultivated soybeans. Cell 182, 162–176 (2020).

    Google Scholar 

  49. Hager, E. R. et al. A chromosomal inversion contributes to divergence in multiple traits between deer mouse ecotypes. Science 377, 399–405 (2022).

    Google Scholar 

  50. Levy, A. A. & Feldman, M. Evolution and origin of bread wheat. Plant. Cell 34, 2549–2567 (2022).

    Google Scholar 

  51. Lin, K. W. & Yan, J. Endings in the middle: current knowledge of interstitial telomeric sequences. Mutat. Res. Rev. Mutat. Res. 658, 95–110 (2008).

    Google Scholar 

  52. Ruiz-Herrera, A. et al. Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenet. Genome Res. 122, 219–228 (2008).

    Google Scholar 

  53. Uchida, W. et al. Interstitial telomere-like repeats in the Arabidopsis thaliana genome. Genes Genet. Syst. 77, 63–67 (2002).

    Google Scholar 

  54. He, L. et al. Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species. Chromosome Res. 21, 5–13 (2013).

    Google Scholar 

  55. Chambers, S. R. et al. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss. Mol. Cell. Biol. 16, 6110–6120 (1996).

    Google Scholar 

  56. Mehrotra, S. & Goyal, V. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genom. Proteom. Bioinf. 12, 164–171 (2014).

    Google Scholar 

  57. Garrido-Ramos, M. A. Satellite DNA in plants: more than just rubbish. Cytogenet. Genome Res. 146, 153–170 (2015).

    Google Scholar 

  58. Kidwell, M. G. & Lisch, D. Transposable elements as sources of variation in animals and plants. Proc. Natl. Acad. Sci. USA. 94, 7704–7711 (1997).

    Google Scholar 

  59. Kashkush, K., Feldman, M. & Levy, A. A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat. Genet. 33, 102–106 (2003).

    Google Scholar 

  60. Hammons, R. O. & Leuck, D. B. Natural cross-pollination of the peanut, Arachis hypogaea L., in the Presence of Bees and Thrips. Agron. J. 58, 396 (1966).

    Google Scholar 

  61. Coffelt, T. A. Natural crossing of peanut in Virginia. Peanut Sci. 16, 46–48 (1989).

    Google Scholar 

  62. Gibbons, R. W. & Tattersfield, J. R. Out-crossing trials with groundnuts (Arachis hypogaea) L. Rhod. J. Agric. Res. 7, 71–85 (1969).

    Google Scholar 

  63. Oliveira, J. C. D. et al. Inferring mating system parameters in forage peanut, Arachis pintoi, for Brazilian Amazon conditions. Acta Amazon 49, 277–282 (2019).

    Google Scholar 

  64. Moretzsohn, M. C. et al. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann. Bot. 111, 113–126 (2013).

    Google Scholar 

  65. Tian, X. et al. Chloroplast phylogenomic analyses reveal a maternal hybridization event leading to the formation of cultivated peanuts. Front. Plant Sci. 12, 804568 (2021).

  66. Raina, S. N. & Mukai, Y. Genomic in situ hybridization in Arachis (Fabaceae) identifies the diploid wild progenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species. Plant. Syst. Evol. 214, 251–262 (1999).

    Google Scholar 

  67. Kochert, G. et al. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor. Appl. Genet. 81, 565–570 (1991).

    Google Scholar 

  68. Singh, A. K. & Smartt, J. The genome donors of the groundnut/peanut (Arachis hypogaea L.) revisited. Genet. Resour. Crop Evol. 45, 113–116 (1998).

    Google Scholar 

  69. Zheng, Z. et al. Chloroplast and whole-genome sequencing shed light on the evolutionary history and phenotypic diversification of peanuts. Nat. Genet. 56, 1975–1984 (2024).

    Google Scholar 

  70. Ma, J. & Bennetzen, J. L. Rapid recent growth and divergence of rice nuclear genomes. Proc. Natl. Acad. Sci. USA. 101, 12404–12410 (2004).

    Google Scholar 

  71. Han, Y. et al. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200, 771–779 (2015).

    Google Scholar 

  72. Kent, W. J. BLAT—The BLAST-Like Alignment Tool. Genome Res. 12, 656–664 (2002).

    Google Scholar 

  73. Murgha, Y. E., Rouillard, J. & Gulari, E. Methods for the preparation of large quantities of complex single-stranded oligonucleotide libraries. PLoS One 9, e94752 (2014).

  74. Du, P. et al. Development of Oligo-GISH kits for efficient detection of chromosomal variants in peanut. Crop J. 11, 238–246 (2023).

    Google Scholar 

  75. Cheng, H. et al. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Google Scholar 

  76. Rautiainen, M. et al. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nat. Biotechnol. 41, 1474–1482 (2023).

    Google Scholar 

  77. Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    Google Scholar 

  78. Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    Google Scholar 

  79. Lin, Y. et al. quarTeT: a telomere-to-telomere toolkit for gap-free genome assembly and centromeric repeat identification. Hortic. Res. 10, uhad127 (2023).

    Google Scholar 

  80. Xu, M. et al. TGS-GapCloser: a fast and accurate gap closer for large genomes with low coverage of error-prone long reads. Gigascience 9, giaa94 (2020).

    Google Scholar 

  81. Hu, J. et al. NextPolish2: a repeat-aware polishing tool for genomes assembled using HiFi long reads. Genom. Proteom. Bioinf. 22, qzad009 (2024).

  82. Rhie, A. et al. Reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 1–27 (2020).

    Google Scholar 

  83. Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic. Acids. Res. 46, e126 (2018).

    Google Scholar 

  84. Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. USA 117, 9451–9457 (2020).

    Google Scholar 

  85. Tarailo Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics 25, 4–10 (2009).

    Google Scholar 

  86. Beier, S. et al. MISA-web: a web server for microsatellite prediction. Bioinformatics 33, 2583–2585 (2017).

    Google Scholar 

  87. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic. Acids. Res. 27, 573–580 (1999).

    Google Scholar 

  88. Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008).

    Google Scholar 

  89. Jin, J. et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 1–31 (2020).

    Google Scholar 

  90. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Google Scholar 

  91. Nguyen, L., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Google Scholar 

Download references

Acknowledgements

We thank Yonghua Han (Jiangsu Normal University, Xuzhou, China) for help in designing and labeling the oligonucleotide libraries. We thank Robert McIntosh, University of Sydney, Australia, for his kind review, suggestions, and language editing. We are also grateful to Dawn M. Schmidt (www.editbydawn.com) for English editing. This project is supported by Henan Province Science and Technology R&D Joint Fund (232301420025 to P.D.), National Natural Science Foundation of China (32272153 to P.D. and 32501918 to L.F.), the Key Research Project of the Shennong Laboratory (SN01-2022-03 to X.Z.), China Agriculture Research System (CARS-13 to X.Z.), Henan Provincial Agriculture Research System (S2012-5 to W.D.), and innovation team of peanut breeding (2024TD01 to X.Z.). The funding agencies played no role in the design of the study and collection, analysis, and interpretation of data or in writing the manuscript.

Author information

Author notes
  1. These authors contributed equally: Pei Du, Liuyang Fu, Guoquan Chen.

Authors and Affiliations

  1. The Shennong Laboratory/Nation Industrial Innovation Centre for Bio-Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement/Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China

    Pei Du, Suoyi Han, Xiaobo Wang, Ziqi Sun, Hua Liu, Lijuan Miao, Li Qin, Jing Xu, Zhongxin Zhang, Zheng Zheng, Wenzhao Dong & Xinyou Zhang

  2. School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China

    Liuyang Fu, Guoquan Chen, Qian Wang, Zhiyuan Zhou & Xuemin Xu

  3. State Key Laboratory of Crop Genetics and Germplasm Enhancement & Utilization, Nanjing Agricultural University, Nanjing, China

    Chenyu Li & Zengjun Qi

Authors
  1. Pei Du
    View author publications

    Search author on:PubMed Google Scholar

  2. Liuyang Fu
    View author publications

    Search author on:PubMed Google Scholar

  3. Guoquan Chen
    View author publications

    Search author on:PubMed Google Scholar

  4. Qian Wang
    View author publications

    Search author on:PubMed Google Scholar

  5. Suoyi Han
    View author publications

    Search author on:PubMed Google Scholar

  6. Xiaobo Wang
    View author publications

    Search author on:PubMed Google Scholar

  7. Ziqi Sun
    View author publications

    Search author on:PubMed Google Scholar

  8. Zhiyuan Zhou
    View author publications

    Search author on:PubMed Google Scholar

  9. Xuemin Xu
    View author publications

    Search author on:PubMed Google Scholar

  10. Hua Liu
    View author publications

    Search author on:PubMed Google Scholar

  11. Chenyu Li
    View author publications

    Search author on:PubMed Google Scholar

  12. Lijuan Miao
    View author publications

    Search author on:PubMed Google Scholar

  13. Li Qin
    View author publications

    Search author on:PubMed Google Scholar

  14. Jing Xu
    View author publications

    Search author on:PubMed Google Scholar

  15. Zhongxin Zhang
    View author publications

    Search author on:PubMed Google Scholar

  16. Zheng Zheng
    View author publications

    Search author on:PubMed Google Scholar

  17. Wenzhao Dong
    View author publications

    Search author on:PubMed Google Scholar

  18. Zengjun Qi
    View author publications

    Search author on:PubMed Google Scholar

  19. Xinyou Zhang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

X.Z., Z.Q. and P.D. designed and supervised the project. P.D., L.F., G.C., Q.W., C.L., Zhiyuan Z., and L.M. performed the experiments. S.H., X.W., Z.S., Zhiyuan Z., X.X., H.L., L.Q., J.X. and Zhongxin Z. analyzed the data. P.D., G.C. and L.F. wrote the manuscript. X.Z., Z.Q., W.D., and Zheng Z. provided critical guidance for the revision of the manuscript.

Corresponding authors

Correspondence to Zengjun Qi or Xinyou Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks David Bertioli, Chuanzhi Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Peer Review file

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Reporting Summary

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, P., Fu, L., Chen, G. et al. Origin of small chromosome A08 and genome evolution of Arachis species. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68884-5

Download citation

  • Received: 30 December 2024

  • Accepted: 19 January 2026

  • Published: 26 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68884-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing