Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Nitroreductase-triggered indazole formation
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 02 February 2026

Nitroreductase-triggered indazole formation

  • Henrik Terholsen  ORCID: orcid.org/0000-0001-9625-81771,
  • Lisa Medema1,
  • Elizaveta Chernyshova  ORCID: orcid.org/0009-0002-4145-15131,
  • Alejandro Prats Luján1,
  • Gerrit J. Poelarends  ORCID: orcid.org/0000-0002-6917-63681 &
  • …
  • Sandy Schmidt  ORCID: orcid.org/0000-0002-8443-88051 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biocatalysis
  • Enzymes

Abstract

Biocatalysis contributes significantly to the development of more sustainable synthetic pathways by using mild reaction conditions and water as a solvent. However, many relevant classes of compounds, including privileged groups in drug design, are not yet accessible via enzymatic pathways. In this context, the development of an enzymatic route to indazoles remains an unmet challenge. Here, we present a nitroreductase-triggered indazole formation, in which 2-nitrobenzylamine derivatives are converted to reactive nitrosobenzylamine intermediates that spontaneously cyclize and aromatize to indazoles. Two nitroreductases accept a series of 2-nitrobenzylamine derivatives with excellent conversions (up to >99 %). In the case of N-substituted nitrosobenzylamines, 2H-indazoles are formed, whereas other derivatives led to 1H-indazoles. The synthetic value of the nitroreductase-triggered indazole formation is further demonstrated by successful coupling with an imine reductase in a sequential cascade reaction on a 50 mg scale. With this cascade, 2H-indazoles are accessible from cheap 2-nitrobenzaldehyde and primary amines, resulting in up to 85 % conversion and 68 % isolated yield.

Data availability

Data relating to the materials and methods, experimental procedures, mechanistic studies, standard curves, response factors, enzyme kinetics, gas chromatography spectra, HRMS spectra, and NMR spectra are available in the Supplementary Information. All raw data are available from the corresponding author upon request. Protein accession codes: A0AAW3IFH5, P17117, A0AAP3FXD2, A0A7G5MPE8. Source data are provided with this paper.

References

  1. Yu, B., Li, N. & Fu, C. Privileged Scaffolds in Drug Discovery (Academic Press, 2023).

  2. Welsch, M. E., Snyder, S. A. & Stockwell, B. R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol. 14, 347–361 (2010).

    Google Scholar 

  3. Nastke, A. & Gröger, H. Biocatalytic synthesis of heterocycles. In Heterocycles 159–214 (John Wiley & Sons, Ltd, 2022).

  4. Xiang, H. et al. Biocatalytic and chemo-enzymatic synthesis of quinolines and 2-quinolones by monoamine oxidase (MAO-N) and horseradish peroxidase (HRP) biocatalysts. ACS Catal. 13, 3370–3378 (2023).

    Google Scholar 

  5. Cárdenas-Fernández, M., Roddan, R., Carter, E. M., Hailes, H. C. & Ward, J. M. The discovery of imine reductases and their utilisation for the synthesis of tetrahydroisoquinolines. ChemCatChem 15, e202201126 (2023).

    Google Scholar 

  6. Klein, A. S., Albrecht, A. C. & Pietruszka, J. Chemoenzymatic one-pot process for the synthesis of tetrahydroisoquinolines. Catalysts 11, 1389 (2021).

    Google Scholar 

  7. Alkorta, I. & Elguero, J. Theoretical estimation of the annular tautomerism of indazoles. J. Phys. Org. Chem. 18, 719–724 (2005).

    Google Scholar 

  8. Catalán, J., De Paz, J. L. G. & Elguero, J. Importance of aromaticity on the relative stabilities of indazole annular tautomers: an ab initio study. J. Chem. Soc. Perkin Trans. 2, 57–60 (1996).

    Google Scholar 

  9. Mal, S. et al. A review on synthetic strategy, molecular pharmacology of indazole derivatives, and their future perspective. Drug Dev. Res. 83, 1469–1504 (2022).

    Google Scholar 

  10. Rüchardt, C., Hassmann, V. & Aromatische Diazoniumsalze, X. Durchführung der Jacobsonschen Indazolsynthese im Eintopfverfahren. Liebigs Ann. Chem. 1980, 908–927 (1980).

    Google Scholar 

  11. Esmaeili-Marandi, F. et al. Potassium tert-butoxide promoted intramolecular amination of 1-aryl-2- (2-nitrobenzylidene)hydrazines: efficient synthesis of 1-Aryl-1H-indazoles. Synlett 25, 2605–2608 (2014).

    Google Scholar 

  12. Kumar, M. R., Park, A., Park, N. & Lee, S. Consecutive condensation, C–N and N–N bond formations: a copper- catalyzed one-pot three-component synthesis of 2H-indazole. Org. Lett. 13, 3542–3545 (2011).

    Google Scholar 

  13. Song, J. J. & Yee, N. K. A novel synthesis of 2-aryl-2H-indazoles via a palladium-catalyzed intramolecular amination reaction. Org. Lett. 2, 519–521 (2000).

    Google Scholar 

  14. Nykaza, T. V., Harrison, T. S., Ghosh, A., Putnik, R. A. & Radosevich, A. T. A biphilic phosphetane catalyzes N–N bond-forming cadogan heterocyclization via PIII/PV═O redox cycling. J. Am. Chem. Soc. 139, 6839–6842 (2017).

    Google Scholar 

  15. Schoene, J., Bel Abed, H., Schmieder, P., Christmann, M. & Nazaré, M. A general one-pot synthesis of 2H-indazoles using an organophosphorus–silane system. Chem. Eur. J. 24, 9090–9100 (2018).

    Google Scholar 

  16. Mills, A. D., Nazer, M. Z., Haddadin, M. J. & Kurth, M. J. N,N-bond-forming heterocyclization:  synthesis of 3-alkoxy-2H-indazoles. J. Org. Chem. 71, 2687–2689 (2006).

    Google Scholar 

  17. Kraemer, N. et al. Davis−Beirut reaction: a photochemical brønsted acid catalyzed route to N‑aryl 2H‑indazoles. Org. Lett. 21, 6058–6062 (2019).

    Google Scholar 

  18. Fish, Z. et al. N-N bond formation through N-H dehydrocoupling. Preprint at https://doi.org/10.26434/chemrxiv-2025-vtv4x (2025).

  19. Ospina, F. et al. Selective biocatalytic n-methylation of unsaturated heterocycles. Angew. Chem. Int. Ed. 61, e202213056 (2022).

    Google Scholar 

  20. Liu, Y.-M., Jiang, Y.-H., Liu, Q.-H. & Chen, B.-Q. Indazole-type alkaloids from the seeds of Nigella Glandulifera. Phytochem. Lett. 6, 556–559 (2013).

    Google Scholar 

  21. Liu, Y.-M., Yang, J.-S. & Liu, Q.-H. A new alkaloid and its artificial derivative with an indazole ring from Nigella Glandulifera. Chem. Pharm. Bull. (Tokyo) 52, 454–455 (2004).

    Google Scholar 

  22. Yuan, T. et al. Indazole-type alkaloids from nigella sativa seeds exhibit antihyperglycemic effects via ampk activation in vitro. J. Nat. Prod. 77, 2316–2320 (2014).

    Google Scholar 

  23. Atta-ur-Rahman et al. Nigellidine—a new indazole alkaloid from the seeds of Nigella Sativa. Tetrahedron Lett. 36, 1993–1996 (1995).

    Google Scholar 

  24. Russo, S., Luján, A. P., Fraaije, M. W. & Poelarends, G. J. Flavin-dependent nitroreductases: privileged enzymes for chemical and photochemical synthesis. ChemCatChem 17, e202401304 (2025).

  25. Luján, A. P. et al. Tailored photoenzymatic systems for selective reduction of aliphatic and aromatic nitro compounds fueled by light. Nat. Commun. 14, 5442 (2023).

    Google Scholar 

  26. Russo, S., Rozeboom, H. J., Wijma, H. J., Poelarends, G. J. & Fraaije, M. W. Biochemical, kinetic, and structural characterization of a Bacillus Tequilensis nitroreductase. FEBS J. 291, 3889–3903 (2024).

    Google Scholar 

  27. Luján, A. P., Bhat, M. F., Saravanan, T. & Poelarends, G. J. Exploring the substrate scope and catalytic promiscuity of nitroreductase-like enzymes. Adv. Synth. Catal. 366, 4679–4687 (2024).

    Google Scholar 

  28. Koder, R. L., Haynes, C. A., Rodgers, M. E., Rodgers, D. W. & Miller, A.-F. Flavin thermodynamics explain the oxygen insensitivity of enteric nitroreductases. Biochemistry 41, 14197–14205 (2002).

    Google Scholar 

  29. Miller, A.-F., Park, J. T., Ferguson, K. L., Pitsawong, W. & Bommarius, A. S. Informing efforts to develop nitroreductase for amine production. Molecules 23, 211 (2018).

    Google Scholar 

  30. Pitsawong, W., Hoben, J. P. & Miller, A.-F. Understanding the broad substrate repertoire of nitroreductase based on its kinetic mechanism. J. Biol. Chem. 289, 15203–15214 (2014).

    Google Scholar 

  31. Angeli, C. et al. Recent developments and challenges in the enzymatic formation of nitrogen–nitrogen bonds. ACS Catal. 15, 310–342 (2025).

    Google Scholar 

  32. Frontana-Uribe, B. A. & Moinet, C. 2-Substituted indazoles from electrogenerated ortho-nitrosobenzylamines. Tetrahedron 54, 3197–3206 (1998).

    Google Scholar 

  33. Frontana-Uribe, B. A., Moinet, C. & Toupet, L. N-substituted 1-aminoindoles from electrogenerated N-substituted 2-(ortho-nitrosophenyl)ethylamines. Eur. J. Org. Chem. 1999, 419–430 (1999).

    Google Scholar 

  34. White, S. A. et al. The 3D-structure, kinetics and dynamics of the E. Coli nitroreductase NfsA with NADP+ provide glimpses of its catalytic mechanism. FEBS Lett. 596, 2425–2440 (2022).

    Google Scholar 

  35. Race, P. R. et al. Structural and mechanistic studies of Escherichia Coli nitroreductase with the antibiotic nitrofurazone. J. Biol. Chem. 280, 13256–13264 (2005).

    Google Scholar 

  36. Zenno, S. et al. Biochemical characterization of NfsA, the Escherichia Coli major nitroreductase exhibiting a high amino acid sequence homology to Frp, a Vibrio harveyi flavin oxidoreductase. J. Bacteriol. 178, 4508–4514 (1996).

    Google Scholar 

  37. Valiauga, B., Žulpaitė, D., Sharrock, A. V., Ackerley, D. F. & Čėnas, N. Novel TdsD nitroreductase: characterization of kinetics and substrate specificity. Biotechnol. Lett. 47, 103 (2025).

    Google Scholar 

  38. Gilio, A. K. et al. Reductive aminations by imine reductases: from milligrams to tons. Chem. Sci. 13, 4697–4713 (2022).

    Google Scholar 

  39. Scheller, P. N., Lenz, M., Hammer, S. C., Hauer, B. & Nestl, B. M. Imine reductase-catalyzed intermolecular reductive amination of aldehydes and ketones. ChemCatChem 7, 3239–3242 (2015).

    Google Scholar 

  40. Montgomery, S. L. et al. Characterization of imine reductases in reductive amination for the exploration of structure-activity relationships. Sci. Adv. 6, eaay9320 (2020).

    Google Scholar 

  41. Aleku, G. A. et al. A reductive aminase from Aspergillus oryzae. Nat. Chem. 9, 961–969 (2017).

    Google Scholar 

  42. Knaus, T., Corrado, M. L. & Mutti, F. G. One-pot biocatalytic synthesis of primary, secondary, and tertiary amines with two stereocenters from α,β-unsaturated ketones using alkyl-ammonium formate. ACS Catal. 12, 14459–14475 (2022).

    Google Scholar 

  43. De, A., Shukla, A. & Masood Husain, S. One-Pot multienzyme cascades for stereodivergent synthesis of tetrahydroquinolines. Angew. Chem. Int. Ed. 63, e202411561 (2024).

    Google Scholar 

  44. Nagao, T. et al. Cloning, nucleotide sequences, and enzymatic properties of glucose dehydrogenase isozymes from Bacillus Megaterium IAM1030. J. Bacteriol. 174, 5013–5020 (1992).

    Google Scholar 

  45. Maier, A., Knaus, T., Mutti, F. G. & Tischler, D. Unlocking catalytic diversity of a formate dehydrogenase: formamide activity for NADPH regeneration and amine supply for asymmetric reductive amination. ACS Catal. 14, 2207–2215 (2024).

    Google Scholar 

Download references

Acknowledgements

This work was supported by a NWO-VIDI grant from the Netherlands Organization for Scientific Research (NWO, VI.Vidi.213.025) and the European Research Council, ERC (grant agreement number 101075934, ReCNNSTRCT). We also acknowledge financial support from the Netherlands Organization for Scientific Research (VICI grant 724.016.002 awarded to G.J.P.). We thank Francesco G. Mutti (University of Amsterdam) for kindly providing the plasmids encoding IREDs and AspRedAm and Dirk Tischler (Ruhr-University Bochum) for kindly providing the plasmids encoding FDHs. We would also like to thank Ronald van Merkerk (University of Groningen) for developing the pH-STAT device used for mechanistic investigations.

Author information

Authors and Affiliations

  1. Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands

    Henrik Terholsen, Lisa Medema, Elizaveta Chernyshova, Alejandro Prats Luján, Gerrit J. Poelarends & Sandy Schmidt

Authors
  1. Henrik Terholsen
    View author publications

    Search author on:PubMed Google Scholar

  2. Lisa Medema
    View author publications

    Search author on:PubMed Google Scholar

  3. Elizaveta Chernyshova
    View author publications

    Search author on:PubMed Google Scholar

  4. Alejandro Prats Luján
    View author publications

    Search author on:PubMed Google Scholar

  5. Gerrit J. Poelarends
    View author publications

    Search author on:PubMed Google Scholar

  6. Sandy Schmidt
    View author publications

    Search author on:PubMed Google Scholar

Contributions

H.T., L.M., and E.C. designed and performed most of the experiments. A.P.L. and G.J.P. contributed NRs and knowledge about these enzymes. H.T. and S.S. conceived the project, and S.S. directed it. H.T. wrote the manuscript and all authors jointly edited the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Sandy Schmidt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Joerg H. Schrittwieser and the other anonymous reviewers for their contribution to the peer review of this work. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terholsen, H., Medema, L., Chernyshova, E. et al. Nitroreductase-triggered indazole formation. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68926-y

Download citation

  • Received: 16 February 2025

  • Accepted: 20 January 2026

  • Published: 02 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68926-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing