Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. perspectives
  4. article
Cracking the code of multi-layer films to promote circularity in single-use plastic packaging
Download PDF
Download PDF
  • Perspective
  • Open access
  • Published: 03 February 2026

Cracking the code of multi-layer films to promote circularity in single-use plastic packaging

  • Ethan C. Quinn  ORCID: orcid.org/0000-0002-9609-806X1,2,3 na1,
  • Levi J. Hamernik2,3 na1,
  • Jeffrey N. Law  ORCID: orcid.org/0000-0003-2828-12732 na1,
  • Ryan W. Clarke4,
  • Maya Milrod  ORCID: orcid.org/0000-0002-6118-74765,
  • Shivani Kozarekar6,
  • Rebecca M. Mick7,
  • Margaret J. Sobkowicz8,
  • Linda J. Broadbelt6,
  • Brandon C. Knott  ORCID: orcid.org/0000-0003-3414-38972 &
  • …
  • Katrina M. Knauer  ORCID: orcid.org/0000-0002-0125-75322,3 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Design, synthesis and processing
  • Mechanical properties
  • Polymers

Abstract

Multi-layer film packaging (MLF) revolutionized food preservation by combining diverse material layers to optimize barrier properties, mechanical strength, and shelf-life. These materials are essential for transporting perishables across various climates and allow for access to fresh goods in “food deserts”, but they pose significant recycling challenges due to their structural complexity. This perspective examines key structure-property relationships governing barrier performance and highlights innovations in material design. We explore how machine learning can predict performance metrics and propose recyclable alternatives, integrating data-driven approaches with material science insights. By challenging the status quo of MLF design, we advocate for circularity in food packaging, inspiring innovation at the intersection of sustainability, material science, and artificial intelligence.

Data availability

The data that supports the findings presented in this perspective are available in the Supplementary Information. Polymer water vapor permeability data used to train the PolyID model are available at doi.org/10.5281/zenodo.18262440. All data are available from the corresponding authors upon request.

Code availability

The code to run and train the PolyID model and to run DORAnet are available at github.com/NREL/polyid and github.com/wsprague-nu/doranet, respectively. An updated web-based interface that serves the models and makes predictions is available at https://polyid.nrel.gov.

References

  1. Walker, T. W. et al. Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Sci. Adv. 6, eaba7599 (2020).

    Google Scholar 

  2. Anukiruthika, T. et al. Multilayer packaging: advances in preparation techniques and emerging food applications. CRFSFS 19, 1156–1186 (2020).

    Google Scholar 

  3. Coles, R. & Kirwan, M. J. Food and beverage packaging technology (John Wiley & Sons, 2011).

  4. Horodytska, O., Valdés, F. J. & Fullana, A. Plastic flexible films waste management–A state of art review. Waste Manag 77, 413–425 (2018).

    Google Scholar 

  5. Andrady, A.L. Plastics and the Environment (John Wiley & Sons, 2003).

  6. Schnurr, R. E. J. et al. Reducing marine pollution from single-use plastics (SUPs): a review. Mar. Pollut. Bull. 137, 157–171 (2018).

    Google Scholar 

  7. Tun, T. Z. et al. Polymer types and additive concentrations in single-use plastic products collected from Indonesia, Japan, Myanmar, and Thailand. Sci. Total Environ. 889, 163983 (2023).

    Google Scholar 

  8. Hopewell, J., Dvorak, R. & Kosior, E. Plastics recycling: challenges and opportunities. Philos. Trans. R. Soc. B-Biol. Sci. 364, 2115–2126 (2009).

    Google Scholar 

  9. Schyns, Z. O. G. & Shaver, M. P. Mechanical recycling of packaging plastics: a review. Macromol. Rapid Commun. 42, 2000415 (2021).

    Google Scholar 

  10. Cecon, V. S., Curtzwiler, G. W. & Vorst, K. L. A study on recycled polymers recovered from multilayer plastic packaging films by solvent-targeted recovery and precipitation (STRAP). Macromol. Mater. Eng. 307, 2200346 (2022).

    Google Scholar 

  11. Tamizhdurai, P. et al. A state-of-the-art review of multilayer packaging recycling: challenges, alternatives, and outlook. J. Clean. Prod. 447, 141403 (2024).

    Google Scholar 

  12. Hu, Z. et al. Terpenoid-based high-performance polyester with tacticity-independent crystallinity and chemical circularity. Chem 10, 3040–3054 (2024).

    Google Scholar 

  13. Quinn, E. C. et al. Installing controlled stereo-defects yields semicrystalline and biodegradable Poly(3-Hydroxybutyrate) with high toughness and optical clarity. JACS 145, 5795–5802 (2023).

    Google Scholar 

  14. Sangroniz, A. et al. Improving the barrier properties of a biodegradable polyester for packaging applications. Eur. Polym. J. 115, 76–85 (2019).

    Google Scholar 

  15. Sangroniz, A., Zhu, J.-B., Etxeberria, A., Chen, E. Y.-X. & Sardon, H. Modulating the crystallinity of a circular plastic towards packaging material with outstanding barrier properties. Macromol. Rapid Commun. 43, 2200008 (2022).

    Google Scholar 

  16. Sangroniz, A. et al. Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nat. Commun. 10, 3559 (2019).

    Google Scholar 

  17. Trinh, B. M., Chang, B. P. & Mekonnen, T. H. The barrier properties of sustainable multiphase and multicomponent packaging materials: a review. Prog. Mater. Sci. 133, 101071 (2023).

    Google Scholar 

  18. Choi, K. & Hong, S. H. Chemically recyclable oxygen-protective polymers developed by ring-opening metathesis homopolymerization of cyclohexene derivatives. Chem. 9, 2637–2654 (2023).

    Google Scholar 

  19. Jang, Y.-J., Nguyen, S. & Hillmyer, M. A. Chemically recyclable linear and branched polyethylenes synthesized from stoichiometrically self-balanced telechelic polyethylenes. JACS 146, 4771–4782 (2024).

    Google Scholar 

  20. Anwar, M. A., Suprihatin, Sasongko, N. A., Najib, M. & Pranoto, B. Challenges and prospects of multilayer plastic waste management in several countries: a systematic literature review. CSCEE 10, 100911 (2024).

    Google Scholar 

  21. Quinn, E. C., Knauer, K. M., Beckham, G. T. & Chen, E. Y. X. Mono-material product design with bio-based, circular, and biodegradable polymers. One Earth 6, 582–586 (2023).

    Google Scholar 

  22. Chen, T. et al. Machine intelligence-accelerated discovery of all-natural plastic substitutes. Nat. Nanotechnol. 19, 782–791 (2024).

    Google Scholar 

  23. Fang, Y. et al. Artificial intelligence in plastic recycling and conversion: a review. Resour. Conserv. Recycl. 215, 108090 (2025).

    Google Scholar 

  24. Wilson, A. N. et al. PolyID: artificial intelligence for discovering performance-advantaged and sustainable polymers. Macromolecules 56, 8547–8557 (2023).

    Google Scholar 

  25. Risch, S. J. Food packaging history and innovations. J. Agric. Food Chem. 57, 8089–8092 (2009).

    Google Scholar 

  26. Morris, B. A. Flexible packaging past, present and future: Reflections on a century of technology advancement. J. Plast. Film. Sheet 40, 151–170 (2024).

    Google Scholar 

  27. Wagner, Jr J. R. Multilayer flexible packaging (William Andrew, 2016).

  28. Wing, H. J. Water impedance of nitro-cellulose films. J. Ind. Eng. Chem. 28, 786–788 (1936).

    Google Scholar 

  29. Paunonen, S. I. Strength and barrier enhancements of cellophane and cellulose derivative films: a review. (2013).

  30. Morris, B. A. The science and technology of flexible packaging: multilayer films from resin and process to end use (William Andrew, 2022).

  31. Demeuse, M. T. Biaxial stretching of film: Principles and applications (Elsevier, 2011).

  32. Wessling, R. A., Gibbs, D. S., DeLassus, P. T., Obi, B. E. & Howell, B. A. Vinylidene chloride monomer and polymers. In Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley & Sons, 2007).

  33. Morris, B. A. Commonly used resins and substrates in flexible packaging. in The Science and Technology of Flexible Packaging (ed Morris, BA) (William Andrew Publishing, 2017).

  34. Piringer, O. G. &Baner, A. L. Plastic packaging materials for food: barrier function, mass transport, quality assurance, and legislation (John Wiley & Sons, 2008).

  35. DeLassus, P. Barrier Polymers. In Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley & Sons, 2002).

  36. Mokwena, K. K. & Tang, J. Ethylene vinyl alcohol: a review of barrier properties for packaging shelf stable foods. Crit. Rev. Food Sci. Nutr. 52, 640–650 (2012).

    Google Scholar 

  37. Dunn, T. Manufacturing flexible packaging: materials, machinery, and techniques (William Andrew, 2014).

  38. Brody, A. L. Packaging of Foods. in Encyclopedia of Food Microbiology (Second Edition) (eds Batt, C.A. & Tortorello, M.L.) (Academic Press, 2014).

  39. Maes, C. et al. Recent updates on the barrier properties of ethylene vinyl alcohol copolymer (EVOH): a review. Polym. Rev. 58, 209–246 (2018).

    Google Scholar 

  40. Morris, B. A. The Science and Technology of Flexible Packaging: Multilayer Films from Resin and Process to End Use (William Andrew, 2016).

  41. Mount, E. Coextrusion equipment for multilayer flat films and sheets. in Multilayer Flexible Packaging (ed Wagner JR) (William Andrew Publishing, 2010).

  42. de Mello Soares, C. T., Ek, M., Östmark, E., Gällstedt, M. & Karlsson, S. Recycling of multi-material multilayer plastic packaging: current trends and future scenarios. Resour. Conserv. Recycl. 176, 105905 (2022).

    Google Scholar 

  43. Sutliff, B. P. et al. Correlating near-infrared spectra to bulk properties in polyolefins. Macromolecules 57, 2329–2338 (2024).

    Google Scholar 

  44. Sunil, M. et al. Machine learning assisted Raman spectroscopy: a viable approach for the detection of microplastics. JWPE 60, 105150 (2024).

    Google Scholar 

  45. Koinig, G., Kuhn, N., Fink, T., Grath, E. & Tischberger-Aldrian, A. Inline classification of polymer films using Machine learning methods. Waste Manag. 174, 290–299 (2024).

    Google Scholar 

  46. Barbosa, F. D., Staffa, L. H. & Costa, L. C. Recycling of PE/PA/EVOH multilayer flexible packaging films via reactive compatibilization. J. Appl. Polym. Sci. 142, e57332 (2025).

  47. Pracella, M., Chionna, D., Ishak, R. & Galeski, A. Recycling of PET and Polyolefin Based Packaging Materials by Reactive Blending. Polym. Plast. Technol. Eng. 43, 1711–1722 (2004).

    Google Scholar 

  48. Samios, C. K. & Kalfoglou, N. K. Compatibilization of poly(ethylene-co-vinyl alcohol) (EVOH) and EVOH/HDPE blends with ionomers. Structure and properties. Polymer 39, 3863–3870 (1998).

    Google Scholar 

  49. Zhan, K. et al. Impact of thermomechanical reprocessing on multilayer plastic packaging blend. Polym. Degrad. Stab. 222, 110710 (2024).

    Google Scholar 

  50. Maile, K. Plastics recyclers Europe announces new findings for PE film recycling. Recycling Today https://www.recyclingtoday.com/news/pe-film-recycling-findings/ (2019).

  51. Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A. & Aroua, M. K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 115, 308–326 (2016).

    Google Scholar 

  52. Bauer, A.-S. et al. Recyclability and redesign challenges in multilayer flexible food packaging—a review. Foods 10, 2702 (2021).

    Google Scholar 

  53. Carullo, D. et al. Testing a coated PE-based mono-material for food packaging applications: an in-depth performance comparison with conventional multi-layer configurations. Food Packaging Shelf Life 39, 101143 (2023).

    Google Scholar 

  54. Adam, H. B., Yousfi, M., Maazouz, A. & Lamnawar, K. Recycling of multilayer polymeric barrier films: an overview of recent pioneering works and main challenges. Macromol. Mater. Eng. 310, 2400414 (2025).

    Google Scholar 

  55. Meys, R. et al. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science 374, 71–76 (2021).

    Google Scholar 

  56. DesVeaux, J. S. et al. Mixed polyester recycling can enable a circular plastic economy with environmental benefits. One Earth 7, 2204–2222 (2024).

    Google Scholar 

  57. Curley, J. B. et al. Closed-loop recycling of mixed polyesters via catalytic methanolysis and monomer separations. Nat. Chem. Eng. 2, 568–580 (2025).

    Google Scholar 

  58. Han, C.-T. et al. Circular polymer designed by regulating entropy: spiro-valerolactone-based polyesters with high gas barriers and adhesion strength. JACS 147, 4511–4519 (2025).

    Google Scholar 

  59. Lagaron, J. M., Catalá, R. & Gavara, R. Structural characteristics defining high barrier properties in polymeric materials. Mater. Sci. Technol. 20, 1–7 (2004).

    Google Scholar 

  60. Siracusa, V. Food packaging permeability behaviour: a report. Int. J. Polym. Sci. 2012, 302029 (2012).

    Google Scholar 

  61. Salame, M. & Steingiser, S. Barrier polymers. Polym. Plast. Technol. Eng. 8, 155–175 (1977).

    Google Scholar 

  62. Klopffer, M. H. & Flaconneche, B. Transport properties of gases in polymers: bibliographic review. Oil Gas Sci. Technol. 56, 223–244 (2001).

    Google Scholar 

  63. Wu, F., Misra, M. & Mohanty, A. K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 117, 101395 (2021).

    Google Scholar 

  64. Murcia Valderrama, M. A., van Putten, R.-J. & Gruter, G.-J. M. PLGA barrier materials from CO2. the influence of lactide co-monomer on glycolic acid polyesters. ACS Appl. Polym. Mater. 2, 2706–2718 (2020).

    Google Scholar 

  65. Altay, E., Jang, Y.-J., Kua, X. Q. & Hillmyer, M. A. Synthesis, microstructure, and properties of high-molar-mass polyglycolide copolymers with isolated methyl defects. Biomacromolecules 22, 2532–2543 (2021).

    Google Scholar 

  66. Jem, K. J. & Tan, B. The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv. Ind. Eng. Polym. Res. 3, 60–70 (2020).

    Google Scholar 

  67. Samantaray, P. K. et al. Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications. Green. Chem. 22, 4055–4081 (2020).

    Google Scholar 

  68. Basu, S., Plucinski, A. & Catchmark, J. M. Sustainable barrier materials based on polysaccharide polyelectrolyte complexes. Green. Chem. 19, 4080–4092 (2017).

    Google Scholar 

  69. Nair, S. S., Zhu, J. Y., Deng, Y. & Ragauskas, A. J. High performance green barriers based on nanocellulose. Sustain. Chem. Process. 2, 23 (2014).

    Google Scholar 

  70. Su, Z. et al. Robust, high-barrier, and fully recyclable cellulose-based plastic replacement enabled by a dynamic imine polymer. J. Mater. Chem. A 8, 14082–14090 (2020).

    Google Scholar 

  71. Yu, Z., Ji, Y., Bourg, V., Bilgen, M. & Meredith, J. C. Chitin- and cellulose-based sustainable barrier materials: a review. Emerg. Mater. 3, 919–936 (2020).

    Google Scholar 

  72. Zeng, J. et al. Development of high-barrier composite films for sustainable reduction of non-biodegradable materials in food packaging application. Carbohydr. Polym. 330, 121824 (2024).

    Google Scholar 

  73. Bradford, G. et al. Chemistry-informed machine learning for polymer electrolyte discovery. ACS Cent. Sci. 9, 206–216 (2023).

    Google Scholar 

  74. Doan Tran, H. et al. Machine-learning predictions of polymer properties with Polymer Genome. J. Appl. Phys. 128, 171104 (2020).

  75. Kim, C., Batra, R., Chen, L., Tran, H. & Ramprasad, R. Polymer design using genetic algorithm and machine learning. Comput. Mater. Sci. 186, 110067 (2021).

    Google Scholar 

  76. Martin, T. B. & Audus, D. J. Emerging trends in machine learning: a polymer perspective. ACS Polym. Au 3, 239–258 (2023).

    Google Scholar 

  77. Mysona, J. A., Nealey, P. F. & de Pablo, J. J. Machine learning models and dimensionality reduction for prediction of polymer properties. Macromolecules 57, 1988–1997 (2024).

    Google Scholar 

  78. Qiu, H. & Sun, Z.-Y. On-demand reverse design of polymers with PolyTAO. Npj Comput. Mater. 10, 273 (2024).

    Google Scholar 

  79. Andraju, N., Curtzwiler, G. W., Ji, Y., Kozliak, E. & Ranganathan, P. Machine-learning-based predictions of polymer and postconsumer recycled polymer properties: a comprehensive review. ACS Appl. Mater. Interfaces 14, 42771–42790 (2022).

    Google Scholar 

  80. McDonald, S. M. et al. Applied machine learning as a driver for polymeric biomaterials design. Nat. Commun. 14, 4838 (2023).

    Google Scholar 

  81. Tran, H. et al. Design of functional and sustainable polymers assisted by artificial intelligence. Nat. Rev. Mater. 9, 866–886 (2024).

    Google Scholar 

  82. Khajeh, A. et al. A materials discovery framework based on conditional generative models applied to the design of polymer electrolytes. Digit. Discov. 4, 11–20 (2025).

  83. Yang, Z. et al. De novo design of polymer electrolytes using GPT-based and diffusion-based generative models. Npj Comput. Mater. 10, 296 (2024).

    Google Scholar 

  84. Kim, S., Schroeder, C. M. & Jackson, N. E. Open macromolecular genome: generative design of synthetically accessible polymers. ACS Polym. Au 3, 318–330 (2023).

    Google Scholar 

  85. Liao, V. & Jayaraman, A. Inverse design of block polymer materials with desired nanoscale structure and macroscale properties. JACS Au 5, 2810–2824 (2025).

    Google Scholar 

  86. Vogel, G. & Weber, J. M. Inverse design of copolymers including stoichiometry and chain architecture. Chem. Sci. 16, 1161–1178 (2025).

    Google Scholar 

  87. Zhou, T., Wu, Z., Chilukoti, H. K. & Müller-Plathe, F. Sequence-engineering polyethylene–polypropylene copolymers with high thermal conductivity using a molecular-dynamics-based genetic algorithm. J. Chem. Theory Comput. 17, 3772–3782 (2021).

    Google Scholar 

  88. Hayashi, Y., Shiomi, J., Morikawa, J. & Yoshida, R. RadonPy: automated physical property calculation using all-atom classical molecular dynamics simulations for polymer informatics. Npj Comput. Mater. 8, 222 (2022).

    Google Scholar 

  89. Gurnani, R., Kuenneth, C., Toland, A. & Ramprasad, R. Polymer informatics at scale with multitask graph neural networks. Chem. Mater. 35, 1560–1567 (2023).

    Google Scholar 

  90. Phan, B. K. et al. Gas permeability, diffusivity, and solubility in polymers: simulation-experiment data fusion and multi-task machine learning. Npj Comput. Mater. 10, 186 (2024).

    Google Scholar 

  91. Shebek, K. M., Strutz, J., Broadbelt, L. J. & Tyo, K. E. J. Pickaxe: a Python library for the prediction of novel metabolic reactions. BMC Bioinform. 24, 106 (2023).

    Google Scholar 

  92. Wang, Y., van Putten, R.-J., Tietema, A., Parsons, J. R. & Gruter, G.-J. M. Polyester biodegradability: importance and potential for optimisation. Green. Chem. 26, 3698–3716 (2024).

    Google Scholar 

  93. Dobbelaere, M. R., Lengyel, I., Stevens, C. V. & Van Geem, K. M. Geometric deep learning for molecular property predictions with chemical accuracy across chemical space. J. Cheminform. 16, 99 (2024).

    Google Scholar 

  94. Zhou, D. et al. Multi-step biosynthesis of the biodegradable polyester monomer 2-pyrone-4,6-dicarboxylic acid from glucose. Biotechnol. Biofuels Bioprod. 16, 92 (2023).

    Google Scholar 

  95. U.S. Environmental Protection Agency. User’s Guide for T.E.S.T. (Toxicity Estimation Software Tool; Version 5.1) https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test (2020).

  96. Messin, T. et al. Structure and barrier properties of multinanolayered biodegradable PLA/PBSA films: confinement effect via forced assembly coextrusion. ACS Appl. Mater. Interfaces 9, 29101–29112 (2017).

    Google Scholar 

  97. Dziadowiec, D., Matykiewicz, D., Szostak, M. & Andrzejewski, J. Overview of the cast polyolefin film extrusion technology for multi-layer packaging applications. Materials 16, 1071 (2023).

    Google Scholar 

  98. van den Hurk, R. S., Pirok, B. W. J. & Bos, T. S. The role of artificial intelligence and machine learning in polymer characterization: emerging trends and perspectives. Chromatographia 88, 357–363 (2025).

    Google Scholar 

  99. Abeykoon, C. Sensing technologies for process monitoring in polymer extrusion: a comprehensive review on past, present and future aspects. Meas. Sens. 22, 100381 (2022).

    Google Scholar 

  100. Wang, C. et al. Autonomous platform for solution processing of electronic polymers. Nat. Commun. 16, 1498 (2025).

    Google Scholar 

  101. Xie, Y., He, K. & Castellanos-Gomez, A. Toward full autonomous laboratory instrumentation control with large language models. Small Struct. 6, 2500173 (2025).

    Google Scholar 

  102. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Google Scholar 

  103. Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).

    Google Scholar 

  104. Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    Google Scholar 

  105. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Google Scholar 

  106. Walsh, D. J. et al. Community Resource for Innovation in Polymer Technology (CRIPT): A Scalable Polymer Material Data Structure. ACS Cent. Sci. 9, 330–338 (2023).

    Google Scholar 

  107. Gormley, A. J. & Webb, M. A. Machine learning in combinatorial polymer chemistry. Nat. Rev. Mater. 6, 642–644 (2021).

    Google Scholar 

  108. Liu, G. & Jiang, M. Transfer learning with diffusion model for polymer property prediction. Workshop on “Machine Learning for Materials” (ICLR, 2023).

  109. Ahn, J., Irianti, G. P., Choe, Y. & Hur, S.-M. Enhancing deep learning predictive models with HAPPY (Hierarchically Abstracted rePeat unit of PolYmers) representation. Npj Comput. Mater. 10, 110 (2024).

    Google Scholar 

  110. Shen, C., Zhang, Y., Han, F. & Xia, K. Molecular topological deep learning for polymer property prediction. ACS nano 20, 288–299 (2026).

  111. Jain, A., Gurnani, R., Rajan, A., Qi, H. J. & Ramprasad, R. A physics-enforced neural network to predict polymer melt viscosity. Npj Comput. Mater. 11, 42 (2025).

    Google Scholar 

  112. Segal, N., Netanyahu, A., Greenman, K. P., Agrawal, P. & Gómez-Bombarelli, R. Known unknowns: out-of-distribution property prediction in materials and molecules. Npj Comput. Mater. 11, 345 (2025).

    Google Scholar 

  113. Lin, C. & Zhang, H. Polymer biodegradation in aquatic environments: a machine learning model informed by meta-analysis of structure-biodegradation relationships. Environ. Sci. Technol. 59, 1253–1263 (2025).

    Google Scholar 

  114. Kern, J., Su, Y.-L., Gutekunst, W. & Ramprasad, R. An informatics framework for the design of sustainable, chemically recyclable, synthetically accessible, and durable polymers. Npj Comput. Mater. 11, 182 (2025).

    Google Scholar 

  115. Coile, M. W., Harmon, R. E., Wang, G., SriBala, G. & Broadbelt, L. J. Kinetic Monte Carlo Tool for Kinetic Modeling of Linear Step-Growth Polymerization: Insight into Recycling of Polyurethanes. Macromol. Theory Simul. 31, 2100058 (2022).

    Google Scholar 

  116. SS, S. V. et al. Multi-objective goal-directed optimization of de novo stable organic radicals for aqueous redox flow batteries. Nat. Mach. Intell. 4, 720–730 (2022).

    Google Scholar 

Download references

Acknowledgements

Funding was provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Materials and Manufacturing Technologies Office (AMMTO), and Bioenergy Technologies Office (BETO). This work was performed as part of the Bio-Optimized Technologies to keep Thermoplastics out of Landfills and the Environment (BOTTLE) Consortium and was supported by AMMTO and BETO under contract DEAC36-08GO28308 with the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. SK and MM also gratefully acknowledge the support of RePLACE (Redesigning Polymers to Leverage A Circular Economy), funded by the Office of Science of the U.S. Department of Energy via award no. DR-SC0022290. We also thank Scivetica for their help with graphics.

Author information

Author notes
  1. These authors contributed equally: Ethan C. Quinn, Levi J. Hamernik, Jeffrey N. Law.

Authors and Affiliations

  1. Department of Chemistry, Colorado State University, Fort Collins, CO, USA

    Ethan C. Quinn

  2. Renewable Resources and Enabling Sciences Center, National Laboratory of the Rockies, Golden, CO, USA

    Ethan C. Quinn, Levi J. Hamernik, Jeffrey N. Law, Brandon C. Knott & Katrina M. Knauer

  3. BOTTLE Consortium, Golden, CO, USA

    Ethan C. Quinn, Levi J. Hamernik & Katrina M. Knauer

  4. Hexion Inc., Columbus, OH, USA

    Ryan W. Clarke

  5. Department of Chemistry, Northwestern University, Evanston, IL, USA

    Maya Milrod

  6. Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA

    Shivani Kozarekar & Linda J. Broadbelt

  7. Association of Plastic Recyclers, Washington, DC, USA

    Rebecca M. Mick

  8. Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA, USA

    Margaret J. Sobkowicz

Authors
  1. Ethan C. Quinn
    View author publications

    Search author on:PubMed Google Scholar

  2. Levi J. Hamernik
    View author publications

    Search author on:PubMed Google Scholar

  3. Jeffrey N. Law
    View author publications

    Search author on:PubMed Google Scholar

  4. Ryan W. Clarke
    View author publications

    Search author on:PubMed Google Scholar

  5. Maya Milrod
    View author publications

    Search author on:PubMed Google Scholar

  6. Shivani Kozarekar
    View author publications

    Search author on:PubMed Google Scholar

  7. Rebecca M. Mick
    View author publications

    Search author on:PubMed Google Scholar

  8. Margaret J. Sobkowicz
    View author publications

    Search author on:PubMed Google Scholar

  9. Linda J. Broadbelt
    View author publications

    Search author on:PubMed Google Scholar

  10. Brandon C. Knott
    View author publications

    Search author on:PubMed Google Scholar

  11. Katrina M. Knauer
    View author publications

    Search author on:PubMed Google Scholar

Contributions

E.C.Q., L.J.H., J.N.L., B.C.K., and K.M.K. conceived of the idea; E.C.Q., L.J.H., and J.N.L. wrote the original manuscript; E.C.Q., L.J.H., J.N.L., B.C.K., and K.M.K. created the figures; R.W.C., M.M., S.K., R.M.M., and M.J.S. wrote and edited on select sections of the manuscript; J.N.L. built the model and neural network for PolyID; L.J.B., B.C.K., and K.M.K. secured funding; all authors edited the manuscript.

Corresponding authors

Correspondence to Brandon C. Knott or Katrina M. Knauer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Mehran Ghasemlou, Dina Maniar, and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinn, E.C., Hamernik, L.J., Law, J.N. et al. Cracking the code of multi-layer films to promote circularity in single-use plastic packaging. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68936-w

Download citation

  • Received: 04 September 2025

  • Accepted: 21 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68936-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing