Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Expanding the DNA damaging potential of artificial metallo-nucleases with click chemistry
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

Expanding the DNA damaging potential of artificial metallo-nucleases with click chemistry

  • Alex Gibney1,
  • Margareth Sidarta  ORCID: orcid.org/0000-0002-8812-47822,3,
  • Eva Delahunt  ORCID: orcid.org/0009-0001-3540-28141,
  • Pierre Mesdom4,
  • Lily Arrué5,6,
  • Sriram KK  ORCID: orcid.org/0000-0002-4661-242X2,3,
  • Obed Akwasi Aning2,
  • Hedvig Hjerpe  ORCID: orcid.org/0009-0006-6283-24027,8,
  • Francisca Figueiredo  ORCID: orcid.org/0009-0003-1187-76844,
  • Kevin Cariou4,
  • Vickie McKee1,9,
  • Pegah Johansson7,8,
  • Shayon Bhattacharya  ORCID: orcid.org/0000-0002-4218-03085,
  • Damien Thompson  ORCID: orcid.org/0000-0003-2340-54415,
  • Michaela Wenzel  ORCID: orcid.org/0000-0001-9969-61132,3,
  • Gilles Gasser  ORCID: orcid.org/0000-0002-4244-50974,
  • Fredrik Westerlund  ORCID: orcid.org/0000-0002-4767-48682,3 &
  • …
  • Andrew Kellett  ORCID: orcid.org/0000-0002-8947-14011 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Bioinorganic chemistry
  • DNA

Abstract

Recently, copper(I)-catalysed azide-alkyne cycloaddition (CuAAC) click chemistry has emerged as a promising approach for designing new artificial metallo-nucleases (AMNs) with DNA-damaging properties. By functionalising a central organic azide with three alkyne donors, Tri-Click (TC) ligands capable of chelating three copper ions through the donor group and triazole linker can be generated. However, the versatility of this approach along with the influence of specific donors on metal binding, DNA recognition, and cellular DNA damage in an anticancer context remains poorly understood. Here, we prepare a series of Tri-Click ligands incorporating systematic cyclic and acyclic N-, O-, and S-donors and evaluate their AMN activities. Screening experiments pinpoint planar N-donor ligands as high value agents. Among these, the copper complex of Tri-Click-Pyridine (Cu3-TC-Py) displays significant potential. We characterise its activity using single-molecule imaging, microscale thermophoresis, FRET-based binding assays, molecular dynamics, and intracellular DNA interaction studies in human and functional bacterial cells. We report the emergence of Cu3-TC-Py as a lead AMN with high reactivity for DNA damage applications central to anticancer therapy.

Data availability

All molecular dynamics simulation data supporting the findings of this study, including structure, topology, parameter, and trajectory files for the Cu₃-TC-Py–DNA systems, are publicly available on Zenodo at https://zenodo.org/records/17143195 (DOI: 10.5281/zenodo.17143194). All other data is presented in the supplementary information or the source data file provided. Source data are provided with this paper.

Code availability

The data analysis involving extraction of kymographs from multi-TIFF files and measurement of end-to-end lengths from the obtained kymographs were done using a custom written MATLAB code publicly available on GitHub at https://github.com/dnadevcode/lldev (DOI: 10.5281/zenodo.17652641).

References

  1. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021 (2001).

    Google Scholar 

  2. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41, 2596–2599 (2002).

    Google Scholar 

  3. Tornøe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    Google Scholar 

  4. Meldal, M. & Diness, F. Recent fascinating aspects of the CuAAC click reaction. Trends Chem. 2, 569–584 (2020).

    Google Scholar 

  5. Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide−alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Google Scholar 

  6. Liang, L. & Astruc, D. The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev. 255, 2933–2945 (2011).

    Google Scholar 

  7. Wang, X., Huang, B., Liu, X. & Zhan, P. Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discov. Today 21, 118–132 (2016).

    Google Scholar 

  8. Hennessy, J. et al. A click chemistry approach to targeted DNA crosslinking with cis-platinum(II)-modified triplex-forming oligonucleotides. Angew. Chem. Int. Ed. Engl. 61, e202110455 (2022).

    Google Scholar 

  9. McGorman, B. et al. Enzymatic synthesis of chemical nuclease triplex-forming oligonucleotides with gene-silencing applications. Nucleic Acids Res. 50, 5467–5481 (2022).

    Google Scholar 

  10. Hennessy, J. et al. Thiazole orange-carboplatin triplex-forming oligonucleotide (TFO) combination probes enhance targeted DNA crosslinking. RSC Med. Chem. 15, 485–491 (2024).

    Google Scholar 

  11. Crowley, J. D. & McMorran, D. A. “Click-Triazole” coordination chemistry: exploiting 1,4-disubstituted-1,2,3-triazoles as ligands. in Topics in Heterocyclic Chemistry 31–83 (Springer Berlin Heidelberg, Berlin, 2012).

  12. Ahmad, M., Balamurali, M. M. & Chanda, K. Click-derived multifunctional metal complexes for diverse applications. Chem. Soc. Rev. https://doi.org/10.1039/d3cs00343d (2023).

  13. Mindt, T. L. et al. “Click to chelate”: synthesis and installation of metal chelates into biomolecules in a single step. J. Am. Chem. Soc. 128, 15096–15097 (2006).

    Google Scholar 

  14. McStay, N. et al. Click and Cut: a click chemistry approach to developing oxidative DNA damaging agents. Nucleic Acids Res. 49, 10289–10308 (2021).

    Google Scholar 

  15. Gibney, A. et al. A click chemistry-based artificial metallo-nuclease. Angew. Chem. Int. Ed. Engl. 62, e202305759 (2023).

    Google Scholar 

  16. Kellett, A. & McStay, N. Metallodrug therapeutic compounds and prodrugs of metallodrug therapeutic compounds. US Patent Application US20240376129A1 (2024).

  17. Gibney, A. & Kellett, A. Gene editing with artificial DNA scissors. Chem. Eur. J. 30, e202401621 (2024).

    Google Scholar 

  18. Chen, J. & Stubbe, J. Bleomycins: towards better therapeutics. Nat. Rev. Cancer 5, 102–112 (2005).

    Google Scholar 

  19. Poole, S. et al. Design and in vitro anticancer assessment of a click chemistry-derived dinuclear copper artificial metallo-nuclease. Nucleic Acids Res. 53, gkae1250 (2025).

    Google Scholar 

  20. Kellett, A., Molphy, Z., Slator, C., McKee, V. & Farrell, N. P. Molecular methods for assessment of non-covalent metallodrug–DNA interactions. Chem. Soc. Rev. 48, 971–988 (2019).

    Google Scholar 

  21. Cheng, Y. & Prusoff, W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973).

    Google Scholar 

  22. Jerabek-Willemsen, M. et al. MicroScale thermophoresis: interaction analysis and beyond. J. Mol. Struct. 1077, 101–113 (2014).

    Google Scholar 

  23. Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P. & Duhr, S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 9, 342–353 (2011).

    Google Scholar 

  24. Seidel, S. A. I. et al. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59, 301–315 (2013).

    Google Scholar 

  25. Carter, M. T., Rodriguez, M. & Bard, A. J. Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2’-bipyridine. J. Am. Chem. Soc. 111, 8901–8911 (1989).

    Google Scholar 

  26. Travers, A. Michael Waring-A scientific life in DNA. Biopolymers 112, e23408 (2021).

    Google Scholar 

  27. Prieto Otoya, T. D. et al. Probing a major DNA weakness: resolving the groove and sequence selectivity of the diimine complex Λ-[Ru(phen)2 phi]2. Angew. Chem. Int. Ed Engl. 63, e202318863 (2024).

    Google Scholar 

  28. Zeglis, B. M., Pierre, V. C. & Barton, J. K. Metallo-intercalators and metallo-insertors. Chem. Commun. 44, 4565–4579 (2007).

  29. Prieto Otoya, T. D. et al. Re-pairing DNA: binding of a ruthenium phi complex to a double mismatch. Chem. Sci. 15, 9096–9103 (2024).

    Google Scholar 

  30. Walt, D. R. Optical methods for single molecule detection and analysis. Anal. Chem. 85, 1258–1263 (2013).

    Google Scholar 

  31. Rye, H. S. et al. Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Res. 20, 2803–2812 (1992).

    Google Scholar 

  32. Perkins, T. T., Smith, D. E., Larson, R. G. & Chu, S. Stretching of a single tethered polymer in a uniform flow. Science 268, 83–87 (1995).

    Google Scholar 

  33. Sischka, A. et al. Molecular mechanisms and kinetics between DNA and DNA binding ligands. Biophys. J. 88, 404–411 (2005).

    Google Scholar 

  34. Hanwell, M. D., Curtis, D. E., Lonie, D. C. & Vandermeersch, T. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics 4, 17 (2012).

    Google Scholar 

  35. Messina, M. S. et al. A histochemical approach to activity-based copper sensing reveals cuproplasia-dependent vulnerabilities in cancer. Proc. Natl. Acad. Sci. USA 122, e2412816122 (2025).

    Google Scholar 

  36. Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature 432, 316–323 (2004).

    Google Scholar 

  37. Gałczyńska, K. et al. Copper(II) complex with 1-allylimidazole induces G2/M cell cycle arrest and suppresses A549 cancer cell growth by attenuating Wnt, JAK-STAT, and TGF-β signaling pathways. J. Inorg. Biochem. 264, 112791 (2025).

    Google Scholar 

  38. Molinaro, C. et al. A novel copper(II) indenoisoquinoline complex inhibits topoisomerase I, induces G2 phase arrest, and autophagy in three adenocarcinomas. Front. Oncol. 12, 837373 (2022).

    Google Scholar 

  39. Hilbert, B. J., Hayes, J. A., Stone, N. P., Xu, R.-G. & Kelch, B. A. The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain. Nucleic Acids Res 45, 3591–3605 (2017).

    Google Scholar 

  40. Zuin Fantoni, N. et al. Polypyridyl-based copper phenanthrene complexes: a new type of stabilized artificial chemical nuclease. Chem. Eur. J. 25, 221–237 (2019).

    Google Scholar 

  41. Molphy, Z. et al. Copper phenanthrene oxidative chemical nucleases. Inorg. Chem. 53, 5392–5404 (2014).

    Google Scholar 

  42. Detinis Zur, T., Deek, J. & Ebenstein, Y. Single-molecule approaches for DNA damage detection and repair: a focus on repair assisted damage detection (RADD). DNA Repair 129, 103533 (2023).

    Google Scholar 

  43. Su’etsugu, M. & Errington, J. The replicase sliding clamp dynamically accumulates behind progressing replication forks in Bacillus subtilis cells. Mol. Cell 41, 720–732 (2011).

    Google Scholar 

  44. Santoro, A. et al. The glutathione/metallothionein system challenges the design of efficient O2-activating copper complexes. Angew. Chem. Int. Ed Engl. 59, 7830–7835 (2020).

    Google Scholar 

  45. Rigaku Oxford Diffraction, CrysAlisPro Software system, Version 1.171.43.115a, Rigaku Corporation, Wroclaw, Poland (2024).

  46. Hübschle, C. B. ShelXle: a Qt graphical user interface for SHELXL. Acta Crystallogr. A Found. Adv. 75, a187–a187 (2019).

    Google Scholar 

  47. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Google Scholar 

  48. Sheldrick, G. M. SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 71, 3–8 (2015).

    Google Scholar 

  49. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 71, 3–8 (2015).

    Google Scholar 

  50. McCann, M. et al. A new phenanthroline-oxazine ligand: synthesis, coordination chemistry and atypical DNA binding interaction. Chem. Commun. 49, 2341–2343 (2013).

    Google Scholar 

  51. Frykholm, K., Müller, V., Sriram, K. K. Dorfman, K. D. & Westerlund, F. DNA in nanochannels: theory and applications. Q. Rev. Biophys. 55, e12 (2022).

    Google Scholar 

  52. Sriram, K. K. et al. Fluorescence microscopy of nanochannel-confined DNA. Methods Mol. Biol. 2694, 175–202 (2024).

    Google Scholar 

  53. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Google Scholar 

  54. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Google Scholar 

  55. Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Google Scholar 

  56. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Google Scholar 

  57. Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006).

    Google Scholar 

  58. Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F. & Schroeder, M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 43, W443–W447 (2015).

    Google Scholar 

Download references

Acknowledgements

We acknowledge funding from Research Ireland (12/RC/2275_P2), the Irish Research Council (IRCLA/2022/3815), and the Novo Nordisk Foundation (NNF19OC0056845). We also acknowledge the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 861381 (NATURE-ETN). We are grateful for financial support from the ANR (ANR-20-CE07-0035), the ERC Consolidator Grant PhotoMedMet to G.G. (GA 681679), the program “Investissements d’ Avenir” launched by the French Government and implemented by the ANR with the reference ANR-10-IDEX-0001-02 PSL (G.G.). F.W. acknowledges funding from the European Research Council (ERC consolidator, grant no 866238), the Swedish Research Council (grant no. 2020–03400), the Swedish Cancer Foundation (grant no. 201145 PjF) and the Swedish Child Cancer Foundation (grant no. PR2022-001). The nanofluidic devices used in this study were fabricated at MyFab Chalmers cleanroom facility. P.J. acknowledges funding from the Swedish Child Cancer Foundation (grant no. 2022-0010), Jubileumsklinikens Cancerfond (2023:504).

Author information

Authors and Affiliations

  1. Research Ireland Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Dublin, Ireland

    Alex Gibney, Eva Delahunt, Vickie McKee & Andrew Kellett

  2. Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden

    Margareth Sidarta, Sriram KK, Obed Akwasi Aning, Michaela Wenzel & Fredrik Westerlund

  3. Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden

    Margareth Sidarta, Sriram KK, Michaela Wenzel & Fredrik Westerlund

  4. Chimie ParisTech, PSL Université, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France

    Pierre Mesdom, Francisca Figueiredo, Kevin Cariou & Gilles Gasser

  5. Research Ireland Centre for Pharmaceuticals, Department of Physics, University of Limerick, Limerick, Ireland

    Lily Arrué, Shayon Bhattacharya & Damien Thompson

  6. Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland

    Lily Arrué

  7. Department of Clinical Chemistry, Sahlgrenska University Hospital, Region Vastra Gotaland, Gothenburg, Sweden

    Hedvig Hjerpe & Pegah Johansson

  8. Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden

    Hedvig Hjerpe & Pegah Johansson

  9. Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark

    Vickie McKee

Authors
  1. Alex Gibney
    View author publications

    Search author on:PubMed Google Scholar

  2. Margareth Sidarta
    View author publications

    Search author on:PubMed Google Scholar

  3. Eva Delahunt
    View author publications

    Search author on:PubMed Google Scholar

  4. Pierre Mesdom
    View author publications

    Search author on:PubMed Google Scholar

  5. Lily Arrué
    View author publications

    Search author on:PubMed Google Scholar

  6. Sriram KK
    View author publications

    Search author on:PubMed Google Scholar

  7. Obed Akwasi Aning
    View author publications

    Search author on:PubMed Google Scholar

  8. Hedvig Hjerpe
    View author publications

    Search author on:PubMed Google Scholar

  9. Francisca Figueiredo
    View author publications

    Search author on:PubMed Google Scholar

  10. Kevin Cariou
    View author publications

    Search author on:PubMed Google Scholar

  11. Vickie McKee
    View author publications

    Search author on:PubMed Google Scholar

  12. Pegah Johansson
    View author publications

    Search author on:PubMed Google Scholar

  13. Shayon Bhattacharya
    View author publications

    Search author on:PubMed Google Scholar

  14. Damien Thompson
    View author publications

    Search author on:PubMed Google Scholar

  15. Michaela Wenzel
    View author publications

    Search author on:PubMed Google Scholar

  16. Gilles Gasser
    View author publications

    Search author on:PubMed Google Scholar

  17. Fredrik Westerlund
    View author publications

    Search author on:PubMed Google Scholar

  18. Andrew Kellett
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.G., M.S., E.D., P.M., L.A., S.K.K., O.A.A., H.H., F.F. and K.C. conducted experiments. A.G. and A.K. wrote the manuscript and prepared figures. V.M., P.J., S.B., D.T., M.W., G.G., F.W. and A.K. provided supervision. All authors assisted with manuscript review and revision. A.G. and A.K. conceptualised the study.

Corresponding author

Correspondence to Andrew Kellett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Sherif Shaban Ragab and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibney, A., Sidarta, M., Delahunt, E. et al. Expanding the DNA damaging potential of artificial metallo-nucleases with click chemistry. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68911-5

Download citation

  • Received: 31 March 2025

  • Accepted: 20 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68911-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing