Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
An experimentally-informed polymer model reveals high resolution organization of genomic loci
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 04 February 2026

An experimentally-informed polymer model reveals high resolution organization of genomic loci

  • Rahul Mittal1,
  • Dieter W. Heermann  ORCID: orcid.org/0000-0002-3148-83822 &
  • Arnab Bhattacherjee  ORCID: orcid.org/0000-0002-7714-26191,2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chromatin structure
  • Computational biophysics
  • Nucleosomes

Abstract

Gene expression patterns are governed by the hierarchical organization of the genome. Numerous efforts, leveraging both polymer physics-based models and experimental imaging technologies, have sought to elucidate the structure-function relationship of chromatin fibers. However, a major challenge is posed by the multi-scale nature of chromatin organization. Here, we present an experimentally informed, polymer physics-based model capable of reconstructing chromatin structural ensembles by integrating low-resolution contact data with MNase-derived nucleosome positioning information. We apply our approach to multiple human genomic loci. Our analysis shows distinct structural features associated with active and inactive chromatin states, providing insights into the relationship between genomic organization and transcriptional activity. These findings offer a framework for understanding genome structure-function relationships.

Data availability

In our study, we use published datasets of the hESC cell line as input data. The Micro-C and in situ Hi-C contact map datasets from Krietenstein et al. are available on the 4D Nucleome Data Portal under accession numbers 4DNES21D8SP8 [https://data.4dnucleome.org/experiment-set-replicates/4DNES21D8SP8/] (Micro-C dataset) and 4DNES2M5JIGV [https://data.4dnucleome.org/experiment-set-replicates/4DNES2M5JIGV/] (Hi-C dataset)98. Nucleosome position data for the relevant genomic loci were obtained from the MNase-Seq H1 sample by Yazdi et al., deposited in the GEO database under accession number GSM1194220 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1194220]99. Also, all data underlying the analyses presented in this study are provided in the Source Data file. Source data are provided with this paper.

Code availability

PyMOL 2.5.0 Open-Source, 2022-03-17 is used for visualization of 3D polymer configurations. Gnuplot 5.4 patchlevel 2 and Python libraries using conda environment are used for plotting. Keynotes are used for schematic figures. A combination of C and Python codes are used for all the analyses. Python codes are available on GitHub100.

References

  1. Forth, S. et al. Torque measurement at the single-molecule level. Annu. Rev. Biophys. 42, 583–604 (2013).

    Google Scholar 

  2. Ma, J. et al. DNA supercoiling during transcription. Biophys. Rev. 8, 75–87 (2016).

    Google Scholar 

  3. Dunaway, M. et al. Local domains of supercoiling activate a eukaryotic promoter in vivo. Nature 361, 746–748 (1993).

    Google Scholar 

  4. Mondal, A. et al. Understanding the role of DNA topology in target search dynamics of proteins. J. Phys. Chem. B 121, 9372–9381 (2017).

    Google Scholar 

  5. Bhattacherjee, A. et al. Search by proteins for their DNA target site: 1. The effect of DNA conformation on protein sliding. Nucleic Acids Res. 42, 12404–12414 (2014).

    Google Scholar 

  6. Bhattacherjee, A. et al. Search by proteins for their DNA target site: 2. The effect of DNA conformation on the dynamics of multidomain proteins. Nucleic Acids Res. 42, 12415–12424 (2014).

    Google Scholar 

  7. Wang, X. et al. Negatively charged, intrinsically disordered regions can accelerate target search by DNA-binding proteins. Nucleic Acids Res. 51, 4701–4712 (2023).

    Google Scholar 

  8. Vuzman, D. et al. DNA search efficiency is modulated by charge composition and distribution in the intrinsically disordered tail. Proc. Natl. Acad. Sci. USA 107, 21004–21009 (2010).

    Google Scholar 

  9. Sangeeta et al. Role of shape deformation of DNA-binding sites in regulating the efficiency and specificity in their recognition by DNA-binding proteins. JACS Au 4, 2640–2655 (2024).

  10. Sangeeta et al. Nick induced dynamics in supercoiled DNA facilitates the protein target search process. J. Phys. Chem. B 128, 8246–8258 (2024).

  11. Mondal, A. et al. Torsional behaviour of supercoiled DNA regulates recognition of architectural protein fis on minicircle DNA. Nucleic Acids Res. 50, 6671–6686 (2022).

    Google Scholar 

  12. Dey, P. et al. Structural basis of enhanced facilitated diffusion of dna-binding protein in crowded cellular milieu. Biophys. J. 118, 505–517 (2020).

    Google Scholar 

  13. Dey, P. et al. Role of macromolecular crowding on the intracellular diffusion of DNA binding proteins. Sci. Rep. 8, 844 (2018).

    Google Scholar 

  14. Mishra, S. et al. How do nucleosome dynamics regulate protein search on DNA? J. Phys. Chem. B 127, 5702–5717 (2023).

    Google Scholar 

  15. Tsompana, M. et al. Chromatin accessibility: a window into the genome. Epigenetics Chromatin 7, 33 (2014).

    Google Scholar 

  16. Hofmann, A. et al. Self-organised segregation of bacterial chromosomal origins. eLife 8, e46564 (2019).

    Google Scholar 

  17. Mondal, A. et al. Nucleosome breathing facilitates cooperative binding of pluripotency factors Sox2 and Oct4 to DNA. Biophys. J. 121, 4526–4542 (2022).

    Google Scholar 

  18. Bilokapic, S. et al. Histone octamer rearranges to adapt to DNA unwrapping. Nat. Struct. Mol. Biol. 25, 101–108 (2018).

    Google Scholar 

  19. Lee, B. et al. Characterizing chromatin interactions of regulatory elements and nucleosome positions, using Hi-C, micro-C, and promoter capture micro-C. Epigenetics Chromatin 15, 41 (2022).

    Google Scholar 

  20. Fraser, J. et al. Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation. Mol. Syst. Biol. 11, 852 (2015).

    Google Scholar 

  21. Luger, K. et al. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Google Scholar 

  22. Mondal, A. et al. Kinetic origin of nucleosome invasion by pioneer transcription factors. Biophys. J. 120, 5219–5230 (2021).

    Google Scholar 

  23. Fierz, B. et al. Biophysics of chromatin dynamics. Annu. Rev. Biophys. 48, 321–345 (2019).

    Google Scholar 

  24. Brandani, G. et al. DNA sliding in nucleosomes via twist defect propagation revealed by molecular simulations. Nucleic Acids Res. 46, 2788–2801 (2018).

    Google Scholar 

  25. Meersseman, G. et al. Mobile nucleosomes–a general behavior. EMBO J. 11, 2951–2959 (1992).

    Google Scholar 

  26. Li, K. et al. Inter-nucleosomal potentials from nucleosomal positioning data. Eur. Phys. J. E 45, 33 (2022).

    Google Scholar 

  27. Mishra, S. et al. Superstructure detection in nucleosome distribution shows common pattern within a chromosome and within the genome. Life 12, 541 (2022).

    Google Scholar 

  28. Farr, S. et al. Nucleosome plasticity is a critical element of chromatin liquid-liquid phase separation and multivalent nucleosome interactions. Nat. Commun. 12, 2883 (2021).

    Google Scholar 

  29. Dekker, J. et al. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Google Scholar 

  30. Bonev, B. et al. Organization and function of the 3d genome. Nat. Rev. Genet. 17, 661–678 (2016).

    Google Scholar 

  31. Sati, S. et al. Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma 126, 33–44 (2017).

    Google Scholar 

  32. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Google Scholar 

  33. Sanborn, A. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. USA 112, E6456–E6465 (2015).

    Google Scholar 

  34. Galazka, J. et al. Neurospora chromosomes are organized by blocks of importin alpha-dependent heterochromatin that are largely independent of h3k9me3. Genome Res. 26, 1069–1080 (2016).

    Google Scholar 

  35. Shah, S. et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqfish. Cell 174, 363–376 (2018).

    Google Scholar 

  36. Franke, M. et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538, 265–269 (2016).

    Google Scholar 

  37. Flavahan, W. et al. Insulator dysfunction and oncogene activation in idh mutant gliomas. Nature 529, 110–114 (2016).

    Google Scholar 

  38. Bonev, B. et al. Multiscale 3d genome rewiring during mouse neural development. Cell 171, 557–572.e24 (2017).

    Google Scholar 

  39. Dixon, J. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Google Scholar 

  40. Zhang, Y. & Heermann, D. W. Loops determine the mechanical properties of mitotic chromosomes. PLoS ONE 6, 1–13 (2011).

    Google Scholar 

  41. Pope, B. et al. Topologically associating domains are stable units of replication-timing regulation. Nature 515, 402–405 (2014).

    Google Scholar 

  42. Symmons, O. et al. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 24, 390–400 (2014).

  43. Ramírez, F. et al. High-resolution tads reveal DNA sequences underlying genome organization in flies. Nat. Commun. 9, 189 (2018).

    Google Scholar 

  44. Lupiáñez, D. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015).

    Google Scholar 

  45. Lupiáñez, D. et al. Breaking tads: How alterations of chromatin domains result in disease. Trends Genet. 32, 225–237 (2016).

    Google Scholar 

  46. Zhang, B. & Wolynes, P. G. Prediction of chromosome conformations with maximum entropy principle. Biophys. J. 108, 537a (2015).

    Google Scholar 

  47. Marti-Renom, M. A. & Mirny, L. A. Bridging the resolution gap in structural modeling of 3d genome organization. PLoS Comput. Biol. 7, 1–6 (2011).

    Google Scholar 

  48. Mirny, L. A. et al. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res. 19, 37–51 (2011).

    Google Scholar 

  49. Polovnikov, K. E. et al. Crumpled polymer with loops recapitulates key features of chromosome organization. Phys. Rev. X 13, 041029 (2023).

    Google Scholar 

  50. Shi, G. & Thirumalai, D. A maximum-entropy model to predict 3d structural ensembles of chromatin from pairwise distances with applications to interphase chromosomes and structural variants. Nat. Commun. 14, 1150 (2023).

    Google Scholar 

  51. Lin, X., Qi, Y., Latham, A. P. & Zhang, B. Multiscale modeling of genome organization with maximum entropy optimization. J. Chem. Phys. 155, 010901 (2021).

    Google Scholar 

  52. Nguyen, H. T. & Thirumalai, D. Liquid-liquid phase separation of repeat disorder sequences leads to RNA conformational and dynamical heterogeneity. Biophys. J. 120, 108a (2021).

    Google Scholar 

  53. Zhang, B. & Wolynes, P. G. Topology, structures, and energy landscapes of human chromosomes. Proc. Natl. Acad. Sci. USA 112, 6062–6067 (2015).

    Google Scholar 

  54. Hovenga, V., Kalita, J. & Oluwadare, O. Hic-gnn: A generalizable model for 3d chromosome reconstruction using graph convolutional neural networks. Comput. Struct. Biotechnol. J. 21, 812–836 (2023).

    Google Scholar 

  55. Beagrie, R. A., Scialdone, A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017).

    Google Scholar 

  56. Kalhor, R. et al. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol. 30, 90–98 (2012).

    Google Scholar 

  57. Hu, M. et al. Bayesian inference of spatial organizations of chromosomes. PLoS Comput. Biol. 9, 1–14 (2013).

    Google Scholar 

  58. Le Treut, G., Képès, F. & Orland, H. A polymer model for the quantitative reconstruction of chromosome architecture from hic and gam data. Biophys. J. 115, 2286–2294 (2018).

    Google Scholar 

  59. Di Pierro, M. et al. De novo prediction of human chromosome structures: epigenetic marking patterns encode genome architecture. Proc. Natl. Acad. Sci. USA 114, 12126–12131 (2017).

    Google Scholar 

  60. Galan, S., Serra, F. et al. Identification of chromatin loops from Hi-C interaction matrices by ctcf–ctcf topology classification. NAR Genom. Bioinform. 4, lqac021 (2022).

  61. Dugar, G. et al. A chromosomal loop anchor mediates bacterial genome organization. Nat. Genet. 54, 194–201 (2022).

    Google Scholar 

  62. Hofmann, A. et al. The role of loops on the order of eukaryotes and prokaryotes. FEBS Lett. 589, 2958–2965 (2015).

    Google Scholar 

  63. Chiariello, A. M. et al. Multiscale modelling of chromatin 4d organization in sars-cov-2 infected cells. Nat. Commun. 15, 1–12 (2024).

    Google Scholar 

  64. Forte, G. et al. Modeling the 3d spatiotemporal organization of chromatin replication. PRX Life 2, 033014 (2024).

    Google Scholar 

  65. Brandani, G. B., Gu, C., Gopi, S. & Takada, S. Multiscale Bayesian simulations reveal functional chromatin condensation of gene loci. PNAS Nexus 3, 226 (2024).

    Google Scholar 

  66. Kadam, S. et al. Predicting scale-dependent chromatin polymer properties from systematic coarse-graining. Nat. Commun. 14, 4108 (2023).

    Google Scholar 

  67. Serra, F. et al. Automatic analysis and 3d-modelling of Hi-C data using tadbit reveals structural features of the fly chromatin colors. PLoS Comput. Biol. 13, e1005665 (2017).

    Google Scholar 

  68. Di Stefano, M. et al. Transcriptional activation during cell reprogramming correlates with the formation of 3d open chromatin hubs. Nat. Commun. 11, 2564 (2020).

    Google Scholar 

  69. Mendieta-Esteban, J., Di Stefano, M. et al. 3d reconstruction of genomic regions from sparse interaction data. NAR Genom. Bioinform. 3, lqab017 (2021).

    Google Scholar 

  70. Neguembor, M. V., Arcon, J. P. et al. Mios, an integrated imaging and computational strategy to model gene folding with nucleosome resolution. Nat. Struct. Mol. Biol. 29, 1011–1023 (2022).

    Google Scholar 

  71. Barth, R. et al. Coupling chromatin structure and dynamics by live super-resolution imaging. Sci. Adv. 6, eaaz2196 (2020).

    Google Scholar 

  72. Lorzadeh, A. et al. Nucleosome density ChIP-Seq identifies distinct chromatin modification signatures associated with MNase accessibility. Cell Rep. 17, 2112–2124 (2016).

    Google Scholar 

  73. modENCODE Consortium et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787–1797 (2010).

  74. Rosenbloom, K. et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res. 41, D56–D63 (2013).

    Google Scholar 

  75. Wiese, O. et al. Nucleosome positions alone can be used to predict domains in yeast chromosomes. Proc. Natl. Acad. Sci. USA 116, 17307–17315 (2019).

    Google Scholar 

  76. Consortium, R. E. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Google Scholar 

  77. Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12, 2478–2492 (2017).

    Google Scholar 

  78. Roy et al. Identification of functional elements and regulatory circuits by Drosophila modencode. Science 330, 1787–1797 (2010).

  79. Yue, F. et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 515, 355–364 (2014).

    Google Scholar 

  80. Cunningham, F. et al. Ensembl 2015. Nucleic Acids Res. 43, D662–D669 (2015).

    Google Scholar 

  81. Barbieri, M. et al. Complexity of chromatin folding is captured by the strings and binders switch model. Proc. Natl. Acad. Sci. USA 109, 16173–16178 (2012).

    Google Scholar 

  82. Ricci, M. et al. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160, 1145–1158 (2015).

    Google Scholar 

  83. Zufferey, M. et al. Comparison of computational methods for the identification of topologically associating domains. Genome Biol. 19, 217 (2018).

    Google Scholar 

  84. Chen, F. et al. Hicdb: a sensitive and robust method for detecting contact domain boundaries. Nucleic Acids Res. 46, 11239–11250 (2018).

    Google Scholar 

  85. Ester, M. et al. A density-based algorithm for discovering clusters in large spatial databases with noise. KDD 96, 226–231 (1996).

    Google Scholar 

  86. Gamby, A. et al. Convex-hull algorithms: implementation, testing, and experimentation. Algorithms 11, 195 (2018).

    Google Scholar 

  87. Pownall, M. E. et al. Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin. Science 381, 92–100 (2023).

    Google Scholar 

  88. Amadei, A. et al. Essential dynamics of proteins. Proteins 17, 412–425 (1993).

    Google Scholar 

  89. Di Pierro, M. et al. Transferable model for chromosome architecture. Proc. Natl. Acad. Sci. USA 113, 12168–12173 (2016).

    Google Scholar 

  90. Cui, Y. & Bustamante, C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl. Acad. Sci. USA 97, 127–132 (2000).

    Google Scholar 

  91. Arbona, J. et al. Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations. Genome Biol. 18, 81 (2017).

    Google Scholar 

  92. Leidescher, S. et al. Spatial organization of transcribed eukaryotic genes. Nat. Cell Biol. 24, 327–339 (2022).

    Google Scholar 

  93. Mergell, B., Everaers, R. & Schiessel, H. Nucleosome interactions in chromatin: fiber stiffening and hairpin formation. Phys. Rev. E 70, 011915 (2004).

    Google Scholar 

  94. Zeng, Y. et al. Lin28a binds active promoters and recruits Tet1 to regulate gene expression. Mol. Cell 61, 153–160 (2016).

  95. Chen, K. et al. Danpos: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res. 23, 341–351 (2013).

    Google Scholar 

  96. Kumari, K. et al. Computing 3d chromatin configurations from contact probability maps by inverse Brownian dynamics. Biophys. J. 118, 2193–2208 (2020).

    Google Scholar 

  97. Carignano, M. A. et al. Local volume concentration, packing domains, and scaling properties of chromatin. eLife 13, RP97604 (2024).

    Google Scholar 

  98. Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565.e7 (2020).

    Google Scholar 

  99. Yazdi, P. et al. Nucleosome organization in human embryonic stem cells. PLoS ONE 10, e0136314 (2015).

    Google Scholar 

  100. Mittal, R., Heermann, D. W. & Bhattacherjee, A. An experimentally-informed polymer model reveals high resolution organization of genomic loci. Scor8R/MultiScale_Chromosome_Organisation, https://doi.org/10.5281/zenodo.17913622 (2025).

Download references

Acknowledgements

We gratefully acknowledge the financial support from DST India (CRG/2023/000636), DBT India (BT/PR46247/BID/7/1015/2023), DBT CoE research grant and JNU ANRF PAIR grant (ANRF/PAIR/2025/000029/PAIR-A). A.B. gratefully acknowledges support from the Alexandar von Humboldt Foundation, Germany. D.H. gratefully acknowledges the support from Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2181/1 - 390900948 (the Heidelberg STRUCTURES Excellence Cluster). R.M. acknowledges the financial support from the Council of Scientific & Industrial Research (CSIR), Govt. of India for Senior Research Fellowship (File No: 09/0263(11815)/2021-EMR-I).

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India

    Rahul Mittal & Arnab Bhattacherjee

  2. Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany

    Dieter W. Heermann & Arnab Bhattacherjee

Authors
  1. Rahul Mittal
    View author publications

    Search author on:PubMed Google Scholar

  2. Dieter W. Heermann
    View author publications

    Search author on:PubMed Google Scholar

  3. Arnab Bhattacherjee
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.B. conceived the idea. R.M. and A.B. designed the model and algorithms. R.M. collected the relevant datasets and performed the simulations. R.M. and A.B. wrote the manuscript. D.H. provided feedback regarding further improvement of the manuscript.

Corresponding author

Correspondence to Arnab Bhattacherjee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Andrea Chiariello and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, R., Heermann, D.W. & Bhattacherjee, A. An experimentally-informed polymer model reveals high resolution organization of genomic loci. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68928-w

Download citation

  • Received: 18 March 2025

  • Accepted: 08 January 2026

  • Published: 04 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68928-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing