Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Diversity and ecological roles of hidden viral players in groundwater microbiomes
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 30 January 2026

Diversity and ecological roles of hidden viral players in groundwater microbiomes

  • Akbar Adjie Pratama1,2,3,4,5,
  • Olga Pérez-Carrascal1,2,
  • Matthew B. Sullivan  ORCID: orcid.org/0000-0001-8398-82343,4,5,6 &
  • …
  • Kirsten Küsel  ORCID: orcid.org/0000-0002-5396-09751,2,7 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Bacteriophages
  • Microbial ecology
  • Water microbiology

Abstract

Groundwater ecosystems harbor diverse microbial communities adapted to energy-limited, light-deprived conditions, yet the role of viruses in these environments remains poorly understood. Here, we analyzed 1.24 terabases of metagenomic and metatranscriptomic data from seven wells in the Hainich Critical Zone Exploratory (CZE) to characterize groundwater viromes. We identified 257,252 viral operational taxonomic units (vOTUs) (≥ 5 kb), with 99% novel at order, family and genus levels against global ocean, freshwater and/or other publicly available datasets. In silico host predictions suggest that vOTUs primarily targeted Proteobacteria, Candidate Phyla Radiation (CPR) bacteria, and DPANN archaea, which reflects abundant and active groundwater microbial members. Patterns of virus-host abundance ratios, CRISPR-spacers, and prophage screening suggest the potential for multi-layer interactions involving CPR/DPANN lineages, their hosts, and viruses. Additionally, we identified 289 KEGG metabolic modules, 31.1% of which were targeted by 3378 vOTUs encoded auxiliary metabolic genes (AMGs) linked to carbon, nitrogen, and sulfur cycling. These findings provide a baseline for exploring how viruses influence microbial community dynamics, metabolic reprogramming and nutrient cycling in groundwater.

Data availability

Source data are provided with this paper. The data used for this study have been deposited in the European Nucleotide Archive (ENA). Raw metagenomic sequencing reads from 2019 were deposited under ENA project accession PRJEB36505 (https://www.ebi.ac.uk/ena/browser/view/PRJEB36523), while 2022 sequencing reads were deposited under NCBI project accession PRJNA1236243. Processed data are available through Zenodo, including viral populations (≥5 kb), Dereplicated MAGs, putative AMG genes, putative AMG cluster genes, and identified CRIPSR-Cas spacers (https://doi.org/10.5281/zenodo.17897233). Source data are provided with this paper.

Code availability

Workflows, codes and data related to this manuscript are available at https://github.com/AAdjieP/Groundwater_virome/ or https://doi.org/10.5281/zenodo.17898531.

References

  1. Suttle, S. W. Viruses and nutrient cycles in the sea. Bioscience 49 (1999).

  2. Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49, 781–788 (1999).

    Google Scholar 

  3. Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    Google Scholar 

  4. Jiang, S. C. & Paul, J. H. Gene transfer by transduction in the marine environment. Appl. Environ. Microbiol. 64, 2780–2787 (1998).

    Google Scholar 

  5. Forterre, P. The virocell concept and environmental microbiology. ISME J 7, 233–236 (2013).

    Google Scholar 

  6. Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J 14, 881–895 (2020).

    Google Scholar 

  7. Howard-Varona, C. et al. Environment-specific virocell metabolic reprogramming. ISME J 18, wrae055 (2024).

    Google Scholar 

  8. Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).

    Google Scholar 

  9. Gregory, A. C. et al. Marine DNA Viral Macro- and Microdiversity from Pole to Pole. Cell 177, 1109–1123.e14 (2019).

    Google Scholar 

  10. Dominguez-Huerta, G. et al. Diversity and ecological footprint of Global Ocean RNA viruses. 376, 1202–1208 (2022).

  11. Sullivan, M. B. et al. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol 4, e234 (2006).

    Google Scholar 

  12. Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).

    Google Scholar 

  13. Rodríguez-Ramos, J. et al. Spatial and temporal metagenomics of river compartments reveals viral community dynamics in an urban impacted stream. Front. Microbiomes 2, 1199766 (2023).

    Google Scholar 

  14. Elbehery, A. H. A. & Deng, L. Insights into the global freshwater virome. Front. Microbiol. 13, 953500 (2022).

    Google Scholar 

  15. Overholt, W. A. et al. Carbon fixation rates in groundwater similar to those in oligotrophic marine systems. Nat. Geosci. 15, 561–567 (2022).

    Google Scholar 

  16. Danczak, R. E. et al. Members of the Candidate Phyla Radiation are functionally differentiated by carbon- and nitrogen-cycling capabilities. Microbiome 5, 112 (2017).

    Google Scholar 

  17. Taubert, M. et al. Bolstering fitness via CO2 fixation and organic carbon uptake: mixotrophs in modern groundwater. ISME J 16, 1153–1162 (2022).

    Google Scholar 

  18. Herrmann, M. et al. Large fractions of CO 2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl Environ Microbiol 81, 2384–2394 (2015).

    Google Scholar 

  19. Krüger, M. et al. Differential contribution of nitrifying prokaryotes to groundwater nitrification. ISME J. 17, 1601–1611 (2023).

    Google Scholar 

  20. Bell, E. et al. Active sulfur cycling in the terrestrial deep subsurface. ISME J. 14, 1260–1272 (2020).

    Google Scholar 

  21. Wegner, C.-E. et al. Biogeochemical regimes in shallow aquifers reflect the metabolic coupling of the elements nitrogen, sulfur, and carbon. Appl. Environ. Microbiol. 85, e02346–18 (2019).

    Google Scholar 

  22. Mouchos, E. M. et al. Geochemical cycling in aquifers contributes to the transport, storage and transfer of anthropogenically-derived phosphorus to surface waters. Front. Environ. Sci. 10, 932566 (2022).

    Google Scholar 

  23. Hernsdorf, A. W. et al. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME J. 11, 1915–1929 (2017).

    Google Scholar 

  24. Griebler, C. & Lueders, T. Microbial biodiversity in groundwater ecosystems. Freshw. Biol. 54, 649–677 (2009).

    Google Scholar 

  25. Tian, R. et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome 8, 51 (2020).

    Google Scholar 

  26. Méheust, R., Burstein, D., Castelle, C. J. & Banfield, J. F. The distinction of CPR bacteria from other bacteria based on protein family content. Nat. Commun. 10, 4173 (2019).

    Google Scholar 

  27. He, C. et al. Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems. Nat. Microbiol. 6, 354–365 (2021).

    Google Scholar 

  28. Yan, L. et al. Groundwater bacterial communities evolve over time in response to recharge. Water Res. 201, 117290 (2021).

    Google Scholar 

  29. Chaudhari, N. M., Pérez-Carrascal, O. M., Overholt, W. A., Totsche, K. U. & Küsel, K. Genome streamlining in Parcubacteria transitioning from soil to groundwater. Environ. Microbiome 19, 41 (2024).

    Google Scholar 

  30. Herrmann, M. et al. Predominance of Cand. Patescibacteria in groundwater is caused by their preferential mobilization from soils and flourishing under oligotrophic conditions. Front. Microbiol. 10, 1407 (2019).

    Google Scholar 

  31. Prangishvili, D. et al. The enigmatic archaeal virosphere. Nat. Rev. Microbiol. 15, 724–739 (2017).

    Google Scholar 

  32. Niazi, H. et al. Global peak water limit of future groundwater withdrawals. Nat. Sustain. 7, 413–422 (2024).

    Google Scholar 

  33. Wunsch, A., Liesch, T. & Broda, S. Deep learning shows declining groundwater levels in Germany until 2100 due to climate change. Nat. Commun. 13, 1221 (2022).

    Google Scholar 

  34. Kohlhepp, B. et al. Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate–siliciclastic alternations of the Hainich CZE, central Germany. Hydrol. Earth Syst. Sci. 21, 6091–6116 (2017).

    Google Scholar 

  35. Zhong, Z.-P. et al. Lower viral evolutionary pressure under stable versus fluctuating conditions in subzero Arctic brines. Microbiome 11, 174 (2023).

    Google Scholar 

  36. Roux, S. et al. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).

    Google Scholar 

  37. Camargo, A. P. et al. IMG/VR v4: an expanded database of uncultivated virus genomes within a framework of extensive functional, taxonomic, and ecological metadata. Nucleic Acids Res. 51, D733–D743 (2023).

    Google Scholar 

  38. Gios, E., Mosley, O. E., Hoggard, M. & Handley, K. M. High niche specificity and host genetic diversity of groundwater viruses. ISME J. 18, wrae035 (2024).

    Google Scholar 

  39. Holmfeldt, K. et al. The Fennoscandian Shield deep terrestrial virosphere suggests slow-motion ‘boom and burst’ cycles. Commun. Biol. 4, 307 (2021).

    Google Scholar 

  40. Wu, Z. et al. Unveiling the unknown viral world in groundwater. Nat. Commun. 15, 6788 (2024).

    Google Scholar 

  41. Tian, F. et al. Prokaryotic-virus-encoded auxiliary metabolic genes throughout the global oceans. Microbiome 12, 159 (2024).

    Google Scholar 

  42. Zhou, Y.-L. et al. Ecogenomics reveals viral communities across the Challenger Deep oceanic trench. Commun. Biol. 5, 1055 (2022).

    Google Scholar 

  43. Braga, L. P. P. et al. Viruses direct carbon cycling in lake sediments under global change. Proc. Natl. Acad. Sci. USA 119, e2202261119 (2022).

    Google Scholar 

  44. Camargo, A. P. et al. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42, 1303–1312 (2023).

    Google Scholar 

  45. Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).

    Google Scholar 

  46. Bolduc, B. et al. Machine learning enables scalable and systematic hierarchical virus taxonomy. Nat. Biotechnol. 1–10. https://doi.org/10.1038/s41587-025-02946-9 (2025).

  47. Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740.e8 (2020).

    Google Scholar 

  48. Ma, B. et al. Biogeographic patterns and drivers of soil viromes. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-024-02347-2 (2024).

  49. Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35, D61–D65 (2007).

    Google Scholar 

  50. Yan, M. et al. Interrogating the viral dark matter of the rumen ecosystem with a global virome database. Nat. Commun. 14, 5254 (2023).

    Google Scholar 

  51. Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

    Google Scholar 

  52. Sieradzki, E. T., Ignacio-Espinoza, J. C., Needham, D. M., Fichot, E. B. & Fuhrman, J. A. Dynamic marine viral infections and major contribution to photosynthetic processes shown by spatiotemporal picoplankton metatranscriptomes. Nat. Commun. 10, 1169 (2019).

    Google Scholar 

  53. Denison, E. R., Zepernick, B. N., McKay, R. M. L. & Wilhelm, S. W. Metatranscriptomic analysis reveals dissimilarity in viral community activity between an ice-free and ice-covered winter in Lake Erie. mSystems 9, e00753–24 (2024).

    Google Scholar 

  54. Sun, C. L. et al. Virus ecology and 7-year temporal dynamics across a permafrost thaw gradient. Environ. Microbiol. 26, e16665 (2024).

    Google Scholar 

  55. Trubl, G. et al. Active virus-host interactions at sub-freezing temperatures in Arctic peat soil. Microbiome 9, 208 (2021).

    Google Scholar 

  56. Wang, H. et al. Groundwater microbiomes balance resilience and vulnerability to hydroclimatic extremes. Commun. Earth Environ. 6, 683 (2025).

    Google Scholar 

  57. Chaudhari, N. M. et al. The economical lifestyle of CPR bacteria in groundwater allows little preference for environmental drivers. Environ. Microbiome 16, 24 (2021).

    Google Scholar 

  58. Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. 19, 825–838 (2016).

    Google Scholar 

  59. Jurgensen, S. K. et al. Viral community analysis in a marine oxygen minimum zone indicates increased potential for viral manipulation of microbial physiological state. ISME J. 16, 972–982 (2022).

    Google Scholar 

  60. Brüwer, J. D. et al. Globally occurring pelagiphage infections create ribosome-deprived cells. Nat. Commun. 15, 3715 (2024).

    Google Scholar 

  61. Roux, S. et al. iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol. 21, e3002083 (2023).

    Google Scholar 

  62. Roux, S. & Brum, J. R. Counting dots or counting reads? Complementary approaches to estimate virus-to-microbe ratios. ISME J. 17, 1521–1522 (2023).

    Google Scholar 

  63. Liu, J., Jaffe, A. L., Chen, L., Bor, B. & Banfield, J. F. Host translation machinery is not a barrier to phages that interact with both CPR and non-CPR bacteria. MBio 14, e01766–23 (2023).

    Google Scholar 

  64. Zhou, Y. et al. Viruses and virus satellites of haloarchaea and their nanosized DPANN symbionts reveal intricate nested interactions. Nat. Microbiol. https://doi.org/10.1038/s41564-025-02149-7 (2025).

  65. Buderka, F. et al. Culture- and genome-based characterization of a tripartite interaction between patescibacterial epibionts, methylotrophic proteobacteria, and a jumbo phage in freshwater ecosystems. Preprint at https://doi.org/10.1101/2024.03.08.584096 (2024).

  66. Wu, Z., Liu, S. & Ni, J. Metagenomic characterization of viruses and mobile genetic elements associated with the DPANN archaeal superphylum. Nat. Microbiol. 9, 3362–3375 (2024).

    Google Scholar 

  67. Coenen, A. R. & Weitz, J. S. Limitations of correlation-based inference in complex virus-microbe communities. mSystems 3, https://doi.org/10.1128/msystems.00084-18 (2018).

  68. Tang, M., Chen, Q., Zhong, H., Liu, S. & Sun, W. CPR bacteria and DPANN archaea play pivotal roles in response of microbial community to antibiotic stress in groundwater. Water Res. 251, 121137 (2024).

    Google Scholar 

  69. Burstein, D. et al. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems. Nat. Commun. 7, 10613 (2016).

    Google Scholar 

  70. Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).

    Google Scholar 

  71. Kieft, K. et al. Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages. Nat. Commun. 12, 3503 (2021).

    Google Scholar 

  72. Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).

    Google Scholar 

  73. Pratama, A. A. et al. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. PeerJ 9, e11447 (2021).

    Google Scholar 

  74. Zhou, Z. et al. Unravelling viral ecology and evolution over 20 years in a freshwater lake. Nat. Microbiol. 10, 231–245 (2025).

    Google Scholar 

  75. Hurwitz, B. L., Hallam, S. J. & Sullivan, M. B. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 14, R123 (2013).

    Google Scholar 

  76. Kieft, K. et al. Virus-associated organosulfur metabolism in human and environmental systems. Cell Rep. 36, 109471 (2021).

    Google Scholar 

  77. Kulongoski, J. T. & McMahon, P. B. Methane emissions from groundwater pumping in the USA. Npj Clim. Atmos. Sci. 2, 11 (2019).

    Google Scholar 

  78. Mustafa, O., Thornton, S. F., Bau, D. & Mahmmud, R. A review of the occurrence, fate, and transport of SARS‑CoV‑2 in the aqueous environment, with specific reference to groundwater. Environ. Earth Sci. 84, 251 (2025).

    Google Scholar 

  79. Fromm, A. et al. Single-cell RNA-seq of the rare virosphere reveals the native hosts of giant viruses in the marine environment. Nat. Microbiol. 9, 1619–1629 (2024).

    Google Scholar 

  80. Bickhart, D. M. et al. Assignment of virus and antimicrobial resistance genes to microbial hosts in a complex microbial community by combined long-read assembly and proximity ligation. Genome Biol. 20, 153 (2019).

    Google Scholar 

  81. Sakowski, E. G. et al. Interaction dynamics and virus–host range for estuarine actinophages captured by epicPCR. Nat. Microbiol. 6, 630–642 (2021).

    Google Scholar 

  82. Grodner, B. et al. Spatial mapping of mobile genetic elements and their bacterial hosts in complex microbiomes. Nat. Microbiol. 9, 2262–2277 (2024).

    Google Scholar 

  83. Sakai, H. D. et al. Insight into the symbiotic lifestyle of DPANN archaea revealed by cultivation and genome analyses. Proc. Natl. Acad. Sci. USA 119, e2115449119 (2022).

    Google Scholar 

  84. Man, D. K. W. et al. Enrichment of different taxa of the enigmatic candidate phyla radiation bacteria using a novel picolitre droplet technique. ISME Commun. 4, ycae080 (2024).

    Google Scholar 

  85. Pérez-Carrascal, O. M., Pratama, A. A., Sullivan, M. B. & Küsel, K. Unveiling plasmid diversity and functionality in pristine groundwater. Environ. Microbiome 20, 42 (2025).

    Google Scholar 

  86. Guo, J. et al. Mobile genetic elements that shape microbial diversity and functions in thawing permafrost soils. Preprint at https://doi.org/10.1101/2025.02.12.637893 (2025).

  87. Régimbeau, A. et al. Planetary-scale heterotrophic microbial community modeling assesses metabolic synergy and viral impacts. bioRxiv. https://doi.org/10.1101/2025.02.13.638167 (2025).

  88. Taubert, M. et al. Tracking active groundwater microbes with D2O labelling to understand their ecosystem function. Environ. Microbiol. 20, 369–384 (2018).

    Google Scholar 

  89. Lehmann, R. & Totsche, K. U. Multi-directional flow dynamics shape groundwater quality in sloping bedrock strata. J. Hydrol. 580, 124291 (2020).

    Google Scholar 

  90. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    Google Scholar 

  91. Graham, E. D., Heidelberg, J. F. & Tully, B. J. BinSanity: unsupervised clustering of environmental microbial assemblies using coverage and affinity propagation. PeerJ 5, e3035 (2017).

    Google Scholar 

  92. Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    Google Scholar 

  93. Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    Google Scholar 

  94. Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).

    Google Scholar 

  95. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    Google Scholar 

  96. Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2020).

    Google Scholar 

  97. Parks, D. H. et al. Recovery of nearly 8000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    Google Scholar 

  98. The Genome Standards Consortium et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    Google Scholar 

  99. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Google Scholar 

  100. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).

    Google Scholar 

  101. Aroney, S. T. N. et al. CoverM: read alignment statistics for metagenomics. Bioinformatics 41, btaf147 (2025).

    Google Scholar 

  102. Li, D. et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).

    Google Scholar 

  103. Roux, S., Emerson, J. B., Eloe-Fadrosh, E. A. & Sullivan, M. B. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ 5, e3817 (2017).

    Google Scholar 

  104. Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).

    Google Scholar 

  105. Ren, J. et al. Identifying viruses from metagenomic data using deep learning. Quant. Biol. 8, 64–77 (2020).

    Google Scholar 

  106. Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).

    Google Scholar 

  107. Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).

    Google Scholar 

  108. Hegarty, B. et al. Benchmarking informatics approaches for virus discovery: caution is needed when combining in silico identification methods. mSystems 9, e01105-23 (2024).

    Google Scholar 

  109. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Google Scholar 

  110. Dobrindt, U., Hochhut, B., Hentschel, U. & Hacker, J. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2, 414–424 (2004).

    Google Scholar 

  111. Bertelli, C., Tilley, K. E. & Brinkman, F. S. L. Microbial genomic island discovery, visualization and analysis. Brief Bioinform. 20, 1685–1698 (2019).

    Google Scholar 

  112. Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940 (2017).

    Google Scholar 

  113. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York).

  114. Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Google Scholar 

  115. Gregory, A. C. et al. MetaPop: a pipeline for macro- and microdiversity analyses and visualization of microbial and viral metagenome-derived populations. Microbiome 10, 49 (2022).

    Google Scholar 

  116. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Google Scholar 

  117. Dion, M. B. et al. Streamlining CRISPR spacer-based bacterial host predictions to decipher the viral dark matter. Nucleic Acids Res. 49, 3127–3138 (2021).

    Google Scholar 

  118. Warner, H. R., Johnson, L. K. & Snustad, D. P. Early events after infection of Escherichia coli by bacteriophage T5. III. Inhibition of uracil-DNA glycosylase activity. J. Virol. 33, 535–538 (1980).

    Google Scholar 

  119. Warren, R. A. J. Modified bases in Bacteriophage DNAs. Annu. Rev. Microbiol. 34, 137–158 (1980).

    Google Scholar 

  120. Markine-Goriaynoff, N. et al. Glycosyltransferases encoded by viruses. J. Gen. Virol. 85, 2741–2754 (2004).

    Google Scholar 

  121. Young, P., Ohman, M. & Sjöberg, B. M. Bacteriophage T4 gene 55.9 encodes an activity required for anaerobic ribonucleotide reduction. J. Biol. Chem. 269, 27815–27818 (1994).

    Google Scholar 

  122. Kanehisa, M., Sato, Y. & Kawashima, M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci. 31, 47–53 (2022).

    Google Scholar 

  123. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Google Scholar 

  124. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Google Scholar 

  125. Iqbal, A., Duitama, C., Metge, F., Rosskopp, D. & Boucas, J. Flaski. Preprint at (2021).

  126. Quinn, T. P., Richardson, M. F., Lovell, D. & Crowley, T. M. propr: an R-package for identifying proportionally abundant features using compositional data analysis. Sci. Rep. 7, 16252 (2017).

    Google Scholar 

  127. Otasek, D., Morris, J. H., Bouças, J., Pico, A. R. & Demchak, B. Cytoscape automation: empowering workflow-based network analysis. Genome Biol. 20, 185 (2019).

    Google Scholar 

Download references

Acknowledgements

Akbar Adjie Pratama acknowledges financial support provided by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Germany’s Excellence Strategy (EXC 2051, Project-ID 390713860), awarded to K.K. and M.B.S. Additional support was received from the Collaborative Research Centre AquaDiva (CRC 1076, Project-ID 218627073) awarded to K.K., provided by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). Part of this work was enabled by funding provided to M.B.S. by the U.S. Department of Energy, award #DE-SC0023307. The authors would like to thank Heiko Minkmar, Falko Gutmann, René Maskos, and Stefan Riedel for groundwater sampling and on-site measurements/sample preparation. The authors would also like to thank Olivier Zablocki for his input on the manuscript. Thank you to Benjamin Bolduc for his help in interpreting the virus taxonomic analysis.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Aquatic Geomicrobiology, Institute of Biodiversity, Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany

    Akbar Adjie Pratama, Olga Pérez-Carrascal & Kirsten Küsel

  2. Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany

    Akbar Adjie Pratama, Olga Pérez-Carrascal & Kirsten Küsel

  3. Department of Microbiology, The Ohio State University, Columbus, OH, USA

    Akbar Adjie Pratama & Matthew B. Sullivan

  4. Center of Microbiome Science, The Ohio State University, Columbus, OH, USA

    Akbar Adjie Pratama & Matthew B. Sullivan

  5. National Science Foundation EMERGE Biology Integration Institute, Columbus, OH, USA

    Akbar Adjie Pratama & Matthew B. Sullivan

  6. Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA

    Matthew B. Sullivan

  7. Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany

    Kirsten Küsel

Authors
  1. Akbar Adjie Pratama
    View author publications

    Search author on:PubMed Google Scholar

  2. Olga Pérez-Carrascal
    View author publications

    Search author on:PubMed Google Scholar

  3. Matthew B. Sullivan
    View author publications

    Search author on:PubMed Google Scholar

  4. Kirsten Küsel
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.A.P., K.K., and M.B.S. created the study design. O.P.C. and A.A.P. collected all datasets. O.P.C. and A.A.P. performed the data analysis and visualization. A.A.P., O.P.C., M.B.S., and K.K. contributed to the scientific discussion and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Matthew B. Sullivan or Kirsten Küsel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Meng Li, and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Supplementary Data Files

Supplementary data 1

Supplementary data 2

Supplementary data 3

Supplementary Data 4

Supplementary data 5

Supplementary data 6

Supplementary data 7

Supplementary data 8

Supplementary data 9

Supplementary data 10

Supplementary data 11

Supplementary data 12

Supplementary data 13

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratama, A.A., Pérez-Carrascal, O., Sullivan, M.B. et al. Diversity and ecological roles of hidden viral players in groundwater microbiomes. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68914-2

Download citation

  • Received: 16 April 2025

  • Accepted: 15 January 2026

  • Published: 30 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68914-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology